ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Low Power, Biologically Benign NIR Light Triggers Polymer Disassembly

View Author Information
Skaggs School Pharmacy and Pharmaceutical Sciences, Department of NanoEngineering, Materials Science and Engineering and Biomedical Sciences Programs, University of California at San Diego, La Jolla, California 92093, United States
Cite this: Macromolecules 2011, 44, 21, 8590–8597
Publication Date (Web):September 30, 2011
https://doi.org/10.1021/ma201850q
Copyright © 2011 American Chemical Society

    Article Views

    4451

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Near infrared (NIR) irradiation can penetrate up to 10 cm deep into tissues and be remotely applied with high spatial and temporal precision. Despite its potential for various medical and biological applications, there is a dearth of biomaterials that are responsive at this wavelength region. Herein we report a polymeric material that is able to disassemble in response to biologically benign levels of NIR irradiation upon two-photon absorption. The design relies on the photolysis of the multiple pendant 4-bromo7-hydroxycoumarin protecting groups to trigger a cascade of cyclization and rearrangement reactions leading to the degradation of the polymer backbone. The new material undergoes a 50% Mw loss after 25 s of ultraviolet (UV) irradiation by single photon absorption and 21 min of NIR irradiation via two-photon absorption. Most importantly, even NIR irradiation at a biologically benign laser power is sufficient to cause significant polymer disassembly. Furthermore, this material is well tolerated by cells both before and after degradation. These results demonstrate for the first time a NIR sensitive material with potential to be used for in vivo applications.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details for the synthesis of compounds 2, 3, 4, 9 and 10 and cytotoxicity experiments. This material is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 111 publications.

    1. Ádám Viktor Joó, Jonathan Potier, Nouzha Ouhssou, Bárbara Pepino Mendes, Gaëlle Le Fer, Patrice Woisel, Kedafi Belkhir. Amphiphilic Block Copolymers Based on PEG and UV-Triggerable Self-Immolative Polymers. ACS Applied Polymer Materials 2023, 5 (11) , 8960-8971. https://doi.org/10.1021/acsapm.3c01421
    2. Linxue Zhang, Shuang Chen, Rong Ma, Lijun Zhu, Ting Yan, Gulinigaer Alimu, Zhong Du, Nuernisha Alifu, Xueliang Zhang. NIR-Excitable PEG-Modified Au Nanorods for Photothermal Therapy of Cervical Cancer. ACS Applied Nano Materials 2021, 4 (12) , 13060-13070. https://doi.org/10.1021/acsanm.1c02594
    3. Jiajia Tan, Zhengyu Deng, Chengzhou Song, Jie Xu, Yuben Zhang, Yong Yu, Jinming Hu, Shiyong Liu. Coordinating External and Built-In Triggers for Tunable Degradation of Polymeric Nanoparticles via Cycle Amplification. Journal of the American Chemical Society 2021, 143 (34) , 13738-13748. https://doi.org/10.1021/jacs.1c05617
    4. Roy Weinstain, Tomáš Slanina, Dnyaneshwar Kand, Petr Klán. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chemical Reviews 2020, 120 (24) , 13135-13272. https://doi.org/10.1021/acs.chemrev.0c00663
    5. Jingjiang Sun, Dimitri Jung, Timo Schoppa, Juliane Anderski, Marie-Theres Picker, Yi Ren, Dennis Mulac, Nora Stein, Klaus Langer, Dirk Kuckling. Light-Responsive Serinol-Based Polycarbonate and Polyester as Degradable Scaffolds. ACS Applied Bio Materials 2019, 2 (7) , 3038-3051. https://doi.org/10.1021/acsabm.9b00347
    6. Ling Chen, Yuqing Dong, Chak-Yin Tang, Lei Zhong, Wing-Cheung Law, Gary C. P. Tsui, Yingkui Yang, Xiaolin Xie. Development of Direct-Laser-Printable Light-Powered Nanocomposites. ACS Applied Materials & Interfaces 2019, 11 (21) , 19541-19553. https://doi.org/10.1021/acsami.9b05871
    7. Yuqing Dong, Guorui Jin, Yuan Hong, Hongyuan Zhu, Tian Jian Lu, Feng Xu, Dan Bai, Min Lin. Engineering the Cell Microenvironment Using Novel Photoresponsive Hydrogels. ACS Applied Materials & Interfaces 2018, 10 (15) , 12374-12389. https://doi.org/10.1021/acsami.7b17751
    8. Alona Shagan, Tsuf Croitoru-Sadger, Enav Corem-Salkmon, and Boaz Mizrahi . Near-Infrared Light Induced Phase Transition of Biodegradable Composites for On-Demand Healing and Drug Release. ACS Applied Materials & Interfaces 2018, 10 (4) , 4131-4139. https://doi.org/10.1021/acsami.7b17481
    9. Guoyou Huang, Fei Li, Xin Zhao, Yufei Ma, Yuhui Li, Min Lin, Guorui Jin, Tian Jian Lu, Guy M. Genin, and Feng Xu . Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews 2017, 117 (20) , 12764-12850. https://doi.org/10.1021/acs.chemrev.7b00094
    10. Matthew J. Feeney, Xiaoran Hu, Rati Srinivasan, Nhi Van, Martin Hunter, Irene Georgakoudi, and Samuel W. Thomas, III . UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups. Langmuir 2017, 33 (41) , 10877-10885. https://doi.org/10.1021/acs.langmuir.7b01469
    11. Jan Steinkoenig, Markus M. Zieger, Hatice Mutlu, and Christopher Barner-Kowollik . Dual-Gated Chain Shattering Based on Light Responsive Benzophenones and Thermally Responsive Diels–Alder Linkages. Macromolecules 2017, 50 (14) , 5385-5391. https://doi.org/10.1021/acs.macromol.7b01115
    12. Xiaohui Xu, Bo Bai, Honglun Wang, and Yourui Suo . A Near-Infrared and Temperature-Responsive Pesticide Release Platform through Core–Shell Polydopamine@PNIPAm Nanocomposites. ACS Applied Materials & Interfaces 2017, 9 (7) , 6424-6432. https://doi.org/10.1021/acsami.6b15393
    13. Yingkai Liang, Linqing Li, Rebecca A. Scott, and Kristi L. Kiick . 50th Anniversary Perspective: Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry. Macromolecules 2017, 50 (2) , 483-502. https://doi.org/10.1021/acs.macromol.6b02389
    14. Michal E. Roth, Ori Green, Samer Gnaim, and Doron Shabat . Dendritic, Oligomeric, and Polymeric Self-Immolative Molecular Amplification. Chemical Reviews 2016, 116 (3) , 1309-1352. https://doi.org/10.1021/acs.chemrev.5b00372
    15. Caroline de Gracia Lux, Jacques Lux, Guillaume Collet, Sha He, Minnie Chan, Jason Olejniczak, Alexandra Foucault-Collet, and Adah Almutairi . Short Soluble Coumarin Crosslinkers for Light-Controlled Release of Cells and Proteins from Hydrogels. Biomacromolecules 2015, 16 (10) , 3286-3296. https://doi.org/10.1021/acs.biomac.5b00950
    16. Mei-Chin Chen, Ming-Hung Ling, Kuan-Wen Wang, Zhi-Wei Lin, Bo-Hung Lai, and Dong-Hwang Chen . Near-Infrared Light-Responsive Composite Microneedles for On-Demand Transdermal Drug Delivery. Biomacromolecules 2015, 16 (5) , 1598-1607. https://doi.org/10.1021/acs.biomac.5b00185
    17. Kimy Yeung, Hyungwoo Kim, Hemakesh Mohapatra, and Scott T. Phillips . Surface-Accessible Detection Units in Self-Immolative Polymers Enable Translation of Selective Molecular Detection Events into Amplified Responses in Macroscopic, Solid-State Plastics. Journal of the American Chemical Society 2015, 137 (16) , 5324-5327. https://doi.org/10.1021/jacs.5b02799
    18. Congcong Zhu, Chi Ninh, and Christopher J. Bettinger . Photoreconfigurable Polymers for Biomedical Applications: Chemistry and Macromolecular Engineering. Biomacromolecules 2014, 15 (10) , 3474-3494. https://doi.org/10.1021/bm500990z
    19. Patricia Gumbley, Damla Koylu, Robert H. Pawle, Bond Umezuruike, Elise Spedden, Cristian Staii, and Samuel W. Thomas, III . Wavelength-Selective Disruption and Triggered Release with Photolabile Polyelectrolyte Multilayers. Chemistry of Materials 2014, 26 (3) , 1450-1456. https://doi.org/10.1021/cm403979p
    20. Jason Olejniczak, Jagadis Sankaranarayanan, Mathieu L. Viger, and Adah Almutairi . Highest Efficiency Two-Photon Degradable Copolymer for Remote Controlled Release. ACS Macro Letters 2013, 2 (8) , 683-687. https://doi.org/10.1021/mz400256x
    21. Caroline de Gracia Lux and Adah Almutairi . Intramolecular Cyclization for Stimuli-Controlled Depolymerization of Polycaprolactone Particles Leading to Disassembly and Payload Release. ACS Macro Letters 2013, 2 (5) , 432-435. https://doi.org/10.1021/mz400129h
    22. Shuangyi Sun, Elaheh A. Chamsaz, and Abraham Joy . Photoinduced Polymer Chain Scission of Alkoxyphenacyl Based Polycarbonates. ACS Macro Letters 2012, 1 (10) , 1184-1188. https://doi.org/10.1021/mz3002947
    23. Gregory I. Peterson, Michael B. Larsen, and Andrew J. Boydston . Controlled Depolymerization: Stimuli-Responsive Self-Immolative Polymers. Macromolecules 2012, 45 (18) , 7317-7328. https://doi.org/10.1021/ma300817v
    24. Caroline de Gracia Lux, Cathryn L. McFearin, Shivanjali Joshi-Barr, Jagadis Sankaranarayanan, Nadezda Fomina, and Adah Almutairi . Single UV or Near IR Triggering Event Leads to Polymer Degradation into Small Molecules. ACS Macro Letters 2012, 1 (7) , 922-926. https://doi.org/10.1021/mz3002403
    25. Gang Liu and Chang-Ming Dong . Photoresponsive Poly(S-(o-nitrobenzyl)-l-cysteine)-b-PEO from a l-Cysteine N-Carboxyanhydride Monomer: Synthesis, Self-Assembly, and Phototriggered Drug Release. Biomacromolecules 2012, 13 (5) , 1573-1583. https://doi.org/10.1021/bm300304t
    26. Yue Zhao . Light-Responsive Block Copolymer Micelles. Macromolecules 2012, 45 (9) , 3647-3657. https://doi.org/10.1021/ma300094t
    27. Kyle M. Schmid, Lasse Jensen, and Scott T. Phillips . A Self-Immolative Spacer That Enables Tunable Controlled Release of Phenols under Neutral Conditions. The Journal of Organic Chemistry 2012, 77 (9) , 4363-4374. https://doi.org/10.1021/jo300400q
    28. Tuan Liu, Bingkun Bao, Yuzhan Li, Qiuning Lin, Linyong Zhu. Photo-responsive polymers based on ο-Nitrobenzyl derivatives: from structural design to applications. Progress in Polymer Science 2023, 146 , 101741. https://doi.org/10.1016/j.progpolymsci.2023.101741
    29. Rita G. Fonseca, Aline Kuster, Pedro P. Fernandes, Mahmoud Tavakoli, Patrícia Pereira, José R. Fernandes, Francesco De Bon, Arménio C. Serra, Ana C. Fonseca, Jorge F. J. Coelho. Facile Synthesis of Highly Stretchable, Tough, and Photodegradable Hydrogels. Advanced Healthcare Materials 2023, 12 (22) https://doi.org/10.1002/adhm.202300918
    30. Nianwei Wang, Yuxi Fang, Xuan Wang, Jiao Bai, Huiming Hua, Dahong Li. A photoactivated H 2 S donor based on a coumarin structure with real-time monitoring capability. Chemical Communications 2023, 59 (58) , 8949-8952. https://doi.org/10.1039/D3CC02053C
    31. Rui Zhang, Qing Miao, Dan Deng, Jingxiang Wu, Yuqing Miao, Yuhao Li. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids and Surfaces B: Biointerfaces 2023, 226 , 113302. https://doi.org/10.1016/j.colsurfb.2023.113302
    32. Munkaila Musah, Abiodun O. Alawode, Javier Hernandez Diaz, Osei Asafu-Adjaye, Tom Gallagher, Maria S. Peresin, Yucheng Peng, Dana Mitchell, Mathew Smidt, Brian Via. Prediction of Acoustic Velocity Properties of Downed Pine Trees Using Near-Infrared Spectroscopy. Forest Products Journal 2023, 73 (2) , 133-141. https://doi.org/10.13073/FPJ-D-22-00067
    33. Wenqing Liang, Yijun Yu, Zunyong Liu, Wenyi Ming, Hongming Lin, Hengguo Long, Jiayi Zhao, . The Therapeutic Potential of Targeted Nanoparticulate Systems to Treat Rheumatoid Arthritis. Journal of Nanomaterials 2022, 2022 , 1-15. https://doi.org/10.1155/2022/8900658
    34. Iman M.N. Hamdan, Ismaiel A. Tekko, Steven E.J. Bell. Gold nanorods-loaded hydrogel-forming needles for local hyperthermia applications: Proof of concept. European Journal of Pharmaceutics and Biopharmaceutics 2022, 179 , 105-117. https://doi.org/10.1016/j.ejpb.2022.08.022
    35. Shadi Asgari, Ghodsi Mohammadi Ziarani, Alireza Badiei, Ali Pourjavadi, Mahsa Kiani. A smart tri-layered nanofibrous hydrogel thin film with controlled release of dual drugs for chemo-thermal therapy of breast cancer. Journal of Drug Delivery Science and Technology 2022, 76 , 103702. https://doi.org/10.1016/j.jddst.2022.103702
    36. Alexander G. Gavriel, Mark R. Sambrook, Andrew T. Russell, Wayne Hayes. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polymer Chemistry 2022, 13 (22) , 3188-3269. https://doi.org/10.1039/D2PY00414C
    37. A. V. Leontyev, A. I. Khalimon, M. T. Kuliev, A. Y. Govaleshko, A. D. Kaprin, A. A. Krasheninnikov, K. M. Nyushko, A. S. Kalpinskiy, B. Ya. Alekseev. Modern possibilities of application 99mTc-labeled prostate-specific membrane antigen ligands in prostate cancer. Cancer Urology 2022, 17 (4) , 136-150. https://doi.org/10.17650/1726-9776-2021-17-4-136-150
    38. Sina Shahi, Hossein Roghani-Mamaqani, Saeid Talebi, Hanieh Mardani. Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polymer Chemistry 2022, 13 (2) , 161-192. https://doi.org/10.1039/D1PY01066B
    39. Marc del Pozo, Jeroen A. H. P. Sol, Albert P. H. J. Schenning, Michael G. Debije. 4D Printing of Liquid Crystals: What's Right for Me?. Advanced Materials 2022, 34 (3) https://doi.org/10.1002/adma.202104390
    40. Shafer Soars, Joshua Kamps, Benjamin Fairbanks, Christopher Bowman. Stimuli‐Responsive Depolymerization of Poly(Phthalaldehyde) Copolymers and Networks. Macromolecular Chemistry and Physics 2021, 222 (17) https://doi.org/10.1002/macp.202100111
    41. Baljinder Singh, Nutan Shukla, Junkee Kim, Kibeom Kim, Myoung-Hwan Park. Stimuli-Responsive Nanofibers Containing Gold Nanorods for On-Demand Drug Delivery Platforms. Pharmaceutics 2021, 13 (8) , 1319. https://doi.org/10.3390/pharmaceutics13081319
    42. Fereshteh Arjmand, Mehdi Salami-Kalajahi, Hossein Roghani-Mamaqani. Preparation of photolabile nanoparticles by coumarin-based crosslinker for drug delivery under light irradiation. Journal of Physics and Chemistry of Solids 2021, 154 , 110102. https://doi.org/10.1016/j.jpcs.2021.110102
    43. Alex Abramov, Binoy Maiti, Ina Keridou, Jordi Puiggalí, Oliver Reiser, David Díaz Díaz. A pH‐Triggered Polymer Degradation or Drug Delivery System by Light‐Mediated Cis / Trans Isomerization of o ‐Hydroxy Cinnamates. Macromolecular Rapid Communications 2021, 42 (13) https://doi.org/10.1002/marc.202100213
    44. Lei Zhang, Yang Qu, Yun Liu, Yawen Deng, Jingjing Gu, Zhongtao Wu, Jiehua Lin, Xiliang Luo. Visible Light Responsive DNA Thermotropic Liquid Crystals Based on a Photothermal Effect of Gold Nanoparticles. Journal of Analysis and Testing 2021, 5 (2) , 181-187. https://doi.org/10.1007/s41664-020-00150-z
    45. Yuzhe Sun, Edward Davis. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials 2021, 11 (3) , 746. https://doi.org/10.3390/nano11030746
    46. Yanhua Xu, Ephraim G. Morado, Steven C. Zimmerman. Construction from destruction using a photo-triggered self-propagating degradable polyurethane as a one-pot epoxy. Polymer Chemistry 2020, 11 (38) , 6215-6220. https://doi.org/10.1039/D0PY00779J
    47. Yingsi Xie, Ruslan G. Tuguntaev, Cong Mao, Haoting Chen, Ying Tao, Shixiang Wang, Bin Yang, Weisheng Guo. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy. Biophysics Reports 2020, 6 (5) , 193-210. https://doi.org/10.1007/s41048-020-00117-8
    48. Yue Xiao, Xuyu Tan, Zhaohui Li, Ke Zhang. Self-immolative polymers in biomedicine. Journal of Materials Chemistry B 2020, 8 (31) , 6697-6709. https://doi.org/10.1039/D0TB01119C
    49. Fabian Becker, Marvin Klaiber, Matthias Franzreb, Stefan Bräse, Joerg Lahann. On Demand Light‐Degradable Polymers Based on 9,10‐Dialkoxyanthracenes. Macromolecular Rapid Communications 2020, 41 (15) https://doi.org/10.1002/marc.202000314
    50. Ann-Kathrin Müller, Dimitri Jung, Jingjiang Sun, Dirk Kuckling. Synthesis and characterization of light-degradable bromocoumarin functionalized polycarbonates. Polymer Chemistry 2020, 11 (3) , 721-733. https://doi.org/10.1039/C9PY01405E
    51. L. Cristiano. Use of infrared-based devices in aesthetic medicine and for beauty and wellness treatments. Infrared Physics & Technology 2019, 102 , 102991. https://doi.org/10.1016/j.infrared.2019.102991
    52. Wenfeng Wei, Xiaoyuan Zhang, Shan Zhang, Gang Wei, Zhiqiang Su. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. Materials Science and Engineering: C 2019, 104 , 109891. https://doi.org/10.1016/j.msec.2019.109891
    53. Wei Zhao, Yongmei Zhao, Qingfu Wang, Tianqing Liu, Jingjiang Sun, Run Zhang. Remote Light‐Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small 2019, 15 (45) https://doi.org/10.1002/smll.201903060
    54. Tao Chen, Huining Wang, Yingying Chu, Cyrille Boyer, Jingquan Liu, Jiangtao Xu. Photo‐Induced Depolymerisation: Recent Advances and Future Challenges. ChemPhotoChem 2019, 3 (11) , 1059-1076. https://doi.org/10.1002/cptc.201900166
    55. Bijay P. Chhetri, Alokita Karmakar, Anindya Ghosh. Recent Advancements in Ln‐Ion‐Based Upconverting Nanomaterials and Their Biological Applications. Particle & Particle Systems Characterization 2019, 36 (8) https://doi.org/10.1002/ppsc.201900153
    56. Qihong Liu, Hao Wang, Guotao Li, Miaochang Liu, Jinchang Ding, Xiaobo Huang, Wenxia Gao, Wu Huayue. A photocleavable low molecular weight hydrogel for light-triggered drug delivery. Chinese Chemical Letters 2019, 30 (2) , 485-488. https://doi.org/10.1016/j.cclet.2018.06.009
    57. Miguel Moreno Raja, Pei Qi Lim, Yee Shan Wong, Gordon M. Xiong, Yiming Zhang, Subbu Venkatraman, Yingying Huang. Polymeric Nanomaterials. 2019, 557-653. https://doi.org/10.1016/B978-0-12-814033-8.00018-7
    58. Muhammad Bilal, Tahir Rasheed, Abaid Ullah, Hafiz M. N. Iqbal. Valorization of Green and Sustainable Advanced Materials from A Biomed Perspective – Potential Applications. 2018, 19-47. https://doi.org/10.1002/9781119528463.ch2
    59. Lu Yang, Houliang Tang, Hao Sun. Progress in Photo-Responsive Polypeptide Derived Nano-Assemblies. Micromachines 2018, 9 (6) , 296. https://doi.org/10.3390/mi9060296
    60. M. Gisbert-Garzarán, M. Manzano, M. Vallet-Regí. Self-immolative chemistry in nanomedicine. Chemical Engineering Journal 2018, 340 , 24-31. https://doi.org/10.1016/j.cej.2017.12.098
    61. Florica Adriana Jerca, Valentin Victor Jerca, Izabela-Cristina Stancu. Development and Characterization of Photoresponsive Polymers. 2018, 3-47. https://doi.org/10.1007/978-3-319-75801-5_1
    62. Shantanu V. Lale, Veena Koul. Stimuli-Responsive Polymeric Nanoparticles for Cancer Therapy. 2018, 27-54. https://doi.org/10.1007/978-981-10-6080-9_2
    63. Tahir Rasheed, Muhammad Bilal, Nedal Y. Abu-Thabit, Hafiz M.N. Iqbal. The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications. 2018, 61-99. https://doi.org/10.1016/B978-0-08-101997-9.00003-5
    64. Chunfeng Hang, Yan Zou, Yinan Zhong, Zhiyuan Zhong, Fenghua Meng. NIR and UV-responsive degradable hyaluronic acid nanogels for CD44-targeted and remotely triggered intracellular doxorubicin delivery. Colloids and Surfaces B: Biointerfaces 2017, 158 , 547-555. https://doi.org/10.1016/j.colsurfb.2017.07.041
    65. Redouane Bouchaala, Nicolas Anton, Halina Anton, Thierry Vandamme, Julien Vermot, Djabi Smail, Yves Mély, Andrey S. Klymchenko. Light-triggered release from dye-loaded fluorescent lipid nanocarriers in vitro and in vivo. Colloids and Surfaces B: Biointerfaces 2017, 156 , 414-421. https://doi.org/10.1016/j.colsurfb.2017.05.035
    66. Xiuli Yue, Qiang Zhang, Zhifei Dai. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Advanced Drug Delivery Reviews 2017, 115 , 155-170. https://doi.org/10.1016/j.addr.2017.04.007
    67. Chase S Linsley, Benjamin M Wu. Recent advances in light-responsive on-demand drug-delivery systems. Therapeutic Delivery 2017, 8 (2) , 89-107. https://doi.org/10.4155/tde-2016-0060
    68. Theodore Manouras, Maria Vamvakaki. Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polymer Chemistry 2017, 8 (1) , 74-96. https://doi.org/10.1039/C6PY01455K
    69. Yawei Sun, Yanyun Ji, Haiyan Yu, Dong Wang, Meiwen Cao, Jiqian Wang. Near-infrared light-sensitive liposomes for controlled release. RSC Advances 2016, 6 (84) , 81245-81249. https://doi.org/10.1039/C6RA18702A
    70. Hyun Jun Cho, Minsub Chung, Min Suk Shim. Engineered photo-responsive materials for near-infrared-triggered drug delivery. Journal of Industrial and Engineering Chemistry 2015, 31 , 15-25. https://doi.org/10.1016/j.jiec.2015.07.016
    71. Montserrat Colilla, Alejandro Baeza, María Vallet‐Regí. Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications. 2015, 1309-1344. https://doi.org/10.1002/9783527670819.ch42
    72. Alina Y. Rwei, Weiping Wang, Daniel S. Kohane. Photoresponsive nanoparticles for drug delivery. Nano Today 2015, 10 (4) , 451-467. https://doi.org/10.1016/j.nantod.2015.06.004
    73. Ahmed Alouane, Raphaël Labruère, Thomas Le Saux, Frédéric Schmidt, Ludovic Jullien. Self‐Immolative Spacers: Kinetic Aspects, Structure–Property Relationships, and Applications. Angewandte Chemie International Edition 2015, 54 (26) , 7492-7509. https://doi.org/10.1002/anie.201500088
    74. Ahmed Alouane, Raphaël Labruère, Thomas Le Saux, Frédéric Schmidt, Ludovic Jullien. Selbstzerlegende Spacer: kinetische Aspekte, Struktur‐Eigenschafts‐Beziehungen und Anwendungen. Angewandte Chemie 2015, 127 (26) , 7600-7619. https://doi.org/10.1002/ange.201500088
    75. Joshua A. Kaitz, Olivia P. Lee, Jeffrey S. Moore. Depolymerizable polymers: preparation, applications, and future outlook. MRS Communications 2015, 5 (2) , 191-204. https://doi.org/10.1557/mrc.2015.28
    76. Wei Wang, Jiaping Lin, Chunhua Cai, Shaoliang Lin. Optical properties of amphiphilic copolymer-based self-assemblies. European Polymer Journal 2015, 65 , 112-131. https://doi.org/10.1016/j.eurpolymj.2015.01.023
    77. Julián Bergueiro, Marcelo Calderón. Thermoresponsive Nanodevices in Biomedical Applications. Macromolecular Bioscience 2015, 15 (2) , 183-199. https://doi.org/10.1002/mabi.201400362
    78. Mei-Chin Chen, Kuan-Wen Wang, Dong-Hwang Chen, Ming-Hung Ling, Chih-Ying Liu. Remotely triggered release of small molecules from LaB6@SiO2-loaded polycaprolactone microneedles. Acta Biomaterialia 2015, 13 , 344-353. https://doi.org/10.1016/j.actbio.2014.11.040
    79. JIANLIN YUAN, XIAOMIN YI, FEI YAN, FULI WANG, WEIJUN QIN, GUOJUN WU, XIAOJIAN YANG, CHEN SHAO, LELAND W.K. CHUNG. Near-infrared fluorescence imaging of prostate cancer using heptamethine carbocyanine dyes. Molecular Medicine Reports 2015, 11 (2) , 821-828. https://doi.org/10.3892/mmr.2014.2815
    80. Roberta Cassano, Sonia Trombino. Drug Delivery Systems: Smart Polymeric Materials. 2015, 341-370. https://doi.org/10.1007/978-3-319-12478-0_12
    81. H. Lu, W.M. Huang. Chemo-responsive shape-memory polymers for biomedical applications. 2015, 99-132. https://doi.org/10.1016/B978-0-85709-698-2.00006-4
    82. Carina I. C. Crucho. Stimuli‐Responsive Polymeric Nanoparticles for Nanomedicine. ChemMedChem 2015, 10 (1) , 24-38. https://doi.org/10.1002/cmdc.201402290
    83. S. Lütje, M. Rijpkema, W. Helfrich, W. J. G. Oyen, O. C. Boerman. Targeted Radionuclide and Fluorescence Dual-modality Imaging of Cancer: Preclinical Advances and Clinical Translation. Molecular Imaging and Biology 2014, 16 (6) , 747-755. https://doi.org/10.1007/s11307-014-0747-y
    84. Daniel Wehrung, Elaheh A. Chamsaz, Abraham Joy, Moses O. Oyewumi. Formulation and photoirradiation parameters that influenced photoresponsive drug delivery using alkoxylphenacyl-based polycarbonates. European Journal of Pharmaceutics and Biopharmaceutics 2014, 88 (3) , 962-972. https://doi.org/10.1016/j.ejpb.2014.07.011
    85. Xintao Shuai, Du Cheng. Stimulation‐Sensitive Drug Delivery Systems. 2014, 305-330. https://doi.org/10.1002/9783527672752.ch12
    86. Larisa-Emilia Cheran, Alin Cheran, Michael Thompson. Biomimicry and Materials in Medicine. 2014, 1-25. https://doi.org/10.1039/9781849737074-00001
    87. Daniel Wehrung, Moses Oyewumi. Cytotoxicity of Stimuli-Responsive Nanomaterials: Predicting Clinical Viability through Robust Biocompatibility Profiles. 2014, 103-116. https://doi.org/10.1201/b17191-5
    88. Susanne Lütje, Mark Rijpkema, Gerben M. Franssen, Giulio Fracasso, Wijnand Helfrich, Annemarie Eek, Wim J. Oyen, Marco Colombatti, Otto C. Boerman. Dual-Modality Image-Guided Surgery of Prostate Cancer with a Radiolabeled Fluorescent Anti-PSMA Monoclonal Antibody. Journal of Nuclear Medicine 2014, 55 (6) , 995-1001. https://doi.org/10.2967/jnumed.114.138180
    89. Anu Puri. Phototriggerable Liposomes: Current Research and Future Perspectives. Pharmaceutics 2014, 6 (1) , 1-25. https://doi.org/10.3390/pharmaceutics6010001
    90. Congcong Zhu, Christopher J. Bettinger. Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J. Mater. Chem. B 2014, 2 (12) , 1613-1618. https://doi.org/10.1039/C3TB21689F
    91. Rong Tong, Li Tang, Liang Ma, Chunlai Tu, Ryan Baumgartner, Jianjun Cheng. Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 2014, 43 (20) , 6982-7012. https://doi.org/10.1039/C4CS00133H
    92. Qi Huang, Tao Liu, Chunyan Bao, Qiuning Lin, Meixin Ma, Linyong Zhu. Light and reductive dual stimuli-responsive PEI nanoparticles: “AND” logic response and controllable release. J. Mater. Chem. B 2014, 2 (21) , 3333-3339. https://doi.org/10.1039/C4TB00087K
    93. Malar A. Azagarsamy, Kristi S. Anseth. Wavelength‐Controlled Photocleavage for the Orthogonal and Sequential Release of Multiple Proteins. Angewandte Chemie International Edition 2013, 52 (51) , 13803-13807. https://doi.org/10.1002/anie.201308174
    94. Malar A. Azagarsamy, Kristi S. Anseth. Wavelength‐Controlled Photocleavage for the Orthogonal and Sequential Release of Multiple Proteins. Angewandte Chemie 2013, 125 (51) , 14048-14052. https://doi.org/10.1002/ange.201308174
    95. Duy M. Le, Michael A. Tycon, Christopher J. Fecko, Valerie S. Ashby. Near‐infrared activation of semi‐crystalline shape memory polymer nanocomposites. Journal of Applied Polymer Science 2013, 130 (6) , 4551-4557. https://doi.org/10.1002/app.39604
    96. Patricia Gumbley, Xiaoran Hu, John A. Lawrence, Samuel W. Thomas. Photoresponsive Gels Prepared by Ring‐Opening Metathesis Polymerization. Macromolecular Rapid Communications 2013, 34 (23-24) , 1838-1843. https://doi.org/10.1002/marc.201300653
    97. Zhen Wang, Peng Wang, XinJing Tang. Synthesis of Light‐Induced Expandable Photoresponsive Polymeric Nanoparticles for Triggered Release. ChemPlusChem 2013, 78 (10) , 1273-1281. https://doi.org/10.1002/cplu.201300212
    98. Congcong Zhu, Christopher J. Bettinger. Light‐Induced Disintegration of Robust Physically Cross‐Linked Polymer Networks. Macromolecular Rapid Communications 2013, 34 (18) , 1446-1451. https://doi.org/10.1002/marc.201300420
    99. Mathieu L. Viger, Madeleine Grossman, Nadezda Fomina, Adah Almutairi. Low Power Upconverted Near‐IR Light for Efficient Polymeric Nanoparticle Degradation and Cargo Release. Advanced Materials 2013, 25 (27) , 3733-3738. https://doi.org/10.1002/adma.201300902
    100. Manuel Alatorre-Meda, Carmen Alvarez-Lorenzo, Angel Concheiro, Pablo Taboada. UV and Near-IR Triggered Release from Polymeric Micelles and Nanoparticles. 2013, 304-348. https://doi.org/10.1039/9781849736800-00304
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect