ACS Publications. Most Trusted. Most Cited. Most Read
Highly Orthogonal Functionalization of ADMET Polymers via Photo-Induced Diels–Alder Reactions
My Activity

Figure 1Loading Img
    Article

    Highly Orthogonal Functionalization of ADMET Polymers via Photo-Induced Diels–Alder Reactions
    Click to copy article linkArticle link copied!

    View Author Information
    Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany
    Laboratory of Applied Chemistry, Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe
    *E-mail: (C.B.-K.) [email protected]; (M.A.R.M.): [email protected]
    Other Access OptionsSupporting Information (1)

    Macromolecules

    Cite this: Macromolecules 2012, 45, 12, 5012–5019
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma3007043
    Published June 7, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Within the current contribution, we introduce two strategies for the catalyst-free, modular, ambient temperature synthesis of ABC triblock copolymers via photoinduced Diels–Alder reactions. On the one hand, the 2-formyl-3-methylphenoxy (FMP) moiety (a second generation photoenol precursor) was employed for orthogonal polymer–polymer conjugations using terminal acrylates of diblock copolymers synthesized via acyclic-diene-metathesis (ADMET) polymerizations to directly prepare triblock copolymers. On the other hand, the disparate reactivity of 2,5-dimethylbenzophenone (first generation photoenol) and the FMP moiety was exploited to selectively synthesize complex triblock copolymers (6.5 kDa≤ Mn ≤11.5 kDa, 1.16≤ PDI ≤ 1.30) via a sequential one pot approach utilizing the extraordinary orthogonality of the photoinduced Diels–Alder reaction. Polymers functionalized with a photoenol (second generation) moiety were employed for conjugation reactions with polymers featuring an acrylate terminus, while polymers having a photoenol (first generation) end group were employed for selective conjugations of maleimide functional polymers. In this context, the selective head-to-tail ADMET polymerization was employed as a straightforward methodology for the preparation of bifunctional polymers having a terminal acrylate and a photoenol end-group.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional NMR spectra, SEC analyses, and ESI–MS spectra/analyses related to the present investigation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 61 publications.

    1. Gangam Srikanth Kumar, Qing Lin. Light-Triggered Click Chemistry. Chemical Reviews 2021, 121 (12) , 6991-7031. https://doi.org/10.1021/acs.chemrev.0c00799
    2. Lue Xiang, Xianfeng Liu, Yuxiang He, Ke Zhang. Eye-Readable Dynamic Covalent Click Reaction and Its Application in Polymer Synthesis. Macromolecules 2020, 53 (13) , 5434-5444. https://doi.org/10.1021/acs.macromol.0c00408
    3. Silvana Hurrle, Anja S. Goldmann, Hartmut Gliemann, Hatice Mutlu, and Christopher Barner-Kowollik . Light-Induced Step-Growth Polymerization of AB-Type Photo-Monomers at Ambient Temperature. ACS Macro Letters 2018, 7 (2) , 201-207. https://doi.org/10.1021/acsmacrolett.7b01001
    4. Kai Hiltebrandt, Katharina Elies, Dagmar R. D’hooge, James P. Blinco, and Christopher Barner-Kowollik . A Light-Activated Reaction Manifold. Journal of the American Chemical Society 2016, 138 (22) , 7048-7054. https://doi.org/10.1021/jacs.6b01805
    5. Eva Blasco, Basit Yameen, Alexander S. Quick, Peter Krolla-Sidenstein, Alexander Welle, Martin Wegener, and Christopher Barner-Kowollik . Designing π-Conjugated Polymeric Nano- and Microstructures via Light Induced Chemistry. Macromolecules 2015, 48 (24) , 8718-8728. https://doi.org/10.1021/acs.macromol.5b02024
    6. Pieter Espeel and Filip E. Du Prez . “Click”-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations. Macromolecules 2015, 48 (1) , 2-14. https://doi.org/10.1021/ma501386v
    7. Ozcan Altintas, Johannes Willenbacher, Kilian N. R. Wuest, Kim K. Oehlenschlaeger, Peter Krolla-Sidenstein, Hartmut Gliemann, and Christopher Barner-Kowollik . A Mild and Efficient Approach to Functional Single-Chain Polymeric Nanoparticles via Photoinduced Diels–Alder Ligation. Macromolecules 2013, 46 (20) , 8092-8101. https://doi.org/10.1021/ma4015033
    8. Michael Kaupp, Thomas Tischer, Astrid F. Hirschbiel, Andrew P. Vogt, Udo Geckle, Vanessa Trouillet, Thorsten Hofe, Martina H. Stenzel, and Christopher Barner-Kowollik . Photo-Sensitive RAFT-Agents for Advanced Microparticle Design. Macromolecules 2013, 46 (17) , 6858-6872. https://doi.org/10.1021/ma401242g
    9. Pascale Atallah, Kenneth B. Wagener, and Michael D. Schulz . ADMET: The Future Revealed. Macromolecules 2013, 46 (12) , 4735-4741. https://doi.org/10.1021/ma400067b
    10. Nadja A. Simeth, Youxin Fu. Principles and recent developments in visible-light photoclick chemistry. 2024, 343-372. https://doi.org/10.1039/9781837676552-00343
    11. Umit Tunca. Click Chemistry for Block, Graft, and Star Copolymers. 2024, 226-247. https://doi.org/10.1039/9781839169885-00226
    12. Youxin Fu, Nadja A. Simeth, Wiktor Szymanski, Ben L. Feringa. Visible and near-infrared light-induced photoclick reactions. Nature Reviews Chemistry 2024, 8 (9) , 665-685. https://doi.org/10.1038/s41570-024-00633-y
    13. Hakan Durmaz, Umit Tunca. Orthogonal Multiple Click Reactions for Macromolecular Design. 2022, 1-41. https://doi.org/10.1002/9783527815562.mme0002
    14. Javier Mateos, Sara Cuadros, Alberto Vega-Peñaloza, Luca Dell’Amico. Unlocking the Synthetic Potential of Light-Excited Aryl Ketones: Applications in Direct Photochemistry and Photoredox Catalysis. Synlett 2022, 33 (02) , 116-128. https://doi.org/10.1055/a-1403-4613
    15. Hualong Zhang, Wen Xu, Zhigang Wu, Chao Liu, Chunyan Hong. A versatile ring-closure method for efficient synthesis of cyclic polymer and tadpole-shaped copolymer. Polymer 2021, 236 , 124314. https://doi.org/10.1016/j.polymer.2021.124314
    16. Zhishuai Geng, Jaeman J. Shin, Yumeng Xi, Craig J. Hawker. Click chemistry strategies for the accelerated synthesis of functional macromolecules. Journal of Polymer Science 2021, 59 (11) , 963-1042. https://doi.org/10.1002/pol.20210126
    17. Fu-Rong Zeng, Jing Xu, Qi Xiong, Kai-Xuan Qin, Wei-Jun Xu, Yue-Xin Wang, Zan-Jiao Liu, Zi-Long Li, Zi-Chen Li. Aliphatic polyketones via cross-metathesis polymerization: Synthesis and post-polymerization modification. Polymer 2019, 185 , 121936. https://doi.org/10.1016/j.polymer.2019.121936
    18. Dong Jing, Cong Lu, Zhuo Chen, Songyang Jin, Lijuan Xie, Ziyi Meng, Zhishan Su, Ke Zheng. Light‐Driven Intramolecular C−N Cross‐Coupling via a Long‐Lived Photoactive Photoisomer Complex. Angewandte Chemie 2019, 131 (41) , 14808-14814. https://doi.org/10.1002/ange.201906112
    19. Dong Jing, Cong Lu, Zhuo Chen, Songyang Jin, Lijuan Xie, Ziyi Meng, Zhishan Su, Ke Zheng. Light‐Driven Intramolecular C−N Cross‐Coupling via a Long‐Lived Photoactive Photoisomer Complex. Angewandte Chemie International Edition 2019, 58 (41) , 14666-14672. https://doi.org/10.1002/anie.201906112
    20. Kristina Jovic, Tobias Nitsche, Christiane Lang, James P. Blinco, Kevin De Bruycker, Christopher Barner-Kowollik. Hyphenation of size-exclusion chromatography to mass spectrometry for precision polymer analysis – a tutorial review. Polymer Chemistry 2019, 10 (24) , 3241-3256. https://doi.org/10.1039/C9PY00370C
    21. Yang Liang, Fu-Rong Zeng, Zi-Long Li. Precision Aliphatic Polyesters via Cross-Metathesis Polymerization. Current Organic Synthesis 2019, 16 (2) , 188-204. https://doi.org/10.2174/1570179416666181206095131
    22. Janin T. Offenloch, Simon Bastian, Hatice Mutlu, Christopher Barner‐Kowollik. Pyrene‐Tagged Chloro Oximes as Ambient‐Light‐Accelerated Ligation Agents. ChemPhotoChem 2019, 3 (2) , 66-70. https://doi.org/10.1002/cptc.201800211
    23. Javier Mateos, Alessio Cherubini-Celli, Tommaso Carofiglio, Marcella Bonchio, Nadia Marino, Xavier Companyó, Luca Dell’Amico. A microfluidic photoreactor enables 2-methylbenzophenone light-driven reactions with superior performance. Chemical Communications 2018, 54 (50) , 6820-6823. https://doi.org/10.1039/C8CC01373J
    24. Liang Ding, Juan Li, Tianjing Li, Liang Zhang, Wei Song. Linear, Y-shaped, and H-shaped amphiphilic azobenzene copolymers: Facile synthesis and topological effect on self-assembly and photoresponsive property. Reactive and Functional Polymers 2017, 121 , 15-22. https://doi.org/10.1016/j.reactfunctpolym.2017.10.008
    25. Lena Charlotte Over, Marcel Hergert, Michael A. R. Meier. Metathesis Curing of Allylated Lignin and Different Plant Oils for the Preparation of Thermosetting Polymer Films with Tunable Mechanical Properties. Macromolecular Chemistry and Physics 2017, 218 (16) , 1700177. https://doi.org/10.1002/macp.201700177
    26. Eva Blasco, Martin Wegener, Christopher Barner‐Kowollik. Photochemically Driven Polymeric Network Formation: Synthesis and Applications. Advanced Materials 2017, 29 (15) https://doi.org/10.1002/adma.201604005
    27. Bengi Özgün Öztürk, Elif Yakut, Elif Ak, Solmaz Karabulut Şehitoğlu. Imidazole-substituted ROMP polymers: Post-modification of poly(norbornenediester) derivatives with aminolysis reactions. Reactive and Functional Polymers 2017, 111 , 22-29. https://doi.org/10.1016/j.reactfunctpolym.2016.12.008
    28. Liang Ding, Wei Song, Ruiyu Jiang, Lei Zhu. Macrocycle-based topological azo-polymers: facile synthesis and unusual photoresponsive properties. Polymer Chemistry 2017, 8 (46) , 7133-7142. https://doi.org/10.1039/C6PY01743F
    29. Clement Appiah, Georg Woltersdorf, Wolfgang H. Binder. Synthesis of photoresponsive main-chain oligomers with azobenzene moieties via ADMET oligomerization and their micellization properties. Polymer Chemistry 2017, 8 (18) , 2752-2763. https://doi.org/10.1039/C7PY00426E
    30. Liang Ding, Chengshuang Wang, Ruiyu Jiang, Lingfang Wang, Wei Song. Preparation of small and photoresponsive polymer nanoparticles by intramolecular crosslinking of reactive star azo-polymers. Reactive and Functional Polymers 2016, 109 , 56-63. https://doi.org/10.1016/j.reactfunctpolym.2016.10.004
    31. Liang Ding, Juan Li, Ruiyu Jiang, Wei Song. Photoresponsive Polymeric Reversible Nanoparticles via Self-Assembly of Reactive ABA Triblock Copolymers and Their Transformation to Permanent Nanostructures. Materials 2016, 9 (12) , 980. https://doi.org/10.3390/ma9120980
    32. Mehmet Atilla Tasdelen, Omer Suat Taskin, Cumali Celik. Orthogonal Synthesis of Block Copolymer via Photoinduced CuAAC and Ketene Chemistries. Macromolecular Rapid Communications 2016, 37 (6) , 521-526. https://doi.org/10.1002/marc.201500563
    33. Jun Qiu, Jiawen Zhang, Fangli Yu, Jun Wei, Liang Ding. Novel ABC miktoarm star terpolyphosphoesters: Facile construction and high‐flame retardant property. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54 (5) , 692-701. https://doi.org/10.1002/pola.27895
    34. András Herner, Qing Lin. Photo-Triggered Click Chemistry for Biological Applications. Topics in Current Chemistry 2016, 374 (1) https://doi.org/10.1007/s41061-015-0002-2
    35. Ozcan Altintas, Christopher Barner‐Kowollik. Single‐Chain Folding of Synthetic Polymers: A Critical Update. Macromolecular Rapid Communications 2016, 37 (1) , 29-46. https://doi.org/10.1002/marc.201500547
    36. Mehmet Atilla Tasdelen, Baris Kiskan, Yusuf Yagci. Externally stimulated click reactions for macromolecular syntheses. Progress in Polymer Science 2016, 52 , 19-78. https://doi.org/10.1016/j.progpolymsci.2015.09.003
    37. Nan Hu, Cheng-Kang Mai, Glenn H. Fredrickson, Guillermo C. Bazan. One-pot synthesis of semicrystalline/amorphous multiblock copolymers via divinyl-terminated telechelic polyolefins. Chemical Communications 2016, 52 (11) , 2237-2240. https://doi.org/10.1039/C5CC09200K
    38. Jiahui Su, Hong Huang, Yanyan Cui, Yingyin Chen, Xiaoxuan Liu. A photo-induced nitroxide trapping method to prepare α,ω-heterotelechelic polymers. Polymer Chemistry 2016, 7 (14) , 2511-2520. https://doi.org/10.1039/C6PY00104A
    39. Justyna A. Czaplewska, Tobias C. Majdanski, Markus J. Barthel, Michael Gottschaldt, Ulrich S. Schubert. Functionalized PEG‐ b ‐PAGE‐ b ‐PLGA triblock terpolymers as materials for nanoparticle preparation. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (18) , 2163-2174. https://doi.org/10.1002/pola.27674
    40. Liang Ding, Jun Qiu, Juan Li, Chengshuang Wang, Lingfang Wang. Novel Photoresponsive Linear, Graft, and Comb-Like Copolymers with Azobenzene Chromophores in the Main-Chain and/or Side-Chain: Facile One-Pot Synthesis and Photoresponse Properties. Macromolecular Rapid Communications 2015, 36 (17) , 1578-1584. https://doi.org/10.1002/marc.201500230
    41. Patricia R. Bachler, Kenneth B. Wagener. Functional precision polymers via ADMET polymerization. Monatshefte für Chemie - Chemical Monthly 2015, 146 (7) , 1053-1061. https://doi.org/10.1007/s00706-015-1479-7
    42. Anja S. Goldmann, Guillaume Delaittre, Jan O. Mueller, Christopher Barner‐Kowollik. Advanced Strategies for Spatially Resolved Surface Design via Photochemical Methods. 2015, 279-326. https://doi.org/10.1002/9781119006671.ch9
    43. Denis H. Seuyep Ntoukam, Suchaya Jiworrawathanakul, Voravee P. Hoven, Gerrit A. Luinstra, Patrick Theato. 1,1-Disubstituted-2-vinylcyclopropanes for the synthesis of amphiphilic polymers. European Polymer Journal 2015, 66 , 319-327. https://doi.org/10.1016/j.eurpolymj.2015.02.023
    44. Liang Ding, Ling Lin, Chengshuang Wang, Jun Qiu, Zhenshu Zhu. Facile synthesis of linear–hyperbranched polyphosphoesters via one‐pot tandem ROMP and ADMET polymerization and their transformation to architecturally defined nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (8) , 964-972. https://doi.org/10.1002/pola.27524
    45. Nicolas Zydziak, Florian Feist, Birgit Huber, Jan O. Mueller, Christopher Barner-Kowollik. Photo-induced sequence defined macromolecules via hetero bifunctional synthons. Chemical Communications 2015, 51 (10) , 1799-1802. https://doi.org/10.1039/C4CC08756A
    46. Umit Tunca. Orthogonal multiple click reactions in synthetic polymer chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52 (22) , 3147-3165. https://doi.org/10.1002/pola.27379
    47. Michael Kaupp, Alexander S. Quick, Cesar Rodriguez‐Emmenegger, Alexander Welle, Vanessa Trouillet, Ognen Pop‐Georgievski, Martin Wegener, Christopher Barner‐Kowollik. Photo‐Induced Functionalization of Spherical and Planar Surfaces via Caged Thioaldehyde End‐Functional Polymers. Advanced Functional Materials 2014, 24 (36) , 5649-5661. https://doi.org/10.1002/adfm.201400609
    48. James W. Herndon. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2012. Coordination Chemistry Reviews 2014, 272 , 48-144. https://doi.org/10.1016/j.ccr.2014.02.026
    49. Alexander S. Quick, Hannah Rothfuss, Alexander Welle, Benjamin Richter, Joachim Fischer, Martin Wegener, Christopher Barner‐Kowollik. Fabrication and Spatially Resolved Functionalization of 3D Microstructures via Multiphoton‐Induced Diels–Alder Chemistry. Advanced Functional Materials 2014, 24 (23) , 3571-3580. https://doi.org/10.1002/adfm.201304030
    50. Liang Ding, Mengyu Xu, Jingjing Wang, Yang Liao, Jun Qiu. Controlled synthesis of azobenzene functionalized homo and copolymers via direct acyclic diene metathesis polymerization. Polymer 2014, 55 (7) , 1681-1687. https://doi.org/10.1016/j.polymer.2014.02.021
    51. Liang Ding, Jun Qiu, Jun Wei, Zhenshu Zhu. Convenient divergent synthesis of linear-dendron block polyphosphoesters via acyclic diene metathesis polymerization. Polym. Chem. 2014, 5 (14) , 4285-4292. https://doi.org/10.1039/C4PY00327F
    52. Liang Ding, Jun Wei, Jun Qiu, Jingjing Wang, Zhenshu Zhu. Star-shaped polyphosphoesters with reactive end groups synthesized via acyclic diene metathesis polymerization and their transformation to nanostructures. RSC Adv. 2014, 4 (43) , 22342-22349. https://doi.org/10.1039/C4RA01546K
    53. Ansgar Sehlinger, Lucas Montero de Espinosa, Michael A. R. Meier. Synthesis of Diverse Asymmetric α,ω‐Dienes Via the Passerini Three‐Component Reaction for Head‐to‐Tail ADMET Polymerization. Macromolecular Chemistry and Physics 2013, 214 (24) , 2821-2828. https://doi.org/10.1002/macp.201300517
    54. Liang Ding, Xueqin Zheng, Jing An, Jun Qiu, Rong Lu. Amphiphilic block copolymers via acyclic diene metathesis polymerization: one-step synthesis, characterization, and self-assembly. Journal of Polymer Research 2013, 20 (11) https://doi.org/10.1007/s10965-013-0287-1
    55. Christophe Deraedt, Martin d'Halluin, Didier Astruc. Metathesis Reactions: Recent Trends and Challenges. European Journal of Inorganic Chemistry 2013, 2013 (28) , 4881-4908. https://doi.org/10.1002/ejic.201300682
    56. Liang Ding, Jun Qiu, Rong Lu, Xueqin Zheng, Jing An. Hyperbranched polyphosphoesters with reactive end groups synthesized via acyclic diene metathesis polymerization and their transformation to crosslinked nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (20) , 4331-4340. https://doi.org/10.1002/pola.26845
    57. Lucas Montero de Espinosa, Matthias Winkler, Michael A. R. Meier. Acyclic Diene Metathesis Polymerization and Heck Polymer–Polymer Conjugation for the Synthesis of Star‐shaped Block Copolymers. Macromolecular Rapid Communications 2013, 34 (17) , 1381-1386. https://doi.org/10.1002/marc.201300472
    58. Liang Ding, Rong Lu, Jing An, Xueqin Zheng, Jun Qiu. Cyclic polyphosphoesters synthesized by acyclic diene metathesis polymerization and ring closing metathesis. Reactive and Functional Polymers 2013, 73 (9) , 1242-1248. https://doi.org/10.1016/j.reactfunctpolym.2013.06.011
    59. Mehmet Atilla Tasdelen, Yusuf Yagci. Lichtinduzierte Klickreaktionen. Angewandte Chemie 2013, 125 (23) , 6044-6053. https://doi.org/10.1002/ange.201208741
    60. Mehmet Atilla Tasdelen, Yusuf Yagci. Light‐Induced Click Reactions. Angewandte Chemie International Edition 2013, 52 (23) , 5930-5938. https://doi.org/10.1002/anie.201208741
    61. Joke Vandenbergh, Kayte Ranieri, Tanja Junkers. Synthesis of (Bio)‐Degradable Poly( β ‐thioester)s via Amine Catalyzed Thiol−Ene Click Polymerization. Macromolecular Chemistry and Physics 2012, 213 (24) , 2611-2617. https://doi.org/10.1002/macp.201200470

    Macromolecules

    Cite this: Macromolecules 2012, 45, 12, 5012–5019
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma3007043
    Published June 7, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2501

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.