ACS Publications. Most Trusted. Most Cited. Most Read
Multidimensional Analysis of the Complex Composition of Impact Polypropylene Copolymers: Combination of TREF, SEC-FTIR-HPer DSC, and High Temperature 2D-LC
My Activity
    Article

    Multidimensional Analysis of the Complex Composition of Impact Polypropylene Copolymers: Combination of TREF, SEC-FTIR-HPer DSC, and High Temperature 2D-LC
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Polymer Science, University of Stellenbosch, 7602 Matieland, South Africa
    SciTe, Ridder Vosstraat 6, 6162 AX Geleen, The Netherlands
    § Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
    Other Access Options

    Macromolecules

    Cite this: Macromolecules 2012, 45, 4, 2025–2034
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma2026989
    Published February 8, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A new multidimensional fractionation technique, temperature rising elution fractionation (TREF) combined with high temperature size exclusion chromatography FTIR (HT-SEC-FTIR), HT-SEC-DSC and high temperature two-dimensional liquid chromatography (HT-2D-LC) is used for the comprehensive analysis of a commercial impact polypropylene copolymer. HT-SEC-FTIR provides information regarding the chemical composition and crystallinity as a function of molar mass. Thermal analysis of selected SEC fractions yields the melting and crystallization behavior of these fractions which is related to the chemical heterogeneity of this complex copolymer. The thermal analysis of the fractions is conducted using a novel DSC method — high speed or high performance differential scanning calorimetry (HPer DSC) - that allows measuring of minute amounts of material down to micrograms. The most interesting and complex “midelution temperature” TREF fraction (80 °C) of this copolymer is a complex mixture of ethylene-propylene copolymers (EPC’s) with varying ethylene and propylene contents and sequence length distributions, as well as iPP. High temperature solvent gradient HPLC has been used to show that there is a significant amount of PE homopolymer and EPC’s containing long ethylene sequences in this TREF fraction. High temperature 2D-LC analysis reveals the complete separation of this TREF fraction according to the chemical composition of each component along with their molar mass distributions.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 83 publications.

    1. Dietrich Gloger, Gerhard Hubner, Andreas Albrecht, Lukas Sobczak, Jan-Hendrik Arndt, Davide Tranchida, Wolfgang H. Binder, Markus Gahleitner. Combining the Incompatible: Melt State Grafting between High-Density Polyethylene and Isotactic Polypropylene without a Coupling Agent. ACS Applied Polymer Materials 2024, 6 (17) , 10824-10841. https://doi.org/10.1021/acsapm.4c01938
    2. Giuseppe Antinucci, Andrea Pucciarelli, Antonio Vittoria, Francesco Zaccaria, Gaia Urciuoli, Christian Ehm, Felicia Daniela Cannavacciuolo, Roberta Cipullo, Vincenzo Busico. Fast Analytics of High-Impact Polypropylene (HIPP). ACS Applied Polymer Materials 2023, 5 (6) , 3894-3897. https://doi.org/10.1021/acsapm.3c00810
    3. Wonchalerm Rungswang, Chatchai Jarumaneeroj, Prapasinee Jirasukho, Sawitree Juabrum, Phakkhananan Pakawanit, Siriwat Soontaranon, Supagorn Rugmai. Time-Resolved SAXS/WAXD under Tensile Deformation: Role of Segmental Ethylene–Propylene Copolymers in Impact-Resistant Polypropylene Copolymers. ACS Applied Polymer Materials 2021, 3 (12) , 6394-6406. https://doi.org/10.1021/acsapm.1c01159
    4. Robert L. C. Voeten, Bram van de Put, Jan Jordens, Ynze Mengerink, Ron A. H. Peters, Rob Haselberg, Govert W. Somsen. Probing Polyester Branching by Hybrid Trapped Ion-Mobility Spectrometry–Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (6) , 1498-1507. https://doi.org/10.1021/jasms.1c00071
    5. Chunhui Li, Zeqian Wang, Wei Liu, Xiangling Ji, Zhaohui Su. Copolymer Distribution in Core–Shell Rubber Particles in High-Impact Polypropylene Investigated by Atomic Force Microscopy–Infrared. Macromolecules 2020, 53 (7) , 2686-2693. https://doi.org/10.1021/acs.macromol.0c00328
    6. Laura Santonja-Blasco, Wonchalerm Rungswang, and Rufina G. Alamo . Influence of Chain Microstructure on Liquid–Liquid Phase Structure and Crystallization of Dual Reactor Ziegler–Natta Made Impact Propylene–Ethylene Copolymers. Industrial & Engineering Chemistry Research 2017, 56 (12) , 3270-3282. https://doi.org/10.1021/acs.iecr.6b04708
    7. Guilaume Greyling and Harald Pasch . Multidetector Thermal Field-Flow Fractionation: A Unique Tool for Monitoring the Structure and Dynamics of Block Copolymer Micelles. Macromolecules 2016, 49 (5) , 1882-1889. https://doi.org/10.1021/acs.macromol.5b02634
    8. Zhou Tian, Lian-Fang Feng, Zhi-Qiang Fan, and Guo-Hua Hu . Ethylene–Propylene Segmented Copolymer as an in Situ Compatibilizer for Impact Polypropylene Copolymer: An Assessment of Rheology and Morphology. Industrial & Engineering Chemistry Research 2014, 53 (28) , 11345-11354. https://doi.org/10.1021/ie501222c
    9. Ryan C. Nieuwendaal, Chad R. Snyder, and Dean M. DeLongchamp . Measuring Order in Regioregular Poly(3-hexylthiophene) with Solid-State 13C CPMAS NMR. ACS Macro Letters 2014, 3 (2) , 130-135. https://doi.org/10.1021/mz4005343
    10. Yi-Min Liu, Zai-Zai Tong, Jie Huang, Bing Zhou, Jun-Ting Xu, Zhi-Sheng Fu, and Zhi-Qiang Fan . Regulation of Phase Separation in PP/EPR In-Reactor Alloy and Its Effect on Crystallization Kinetics. Industrial & Engineering Chemistry Research 2013, 52 (46) , 16239-16246. https://doi.org/10.1021/ie402711f
    11. Sadiqali Cheruthazhekatt, Divann D. Robertson, Margaretha Brand, Albert van Reenen, and Harald Pasch . Solution Crystallization and Dissolution of Polyolefins as Monitored by a Unique Analytical Tool: Solution Crystallization Analysis by Laser Light Scattering. Analytical Chemistry 2013, 85 (15) , 7019-7023. https://doi.org/10.1021/ac401700p
    12. Sadiqali Cheruthazhekatt, Thijs F. J. Pijpers, Gareth W. Harding, Vincent B. F. Mathot, and Harald Pasch . Compositional Analysis of an Impact Polypropylene Copolymer by Fast Scanning DSC and FTIR of TREF-SEC Cross-Fractions. Macromolecules 2012, 45 (15) , 5866-5880. https://doi.org/10.1021/ma3008702
    13. Radoslav Halko, Denis Pavelek, Massoud Kaykhaii. High Performance Liquid chromatography - Fourier Transform Infrared Spectroscopy Coupling: A Comprehensive Review. Critical Reviews in Analytical Chemistry 2024, , 1-12. https://doi.org/10.1080/10408347.2024.2391892
    14. Anton Ginzburg, Robert Brüll, Karl‐Friedrich Elgert. Plastics, Analysis. 2024, 1-43. https://doi.org/10.1002/14356007.a20_509.pub2
    15. Yu-Hui Tang, Na Zhang, Wei Bao, Wei Jiang, Yuan Lin, Zhao-Hui Su. Critical Role of Ethylene-Propylene Block Copolymer in Impact Polypropylene Copolymer. Chinese Journal of Polymer Science 2024, 42 (3) , 344-351. https://doi.org/10.1007/s10118-023-3058-4
    16. Harald Pasch, Paul Eselem Bungu. 20 Years of polyolefin HPLC: Accomplishments and challenges. European Polymer Journal 2023, 200 , 112491. https://doi.org/10.1016/j.eurpolymj.2023.112491
    17. Daniela Mileva, Davide Tranchida, Enrico Carmeli, Dietrich Gloger, Markus Gahleitner. Crystallization Behavior of Polypropylene and Its Blends and Composites. 2023, 33-85. https://doi.org/10.1002/9783527839247.ch3
    18. Jan-Hendrik Arndt, Sampat Singh Bhati, Manoela Ellwanger Cangussu, Guru Geertz, Hadi Mohammadi, Robert Brüll. Unraveling the comonomer distribution in ethylene – vinyl ester terpolymers through liquid chromatography with infrared detection. Journal of Chromatography A 2023, 1705 , 464197. https://doi.org/10.1016/j.chroma.2023.464197
    19. Muhammad Imran Malik, Dusan Berek. Hyphenation of Liquid Chromatography with Spectroscopy. 2023, 265-285. https://doi.org/10.1007/978-3-031-34835-8_13
    20. Harald Pasch, Anthony Ndiripo, Paul Severin Eselem Bungu. Multidimensional analytical protocols for the fractionation and analysis of complex polyolefins. Journal of Polymer Science 2022, 60 (7) , 1059-1078. https://doi.org/10.1002/pol.20210236
    21. LIU Xiaoyan, ZHAO Dongbo, DENG Shoujun, LI li, DUAN Hongyi. Effect of multiple extrusion on phase structure and properties of impact copolymerized polypropylene. Journal of Physics: Conference Series 2021, 2009 (1) , 012001. https://doi.org/10.1088/1742-6596/2009/1/012001
    22. Chao Jiang, Binbo Jiang, Yao Yang, Zhengliang Huang, Zuwei Liao, Jingyuan Sun, Jingdai Wang, Yongrong Yang. Enhanced multiphase interfacial interaction of impact polypropylene copolymer by in-situ introducing polyethylene. Polymer 2021, 214 , 123373. https://doi.org/10.1016/j.polymer.2020.123373
    23. Albena Lederer, Josef Brandt. Multidetector size exclusion chromatography of polymers. 2021, 61-96. https://doi.org/10.1016/B978-0-12-819768-4.00012-9
    24. Muhammad Imran Malik, Harald Pasch. Basic principles of size exclusion and liquid interaction chromatography of polymers. 2021, 1-59. https://doi.org/10.1016/B978-0-12-819768-4.00007-5
    25. Anthony Ndiripo, Harald Pasch. Retention of polypropylene stereoisomers in solvent gradient interaction chromatography on porous graphitic carbon as influenced by temperature and mobile phase composition. Journal of Chromatography A 2020, 1618 , 460865. https://doi.org/10.1016/j.chroma.2020.460865
    26. Wei Liu, Jiaqi Zhang, Mei Hong, Pei Li, Yanhu Xue, Quan Chen, Xiangling Ji. Chain microstructure of two highly impact polypropylene resins with good balance between stiffness and toughness. Polymer 2020, 188 , 122146. https://doi.org/10.1016/j.polymer.2019.122146
    27. Sifiso Innocent Magagula, Anthony Ndiripo, Albert Johannes van Reenen. Heterophasic ethylene-propylene copolymers: New insights on complex microstructure by combined molar mass fractionation and high temperature liquid chromatography. Polymer Degradation and Stability 2020, 171 , 109022. https://doi.org/10.1016/j.polymdegradstab.2019.109022
    28. Anthony Ndiripo, M.-M. Pornwilard, Thipphaya Pathaweeisariyakul, Harald Pasch. Multidimensional chromatographic analysis of carboxylic acid-functionalized polyethylene. Polymer Chemistry 2019, 10 (43) , 5859-5869. https://doi.org/10.1039/C9PY01191A
    29. David Kot, Tibor Macko, Jan-Hendrik Arndt, Robert Brüll. Porous graphite as platform for the separation and characterization of synthetic polymers – an overview. Journal of Chromatography A 2019, 1606 , 360038. https://doi.org/10.1016/j.chroma.2019.02.029
    30. Johanna Engelke, Josef Brandt, Christopher Barner-Kowollik, Albena Lederer. Strengths and limitations of size exclusion chromatography for investigating single chain folding – current status and future perspectives. Polymer Chemistry 2019, 10 (25) , 3410-3425. https://doi.org/10.1039/C9PY00336C
    31. Anthony Ndiripo, Paul Severin Eselem Bungu, Harald Pasch. Comprehensive branching analysis of polyethylene by combined fractionation and thermal analysis. Polymer International 2019, 68 (2) , 206-217. https://doi.org/10.1002/pi.5547
    32. Guilaume Greyling, Harald Pasch. Applications and Experimental Design. 2019, 31-99. https://doi.org/10.1007/978-3-030-10650-8_3
    33. Markus Gahleitner, Cornelia Tranninger, Petar Doshev. Polypropylene Copolymers. 2019, 295-355. https://doi.org/10.1007/978-3-030-12903-3_6
    34. Fuguang Tang, Peite Bao, Anirban Roy, Yaxian Wang, Zhaohui Su. In-situ spectroscopic and thermal analyses of phase domains in high-impact polypropylene. Polymer 2018, 142 , 155-163. https://doi.org/10.1016/j.polymer.2018.03.037
    35. Anthony Ndiripo, Andreas Albrecht, Benjamin Monrabal, Jingbo Wang, Harald Pasch. Chemical Composition Fractionation of Olefin Plastomers/Elastomers by Solvent and Thermal Gradient Interaction Chromatography. Macromolecular Rapid Communications 2018, 39 (6) https://doi.org/10.1002/marc.201700703
    36. Laura Santonja‐Blasco, Wonchalerm Rungswang, Rufina G. Alamo. Characterization and Morphological Distribution of Ethylene Content in Impact Propylene Copolymers. Macromolecular Symposia 2018, 377 (1) https://doi.org/10.1002/masy.201700046
    37. P. S. Eselem Bungu, H. Pasch. Branching and molar mass analysis of low density polyethylene using the multiple preparative fractionation concept. Polymer Chemistry 2018, 9 (9) , 1116-1131. https://doi.org/10.1039/C7PY02076G
    38. Paul S. Eselem Bungu, Kristina Pflug, Harald Pasch. Combination of preparative and two-dimensional chromatographic fractionation with thermal analysis for the branching analysis of polyethylene. Polymer Chemistry 2018, 9 (22) , 3142-3157. https://doi.org/10.1039/C8PY00522B
    39. Yonggang Liu, Mohau Justice Phiri, Anthony Ndiripo, Harald Pasch. Chemical composition separation of a propylene–ethylene random copolymer by high temperature solvent gradient interaction chromatography. Journal of Chromatography A 2017, 1522 , 23-29. https://doi.org/10.1016/j.chroma.2017.09.042
    40. A. Willem deGroot, David Gillespie, Rongjuan Cong, Zhe Zhou, Rajesh Paradkar. Molecular Structural Characterization of Polyethylene. 2017, 139-216. https://doi.org/10.1002/9781119159797.ch5
    41. Wonchalerm Rungswang, Chatchai Jarumaneeroj, Nuchanat Petcharat, Siriwat Soontaranon, Supagorn Rugmai. Phase‐separation of heterophasic polymer in solution: A model case of impact‐resistant polypropylene copolymer. Journal of Applied Polymer Science 2017, 134 (28) https://doi.org/10.1002/app.45069
    42. P. S. Eselem Bungu, H. Pasch. Comprehensive analysis of branched polyethylene: the multiple preparative fractionation concept. Polymer Chemistry 2017, 8 (31) , 4565-4575. https://doi.org/10.1039/C7PY00893G
    43. K.N. Prabhu, T. Macko, R. Brüll, K. Remerie, J. Tacx, P. Garg, A. Ginzburg. Separation of maleic anhydride grafted polypropylene using multidimensional high-temperature liquid chromatography. Journal of Chromatography A 2016, 1441 , 96-105. https://doi.org/10.1016/j.chroma.2016.02.081
    44. Mohau Justice Phiri, Harald Pasch. Exploring the Compositional Heterogeneity of Vis‐Broken Impact Poly(propylene) Copolymers by Advanced Fractionation Methods. Macromolecular Chemistry and Physics 2016, 217 (6) , 783-793. https://doi.org/10.1002/macp.201500470
    45. Wenbing Hu, Vincent B. F. Mathot, Rufina G. Alamo, Huanhuan Gao, Xuejian Chen. Crystallization of Statistical Copolymers. 2016, 1-43. https://doi.org/10.1007/12_2016_349
    46. K.N. Prabhu, R. Brüll, T. Macko, K. Remerie, J. Tacx, P. Garg, A. Ginzburg. Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography. Journal of Chromatography A 2015, 1419 , 67-80. https://doi.org/10.1016/j.chroma.2015.09.078
    47. Jan‐Hendrik Arndt, Tibor Macko, Robert Brüll. Cloud Point Temperature Measurements on Polyolefins: Identification of Potential New Mobile Phases for Interactive Liquid Chromatography of Polyolefins. Macromolecular Symposia 2015, 356 (1) , 34-44. https://doi.org/10.1002/masy.201500043
    48. Anthony Ndiripo, Harald Pasch. On the multimodality of preparative TREF fractionation as detected by advanced analytical methods. Analytical and Bioanalytical Chemistry 2015, 407 (21) , 6493-6503. https://doi.org/10.1007/s00216-015-8814-z
    49. Mohau Justice Phiri, Anita Dimeska, Harald Pasch. On the Homogeneity of Metallocene Ethylene–Propylene Copolymers as Investigated by Multiple Fractionation Techniques. Macromolecular Chemistry and Physics 2015, 216 (15) , 1619-1628. https://doi.org/10.1002/macp.201500135
    50. Linda Botha, Pritish Sinha, H. Duveskog, Albert J. Van Reenen. The Use of Solid‐State NMR to Investigate the Development of Segmental Mobility in Commercial Heterophasic Ethylene Propylene Copolymers (HEPCs). Macromolecular Reaction Engineering 2015, 9 (4) , 313-324. https://doi.org/10.1002/mren.201400043
    51. Sadiqali Cheruthazhekatt, Harald Pasch. High temperature size exclusion–liquid adsorption chromatography (HT-SEC–LAC): Full isocratic separation of parent isotactic polypropylene homopolymer from ethylene-propylene copolymers. Polymer 2015, 64 , 1-7. https://doi.org/10.1016/j.polymer.2015.03.019
    52. Feng Chen, Yonggang Shangguan, Yishu Jiang, Biwei Qiu, Guohang Luo, Qiang Zheng. Toughening with little rigidity loss and mechanism for modified polypropylene by polymer particles with core–shell structure. Polymer 2015, 65 , 81-92. https://doi.org/10.1016/j.polymer.2015.03.064
    53. Morne Swart, Albert J. Van Reenen. The effect of controlled degradation on the molecular characteristics of heterophasic ethylene–propylene copolymers. Journal of Applied Polymer Science 2015, 132 (14) https://doi.org/10.1002/app.41783
    54. Mohau Justice Phiri, Sadiqali Cheruthazhekatt, Anita Dimeska, Harald Pasch. Molecular heterogeneity of ethylene-propylene rubbers: New insights through advanced crystallization-based and chromatographic techniques. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (7) , 863-874. https://doi.org/10.1002/pola.27512
    55. Rongbo Li, Qian Xing, Ying Zhao, Dujin Wang, Xuteng Hu. Correlation between chain microstructure and mechanical properties of two polypropylene/poly (ethylene-co-propylene) in-reactor alloys. Colloid and Polymer Science 2015, 293 (4) , 1011-1021. https://doi.org/10.1007/s00396-014-3483-6
    56. Feng Chen, Bi-wei Qiu, Ya-nan Ye, Yu-hua Lv, Yong-gang Shangguan, Yi-hu Song, Qiang Zheng. Reconstruction of core-shell dispersed particles in impact polypropylene copolymer during extrusion. Chinese Journal of Polymer Science 2015, 33 (4) , 633-645. https://doi.org/10.1007/s10118-015-1616-0
    57. Feng Chen, Biwei Qiu, Yonggang Shangguan, Yihu Song, Qiang Zheng. Correlation between impact properties and phase structure in impact polypropylene copolymer. Materials & Design 2015, 69 , 56-63. https://doi.org/10.1016/j.matdes.2014.12.052
    58. Almudena Fernández, M. Teresa Expósito, Begoña Peña, Rüdiger Berger, Jie Shu, Robert Graf, Hans W. Spiess, Rafael A. García-Muñoz. Molecular structure and local dynamic in impact polypropylene copolymers studied by preparative TREF, solid state NMR spectroscopy, and SFM microscopy. Polymer 2015, 61 , 87-98. https://doi.org/10.1016/j.polymer.2015.01.079
    59. Peter Kilz, Wolfgang Radke. Application of two-dimensional chromatography to the characterization of macromolecules and biomacromolecules. Analytical and Bioanalytical Chemistry 2015, 407 (1) , 193-215. https://doi.org/10.1007/s00216-014-8266-x
    60. Leena Pitkänen, Aaron A. Urbas, André M. Striegel. On the feasibility of determining polymer chemical heterogeneity by SEC with continuous off-line Raman detection. Polymer Chemistry 2015, 6 (27) , 4864-4874. https://doi.org/10.1039/C5PY00189G
    61. Biwei Qiu, Feng Chen, Yu Lin, Yonggang Shangguan, Qiang Zheng. Control of multilayered core–shell dispersed particles in HPP/EPR/EbP blends and its influences on crystallization and dynamic mechanical behavior. Polymer 2014, 55 (23) , 6176-6185. https://doi.org/10.1016/j.polymer.2014.09.060
    62. L. Botha, P. Sinha, S. Joubert, H. Duveskog, A.J. van Reenen. Solution and solid-state NMR characterization of heterophasic propylene–ethylene copolymers (HEPC) with increasing ethylene content. European Polymer Journal 2014, 59 , 94-104. https://doi.org/10.1016/j.eurpolymj.2014.07.010
    63. Sadiqali Cheruthazhekatt, Harald Pasch. Defining the distribution of ethylene-propylene copolymer phases in heterophasic ethylene-propylene copolymers by a sequential xylene extraction method: Chemical and morphological analysis. Polymer 2014, 55 (21) , 5358-5369. https://doi.org/10.1016/j.polymer.2014.08.066
    64. Yi‐Min Liu, Zai‐Zai Tong, Jun‐Ting Xu, Zhi‐Sheng Fu, Zhi‐Qiang Fan. A highly efficient β‐nucleating agent for impact‐resistant polypropylene copolymer. Journal of Applied Polymer Science 2014, 131 (18) https://doi.org/10.1002/app.40753
    65. Sadiqali Cheruthazhekatt, Harald Pasch. Preparative solution crystallization fractionation: a simple and rapid fractionation method for the chemical composition separation of complex ethylene-propylene copolymers. Analytical and Bioanalytical Chemistry 2014, 406 (12) , 2999-3007. https://doi.org/10.1007/s00216-014-7714-y
    66. Sadiqali Cheruthazhekatt, Harald Pasch. Fractionation and Characterization of Impact Poly(propylene) Copolymers by High Temperature Two‐Dimensional Liquid Chromatography. Macromolecular Symposia 2014, 337 (1) , 51-57. https://doi.org/10.1002/masy.201450306
    67. Dibyaranjan Mekap, Tibor Macko, Robert Brüll, Rongjuan Cong, Willem deGroot, Albert Parrott, Wallace Yau. Multiple‐Injection Method in High‐Temperature Two‐Dimensional Liquid Chromatography (2D HT‐LC). Macromolecular Chemistry and Physics 2014, 215 (4) , 314-319. https://doi.org/10.1002/macp.201300649
    68. Muhammad Imran Malik, Harald Pasch. Novel developments in the multidimensional characterization of segmented copolymers. Progress in Polymer Science 2014, 39 (1) , 87-123. https://doi.org/10.1016/j.progpolymsci.2013.10.005
    69. Biwei Qiu, Feng Chen, Yonggang Shangguan, Lina Zhang, Yu Lin, Qiang Zheng. Simultaneously enhancing strength and toughness for impact polypropylene copolymers by regulating the dispersed phase with high density polyethylene. RSC Adv. 2014, 4 (103) , 58999-59008. https://doi.org/10.1039/C4RA10682B
    70. Harald Pasch, Muhammad Imran Malik. Column-Based Chromatographic Techniques. 2014, 75-145. https://doi.org/10.1007/978-3-319-08632-3_3
    71. Markus Gahleitner, Cornelia Tranninger, Petar Doshev. Heterophasic copolymers of polypropylene: Development, design principles, and future challenges. Journal of Applied Polymer Science 2013, 130 (5) , 3028-3037. https://doi.org/10.1002/app.39626
    72. Zhou Tian, Xue‐Ping Gu, Lian‐Fang Feng, Zhi‐Qiang Fan, Guo‐Hua Hu. An atmosphere‐switching polymerization process: A novel strategy to advanced polyolefin materials. AIChE Journal 2013, 59 (12) , 4468-4473. https://doi.org/10.1002/aic.14248
    73. Sadiqali Cheruthazhekatt, Thijs F. J. Pijpers, Vincent B. F. Mathot, Harald Pasch. Combination of TREF, high-temperature HPLC, FTIR and HPer DSC for the comprehensive analysis of complex polypropylene copolymers. Analytical and Bioanalytical Chemistry 2013, 405 (28) , 8995-9007. https://doi.org/10.1007/s00216-013-6955-5
    74. Sadiqali Cheruthazhekatt, Harald Pasch. Improved chemical composition separation of ethylene–propylene random copolymers by high-temperature solvent gradient interaction chromatography. Analytical and Bioanalytical Chemistry 2013, 405 (26) , 8607-8614. https://doi.org/10.1007/s00216-013-7252-z
    75. J.H. Arndt, T. Macko, R. Brüll. Application of the evaporative light scattering detector to analytical problems in polymer science. Journal of Chromatography A 2013, 1310 , 1-14. https://doi.org/10.1016/j.chroma.2013.08.041
    76. Sadiqali Cheruthazhekatt, Nuria Mayo, Benjamin Monrabal, Harald Pasch. Chemical Composition Separation of EP Copolymers by CEF and HT‐SGIC: Crystallization versus Adsorption. Macromolecular Chemistry and Physics 2013, 214 (19) , 2165-2171. https://doi.org/10.1002/macp.201300302
    77. Sadiqali Cheruthazhekatt, Thijs F. J. Pijpers, Vincent B. F. Mathot, Harald Pasch. Preparative TREF ‐ HT ‐ HPLC ‐ HP er DSC : Linking Molecular Characteristics and Thermal Properties of an Impact Poly(propylene) Copolymer. Macromolecular Symposia 2013, 330 (1) , 22-29. https://doi.org/10.1002/masy.201300005
    78. Eiichi Takatori. Analysis of Plastic Materials. Seikei-Kakou 2013, 25 (7) , 342-347. https://doi.org/10.4325/seikeikakou.25.342
    79. Sadiqali Cheruthazhekatt, Gareth W. Harding, Harald Pasch. Comprehensive high temperature two-dimensional liquid chromatography combined with high temperature gradient chromatography-infrared spectroscopy for the analysis of impact polypropylene copolymers. Journal of Chromatography A 2013, 1286 , 69-82. https://doi.org/10.1016/j.chroma.2013.02.052
    80. W. Radke, J. Falkenhagen. Liquid Interaction Chromatography of Polymers. 2013, 93-129. https://doi.org/10.1016/B978-0-12-415806-1.00005-X
    81. Harald Pasch. Hyphenated separation techniques for complex polymers. Polymer Chemistry 2013, 4 (9) , 2628. https://doi.org/10.1039/c3py21095b
    82. Benjamín Monrabal. Polyolefin Characterization: Recent Advances in Separation Techniques. 2013, 203-251. https://doi.org/10.1007/12_2013_216
    83. Harald Pasch, Bernd Trathnigg. Conclusions and Future Trends. 2013, 273-276. https://doi.org/10.1007/978-3-642-36080-0_9

    Macromolecules

    Cite this: Macromolecules 2012, 45, 4, 2025–2034
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma2026989
    Published February 8, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1899

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.