ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis, Characterization, and Field Effect Transistor Properties of Regioregular Poly(3-alkyl-2,5-selenylenevinylene)

View Author Information
Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, U.K.
Department of Materials & Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, U.K.
§ Department of Physics & Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, U.K.
CSIRO, Molecular and Health Technologies, VIC 3169, Australia
Cite this: Macromolecules 2011, 44, 13, 5194–5199
Publication Date (Web):June 7, 2011
https://doi.org/10.1021/ma200910a
Copyright © 2011 American Chemical Society

    Article Views

    1491

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Here we report the synthesis of novel poly(3-alkyl-2,5-selenylenevinylene)s (PSV) by the polymerization of 2,5-dibromo-3-alkylselenophene and (E)-1,2-bis(tributylstannyl)ethylene under microwave-assisted Stille coupling conditions. Polymers containing hexyl and decyl side chains were prepared. The decyl-substituted polymer exhibited good solubility in common organic solvents, and 1H NMR analysis indicated a side-chain regioregularity in excess of 90%. The polymer exhibits an absorption maxima at 621 nm in solution, with a significant red shift in absorption upon film formation. Thin film transistors fabricated from PSV exhibited hole carrier mobilities up to 0.01 cm2/(V s). The polymer displayed balanced ambipolar performance when hydroxyl free organic dielectrics were used as the gate insulator.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    TGA, PESA, and full 1H NMR spectra of the polymers. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 46 publications.

    1. Dizao Li, Qiang Wang, Jianyao Huang, Congyuan Wei, Weifeng Zhang, Liping Wang, Gui Yu. Influence of Backbone Regioregularity on High-Mobility Conjugated Polymers Based on Alkylated Dithienylacrylonitrile. ACS Applied Materials & Interfaces 2019, 11 (46) , 43416-43424. https://doi.org/10.1021/acsami.9b14757
    2. Emily L. Kynaston, Ali Nazemi, Liam R. MacFarlane, George R. Whittell, Charl F. J. Faul, and Ian Manners . Uniform Polyselenophene Block Copolymer Fiberlike Micelles and Block Co-micelles via Living Crystallization-Driven Self-Assembly. Macromolecules 2018, 51 (3) , 1002-1010. https://doi.org/10.1021/acs.macromol.7b02317
    3. Joydeep Dhar, Tushita Mukhopadhay, Nir Yaacobi-Gross, Thomas D. Anthopoulos, Ulrike Salzner, Sufal Swaraj, and Satish Patil . Effect of Chalcogens on Electronic and Photophysical Properties of Vinylene-Based Diketopyrrolopyrrole Copolymers. The Journal of Physical Chemistry B 2015, 119 (34) , 11307-11316. https://doi.org/10.1021/acs.jpcb.5b03145
    4. Zhen Zhang and Yang Qin . Synthesis and Characterization of Poly(selenylene vinylene) and Poly(selenylene vinylene)-co-Poly(thienylene vinylene) through Acyclic Diene Metathesis (ADMET) Polymerization. ACS Macro Letters 2015, 4 (7) , 679-683. https://doi.org/10.1021/acsmacrolett.5b00292
    5. Sashi Debnath, Saumya Singh, Anjan Bedi, Kothandam Krishnamoorthy, and Sanjio S. Zade . Synthesis, Optoelectronic, and Transistor Properties of BODIPY- and Cyclopenta[c]thiophene-Containing π-Conjugated Copolymers. The Journal of Physical Chemistry C 2015, 119 (28) , 15859-15867. https://doi.org/10.1021/acs.jpcc.5b02743
    6. Huan-Hsuan Chang, Che-En Tsai, Yu-Ying Lai, Wei-Wei Liang, So-Lin Hsu, Chain-Shu Hsu, and Yen-Ju Cheng . A New Pentacyclic Indacenodiselenophene Arene and Its Donor–Acceptor Copolymers for Solution-Processable Polymer Solar Cells and Transistors: Synthesis, Characterization, and Investigation of Alkyl/Alkoxy Side-Chain Effect. Macromolecules 2013, 46 (19) , 7715-7726. https://doi.org/10.1021/ma401415g
    7. Andrew J. Musser, Mohammed Al-Hashimi, Margherita Maiuri, Daniele Brida, Martin Heeney, Giulio Cerullo, Richard H. Friend, and Jenny Clark . Activated Singlet Exciton Fission in a Semiconducting Polymer. Journal of the American Chemical Society 2013, 135 (34) , 12747-12754. https://doi.org/10.1021/ja405427j
    8. Anjan Bedi, Satyaprasad P. Senanayak, K. S. Narayan, and Sanjio S. Zade . Synthesis of Solution-Processable Poly(cyclopenta[c]selenylvinylene) and Its Charge Transport Properties: Comparative Study with the Thiophene Analogue. Macromolecules 2013, 46 (15) , 5943-5950. https://doi.org/10.1021/ma4008219
    9. Catherine Kanimozhi, Nir Yaacobi-Gross, Kang Wei Chou, Aram Amassian, Thomas D. Anthopoulos, and Satish Patil . Diketopyrrolopyrrole–Diketopyrrolopyrrole-Based Conjugated Copolymer for High-Mobility Organic Field-Effect Transistors. Journal of the American Chemical Society 2012, 134 (40) , 16532-16535. https://doi.org/10.1021/ja308211n
    10. Masahiro Nakano, Hiroki Mori, Shoji Shinamura, and Kazuo Takimiya . Naphtho[2,3-b:6,7-b′]dichalcogenophenes: Syntheses, Characterizations, and Chalcogene Atom Effects on Organic Field-Effect Transistor and Organic Photovoltaic Devices. Chemistry of Materials 2012, 24 (1) , 190-198. https://doi.org/10.1021/cm202853b
    11. Jianfeng Li, Zhicai Chen, Junwei Wang, Sang Young Jeong, Kun Yang, Kui Feng, Jie Yang, Bin Liu, Han Young Woo, Xugang Guo. Semiconducting Polymers Based on Simple Electron‐Deficient Cyanated trans ‐1,3‐Butadienes for Organic Field‐Effect Transistors. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202307647
    12. Jianfeng Li, Zhicai Chen, Junwei Wang, Sang Young Jeong, Kun Yang, Kui Feng, Jie Yang, Bin Liu, Han Young Woo, Xugang Guo. Semiconducting Polymers Based on Simple Electron‐Deficient Cyanated trans ‐1,3‐Butadienes for Organic Field‐Effect Transistors. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202307647
    13. Weipeng Sun, Yohei Adachi, Joji Ohshita. Preparation of D-A copolymers based on dithiazologermole and germaindacenodithiazole as weak electron donor units. Polymer Journal 2023, 55 (7) , 797-805. https://doi.org/10.1038/s41428-023-00771-y
    14. Adam V. Marsh, Martin Heeney. Conjugated polymers based on selenophene building blocks. Polymer Journal 2023, 55 (4) , 375-385. https://doi.org/10.1038/s41428-022-00731-y
    15. Hwangseok Kim, Jaeho Lee, Taehyun Kim, Minyoung Cho, Tae‐Lim Choi. Precision Synthesis of Various Low‐Bandgap Donor–Acceptor Alternating Conjugated Polymers via Living Suzuki–Miyaura Catalyst‐Transfer Polymerization. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202205828
    16. Hwangseok Kim, Jaeho Lee, Taehyun Kim, Minyoung Cho, Tae‐Lim Choi. Precision Synthesis of Various Low‐Bandgap Donor–Acceptor Alternating Conjugated Polymers via Living Suzuki–Miyaura Catalyst‐Transfer Polymerization. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202205828
    17. Dhananjaya Patra, Marc Comí, Xianhe Zhang, Gururaj P. Kini, Malsha Udayakantha, Alexander J. Kalin, Sarbajit Banerjee, Lei Fang, Xugang Guo, Mohammed Al-Hashimi. Design, synthesis and characterization of fused bithiazole- and dithiophene-based low bandgap thienylenevinylene copolymers. Polymer Chemistry 2021, 12 (41) , 5942-5951. https://doi.org/10.1039/D1PY00773D
    18. Adam G Kelly, Victor Vega-Mayoral, John B Boland, Jonathan N Coleman. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey. 2D Materials 2019, 6 (4) , 045036. https://doi.org/10.1088/2053-1583/ab3892
    19. Zhen Zhang, Yang Qin. Cross-conjugated poly(selenylene vinylene)s. Polymer Chemistry 2019, 10 (8) , 1018-1025. https://doi.org/10.1039/C8PY01555D
    20. Zhen Zhang, Wenhan He, Yang Qin. Selenium and Tellurium Containing Conjugated Polymers. 2017, 451-482. https://doi.org/10.1002/9781119235941.ch18
    21. Dhananjaya Patra, Jaehyuk Lee, Jongbok Lee, Dusan N. Sredojevic, Andrew J. P. White, Hassan S. Bazzi, Edward N. Brothers, Martin Heeney, Lei Fang, Myung-Han Yoon, Mohammed Al-Hashimi. Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs). Journal of Materials Chemistry C 2017, 5 (9) , 2247-2258. https://doi.org/10.1039/C6TC04763G
    22. Andrew M. Priegert, Benjamin W. Rawe, Spencer C. Serin, Derek P. Gates. Polymers and the p-block elements. Chemical Society Reviews 2016, 45 (4) , 922-953. https://doi.org/10.1039/C5CS00725A
    23. Assunta Marrocchi, Antonio Facchetti, Daniela Lanari, Chiara Petrucci, Luigi Vaccaro. Current methodologies for a sustainable approach to π-conjugated organic semiconductors. Energy & Environmental Science 2016, 9 (3) , 763-786. https://doi.org/10.1039/C5EE03727A
    24. Mohammed Al-Hashimi, Yang Han, Jeremy Smith, Hassan S. Bazzi, Siham Yousuf A. Alqaradawi, Scott E. Watkins, Thomas D. Anthopoulos, Martin Heeney. Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene–vinylene copolymers. Chemical Science 2016, 7 (2) , 1093-1099. https://doi.org/10.1039/C5SC03501E
    25. Nerea Casado, Guiomar Hernández, Haritz Sardon, David Mecerreyes. Current trends in redox polymers for energy and medicine. Progress in Polymer Science 2016, 52 , 107-135. https://doi.org/10.1016/j.progpolymsci.2015.08.003
    26. Zhengran Yi, Shuai Wang, Yunqi Liu. Design of High‐Mobility Diketopyrrolopyrrole‐Based π‐Conjugated Copolymers for Organic Thin‐Film Transistors. Advanced Materials 2015, 27 (24) , 3589-3606. https://doi.org/10.1002/adma.201500401
    27. Tae Wan Lee, Dae Hee Lee, Jicheol Shin, Min Ju Cho, Dong Hoon Choi. π-Conjugated polymers derived from 2,5-bis(2-decyltetradecyl)-3,6-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for high-performance thin film transistors. Polymer Chemistry 2015, 6 (10) , 1777-1785. https://doi.org/10.1039/C4PY01536C
    28. Zhuping Fei, Raja Shahid Ashraf, Yang Han, Sarah Wang, Chin Pang Yau, Pabitra S. Tuladhar, Thomas D. Anthopoulos, Michael L. Chabinyc, Martin Heeney. Diselenogermole as a novel donor monomer for low band gap polymers. Journal of Materials Chemistry A 2015, 3 (5) , 1986-1994. https://doi.org/10.1039/C4TA05703A
    29. Jon Hollinger, Dong Gao, Dwight S. Seferos. Selenophene Electronics. Israel Journal of Chemistry 2014, 54 (5-6) , 440-453. https://doi.org/10.1002/ijch.201400011
    30. Jonathan Marshall, Jake Hooton, Yang Han, Adam Creamer, Raja Shahid Ashraf, Yoann Porte, Thomas D. Anthopoulos, Paul N. Stavrinou, Martyn A. McLachlan, Hugo Bronstein, Peter Beavis, Martin Heeney. Polythiophenes with vinylene linked ortho , meta and para -carborane sidechains. Polym. Chem. 2014, 5 (21) , 6190-6199. https://doi.org/10.1039/C4PY00767K
    31. Chenmin Yu, Zitong Liu, Yang Yang, Jingjing Yao, Zhengxu Cai, Hewei Luo, Guanxin Zhang, Deqing Zhang. New dithienyl-diketopyrrolopyrrole-based conjugated molecules entailing electron withdrawing moieties for organic ambipolar semiconductors and photovoltaic materials. J. Mater. Chem. C 2014, 2 (47) , 10101-10109. https://doi.org/10.1039/C4TC01872A
    32. Mallari A. Naik, Satish Patil. Diketopyrrolopyrrole-based conjugated polymers and small molecules for organic ambipolar transistors and solar cells. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (20) , 4241-4260. https://doi.org/10.1002/pola.26843
    33. Raquel Gracia, David Mecerreyes. Polymers with redox properties: materials for batteries, biosensors and more. Polymer Chemistry 2013, 4 (7) , 2206. https://doi.org/10.1039/c3py21118e
    34. Munazza Shahid, Nafeezah Padamsey, John Labram, Thomas D. Anthopoulos, Martin Heeney. Synthesis of tetraselenophenoporphyrazine and its application in transistor devices. Journal of Materials Chemistry C 2013, 1 (39) , 6198. https://doi.org/10.1039/c3tc31584c
    35. P. Data, M. Lapkowski, R. Motyka, J. Suwinski. Influence of alkyl chain on electrochemical and spectroscopic properties of polyselenophenes. Electrochimica Acta 2013, 87 , 438-449. https://doi.org/10.1016/j.electacta.2012.09.077
    36. Daisuke Ogawa, Yasushi Nishihara. Conjugated Polymers. 2013, 137-173. https://doi.org/10.1007/978-3-642-32368-3_6
    37. Dariusz Bogdal, Urszula Pisarek. Polymer Chemistry Under Microwave Irradiation. 2012, 1013-1057. https://doi.org/10.1002/9783527651313.ch22
    38. Yuriy A. Zhabanov, Christophe M.L. Vande Velde, Frank Blockhuys, Sergey A. Shlykov. Molecular structures of tetrabromothiophene and -selenophene as determined by gas-phase electron diffraction and high-level quantum chemical calculations. Journal of Molecular Structure 2012, 1030 , 75-82. https://doi.org/10.1016/j.molstruc.2012.07.004
    39. Palas Baran Pati, Soumyajit Das, Sanjio S. Zade. Benzooxadiazaole‐based D–A–D co‐oligomers: Synthesis and electropolymerization. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (19) , 3996-4003. https://doi.org/10.1002/pola.26195
    40. Srinivas Kola, Jasmine Sinha, Howard E. Katz. Organic transistors in the new decade: Toward n‐channel, printed, and stabilized devices. Journal of Polymer Science Part B: Polymer Physics 2012, 50 (15) , 1090-1120. https://doi.org/10.1002/polb.23054
    41. Auke J. Kronemeijer, Enrico Gili, Munazza Shahid, Jonathan Rivnay, Alberto Salleo, Martin Heeney, Henning Sirringhaus. A Selenophene‐Based Low‐Bandgap Donor–Acceptor Polymer Leading to Fast Ambipolar Logic. Advanced Materials 2012, 24 (12) , 1558-1565. https://doi.org/10.1002/adma.201104522
    42. James S. Klimavicz, Jared F. Mike, Achala Bhuwalka, Aimeé L. Tomlinson, Malika Jeffries-EL. Synthesis of benzobisoxazole-based D-π-A-π-D organic chromophores with variable optical and electronic properties. Pure and Applied Chemistry 2012, 84 (4) , 991-1004. https://doi.org/10.1351/PAC-CON-11-10-23
    43. Hiromichi Kurosu, Takeshi Yamanobe. A specialist periodical report on nuclear magnetic resonance (2011/8) synthetic macromolecules. 2012, 386-428. https://doi.org/10.1039/9781849734851-00386
    44. Edward R. Biehl. Five-Membered Ring Systems. 2012, 139-168. https://doi.org/10.1016/B978-0-08-096807-0.00005-1
    45. Hsiang-Wei Lin, Wen-Ya Lee, Wen-Chang Chen. Selenophene-DPP donor–acceptor conjugated polymer for high performance ambipolar field effect transistor and nonvolatile memory applications. J. Mater. Chem. 2012, 22 (5) , 2120-2128. https://doi.org/10.1039/C1JM14640H
    46. Eric Rivard. Inorganic and organometallic polymers. Annual Reports Section "A" (Inorganic Chemistry) 2012, 108 , 315. https://doi.org/10.1039/c2ic90001g

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect