ACS Publications. Most Trusted. Most Cited. Most Read
Lactide Cyclopolymerization Kinetics, X-ray Structure, and Solution Dynamics of (tBu-SalAmEE)Al and a Cautionary Tale Of Polymetalate Formation
My Activity
    Article

    Lactide Cyclopolymerization Kinetics, X-ray Structure, and Solution Dynamics of (tBu-SalAmEE)Al and a Cautionary Tale Of Polymetalate Formation
    Click to copy article linkArticle link copied!

    View Author Information
    § Department of Chemistry, Kenyon College, Gambier, Ohio 43022, United States
    Deparment of Chemistry, The Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
    Department of Chemistry, Vassar College, 124 Raymond Avenue, Box 601, Poughkeepsie, New York 12604, United States
    *E-mail: (Y.D.Y.L.G.)[email protected]
    Other Access OptionsSupporting Information (2)

    Macromolecules

    Cite this: Macromolecules 2013, 46, 9, 3273–3279
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma400046x
    Published April 19, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The complex (tBu-SalAmEE)Al (tBu-SalAmEEH3 = N,N-bis(3,5-di-tert-butyl-2-hydroxybenzyl)-2-(2-aminoethoxy)ethanol, 1) catalyzes the ring-expansion polymerization of lactide to form cyclic poly(lactide) (cPLA). The X-ray structure of 1 was determined, its polymerization kinetics were examined and its interactions with Lewis bases were observed. The data from these experiments are consistent with a coordination–insertion mechanism whose rate-determining step is catalyst rearrangement by loss of a hemilabile, datively bound, bridging ligand ether. cPLA was examined by thermogravimetric analysis and found more stable than its linear counterpart. In the course of these studies, we unexpectedly observed the formation of polymetalate (AlMe(tBu-SalAmEE)AlMe2)2 (6), which was characterized (X-ray, EA, and 1H and 13C NMR).

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Lactide polymerization kinetics data, 1H and 13C NMR spectra of 6, data for Δδ as a function of temperature for Lewis base coordination, polymerization protocols and crystallographic data (.cif file) for 1 and 6. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 31 publications.

    1. Haicheng Wang, Haiyan Ma. Controlled Synthesis of High-Molecular-Weight and Isotactic Cyclic Polylactides from rac-Lactide Using Aminophenolate Zinc Chlorides. Macromolecules 2024, 57 (13) , 6156-6165. https://doi.org/10.1021/acs.macromol.4c00937
    2. Yutan D. Y. L. Getzler, Robert T. Mathers. Sustainable Polymers: Our Evolving Understanding. Accounts of Chemical Research 2022, 55 (14) , 1869-1878. https://doi.org/10.1021/acs.accounts.2c00194
    3. Xiaoyang Mao, Ji Xian, Rui Wang, Xinning Han, Xiaobo Pan, Jincai Wu. Synthesis of Linear to Cyclic Polylactide via a One-Pot Step-Wise Ring-Opening Polymerization and Back-Biting Reaction of Ring Closure Using Magnesium Complexes. Inorganic Chemistry 2022, 61 (28) , 10722-10730. https://doi.org/10.1021/acs.inorgchem.2c00935
    4. Clara C. Y. Seo, Mayesha Ahmed, Allen G. Oliver, Christopher B. Durr. Titanium ONN-(phenolate) Alkoxide Complexes: Unique Reaction Kinetics for Ring-Opening Polymerization of Cyclic Esters. Inorganic Chemistry 2021, 60 (24) , 19336-19344. https://doi.org/10.1021/acs.inorgchem.1c03157
    5. Tsuneaki Konomoto, Koji Nakamura, Takuya Yamamoto, Yasuyuki Tezuka. Synthesis and Unimolecular ESA-CF Polymer Cyclization of Zwitterionic Telechelic Precursors. Macromolecules 2019, 52 (23) , 9208-9219. https://doi.org/10.1021/acs.macromol.9b01793
    6. Daiki Tanaka, Yuichiro Kadonaga, Yoshiyuki Manabe, Koichi Fukase, Shota Sasaya, Hikaru Maruyama, Sota Nishimura, Mayu Yanagihara, Akihito Konishi, Makoto Yasuda. Synthesis of Cage-Shaped Aluminum Aryloxides: Efficient Lewis Acid Catalyst for Stereoselective Glycosylation Driven by Flexible Shift of Four- to Five-Coordination. Journal of the American Chemical Society 2019, 141 (44) , 17466-17471. https://doi.org/10.1021/jacs.9b08875
    7. Akihiro Kimura, Tsukasa Hasegawa, Takuya Yamamoto, Hidetoshi Matsumoto, and Yasuyuki Tezuka . ESA-CF Synthesis of Linear and Cyclic Polymers Having Densely Appended Perylene Units and Topology Effects on Their Thin-Film Electron Mobility. Macromolecules 2016, 49 (16) , 5831-5840. https://doi.org/10.1021/acs.macromol.6b01225
    8. Yoichiro Tomikawa, Takuya Yamamoto, and Yasuyuki Tezuka . Construction of Hybrid-Multicyclic Polymer Topologies Composed of Dicyclic Structure Units by Means of An ESA-CF/Click-Linking Protocol. Macromolecules 2016, 49 (11) , 4076-4087. https://doi.org/10.1021/acs.macromol.6b00637
    9. Hsiu-Wei Ou, Kai-Hsuan Lo, Wei-Ting Du, Wei-Yi Lu, Wan-Jung Chuang, Bor-Hunn Huang, Hsuan-Ying Chen, and Chu-Chieh Lin . Synthesis of Sodium Complexes Supported with NNO-Tridentate Schiff Base Ligands and Their Applications in the Ring-Opening Polymerization of l-Lactide. Inorganic Chemistry 2016, 55 (4) , 1423-1432. https://doi.org/10.1021/acs.inorgchem.5b02043
    10. Haruna Wada, Takuya Yamamoto, and Yasuyuki Tezuka . Concise Click/ESA-CF Synthesis of Periodically-Positioned Trifunctional kyklo-Telechelic Poly(THF)s. Macromolecules 2015, 48 (17) , 6077-6086. https://doi.org/10.1021/acs.macromol.5b01818
    11. Yoichiro Tomikawa, Hiroto Fukata, Yee Song Ko, Takuya Yamamoto, and Yasuyuki Tezuka . Construction of Double-Eight and Double-Trefoil Polymer Topologies with Core-Clickable kyklo-Telechelic Precursors. Macromolecules 2014, 47 (23) , 8214-8223. https://doi.org/10.1021/ma501751r
    12. Takuya Suzuki, Takuya Yamamoto, and Yasuyuki Tezuka . Constructing a Macromolecular K3,3 Graph through Electrostatic Self-Assembly and Covalent Fixation with a Dendritic Polymer Precursor. Journal of the American Chemical Society 2014, 136 (28) , 10148-10155. https://doi.org/10.1021/ja504891x
    13. José A. Castro-Osma, Carlos Alonso-Moreno, Joaquín C. García-Martinez, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Agustín Lara-Sánchez, and Antonio Otero . Ring-Opening (ROP) versus Ring-Expansion (REP) Polymerization of ε-Caprolactone To Give Linear or Cyclic Polycaprolactones. Macromolecules 2013, 46 (16) , 6388-6394. https://doi.org/10.1021/ma401216u
    14. Li Zhou, Liam T. Reilly, Changxia Shi, Ethan C. Quinn, Eugene Y.-X. Chen. Proton-triggered topological transformation in superbase-mediated selective polymerization enables access to ultrahigh-molar-mass cyclic polymers. Nature Chemistry 2024, 16 (8) , 1357-1365. https://doi.org/10.1038/s41557-024-01511-2
    15. Frank Peprah, Grace E. Tarantola, Alyson S. Plaman, Emily L. Vu, Alyssa B. Huynh, Christopher B. Durr. Synthesis and catalytic activity of single-site group V alkoxide complexes for the ring-opening polymerization of ε-caprolactone. Dalton Transactions 2024, 53 (16) , 7073-7080. https://doi.org/10.1039/D4DT00422A
    16. Simon H.F. Schreiner, C. Christopher Almquist, Chia Yun Chang, Tobias Rüffer, Warren E. Piers, Robert Kretschmer. Utilisation of a dianionic pentadentate ligand in group 13 chemistry. Polyhedron 2024, 250 , 116824. https://doi.org/10.1016/j.poly.2023.116824
    17. Yanjiao Song, Jianghua He, Yuetao Zhang, Reid A. Gilsdorf, Eugene Y.-X. Chen. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment by a trifunctional Lewis pair. Nature Chemistry 2023, 15 (3) , 366-376. https://doi.org/10.1038/s41557-022-01097-7
    18. Jordan Ochs, Carlo Andrea Pagnacco, Fabienne Barroso-Bujans. Macrocyclic polymers: Synthesis, purification, properties and applications. Progress in Polymer Science 2022, 134 , 101606. https://doi.org/10.1016/j.progpolymsci.2022.101606
    19. Shannon E. Wright, Aidan Clarkson, Jenna M. Korns, Ellie Haljun, Lila Lofving, Meheret Ourgessa, Yutan D. Y. L. Getzler. An efficient synthesis of the inimer gamma-(2-bromo-2-methylpropionate)-epsilon-caprolactone (BMPCL). Green Chemistry Letters and Reviews 2022, 15 (3) , 683-688. https://doi.org/10.1080/17518253.2022.2127333
    20. Brennan J. Curole, Ashley V. Miles, Scott M. Grayson. Recent Progress on the Synthesis of Cyclic Polymers. 2022, 213-242. https://doi.org/10.1007/978-981-16-6807-4_14
    21. Somboon Chaemchuen, Qingping Dai, Jichao Wang, Chenyang Zhu, Nikom Klomkliang, Ye Yuan, Chen Cheng, Mirella Elkadi, Zhixiong Luo, Francis Verpoort. Enhancing catalytic activity via metal tuning of zeolitic imidazole frameworks for ring opening polymerization of l-lactide. Applied Catalysis A: General 2021, 624 , 118319. https://doi.org/10.1016/j.apcata.2021.118319
    22. Akihito Konishi, Yoshihiro Nishimoto, Makoto Yasuda. Reaction Field for a Lewis Acid with a Tunable Factor for Selective Organic Synthesis. 2021, 225-260. https://doi.org/10.1007/978-981-16-2458-2_13
    23. Salvatore Impemba, Francesco Della Monica, Alfonso Grassi, Carmine Capacchione, Stefano Milione. Cyclic Polyester Formation with an [OSSO]‐Type Iron(III) Catalyst. ChemSusChem 2020, 13 (1) , 141-145. https://doi.org/10.1002/cssc.201902163
    24. Siriwan Praban, Supajittra Yimthachote, Jiraya Kiriratnikom, Sucheewin Chotchatchawankul, Jonggol Tantirungrotechai, Khamphee Phomphrai. Synthesis and characterizations of bis(phenoxy)‐amine tin(II) complexes for ring‐opening polymerization of lactide. Journal of Polymer Science Part A: Polymer Chemistry 2019, 57 (20) , 2104-2112. https://doi.org/10.1002/pola.29479
    25. Kirill V. Zaitsev, Valeriy S. Cherepakhin, Alexander Zherebker, Alexey Kononikhin, Eugene Nikolaev, Andrei V. Churakov. Aluminum Complexes Based on Tridentate Amidoalkoxide NNO-Ligands: Synthesis, Structure, and Properties. Journal of Organometallic Chemistry 2018, 875 , 11-23. https://doi.org/10.1016/j.jorganchem.2018.08.021
    26. J. Martínez, M. Martínez de Sarasa Buchaca, F. de la Cruz-Martínez, C. Alonso-Moreno, L. F. Sánchez-Barba, J. Fernandez-Baeza, A. M. Rodríguez, A. Rodríguez-Diéguez, J. A. Castro-Osma, A. Otero, A. Lara-Sánchez. Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters. Dalton Transactions 2018, 47 (22) , 7471-7479. https://doi.org/10.1039/C8DT01553H
    27. Zhixiong Luo, Somboon Chaemchuen, Kui Zhou, Francis Verpoort. Ring‐Opening Polymerization of l ‐Lactide to Cyclic Poly(Lactide) by Zeolitic Imidazole Framework ZIF‐8 Catalyst. ChemSusChem 2017, 10 (21) , 4135-4139. https://doi.org/10.1002/cssc.201701438
    28. Young A. Chang, Robert M. Waymouth. Recent progress on the synthesis of cyclic polymers via ring‐expansion strategies. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (18) , 2892-2902. https://doi.org/10.1002/pola.28635
    29. Christopher G. Gianopoulos, Nishant Kumar, Yihong Zhao, Li Jia, Kristin Kirschbaum, Mark R. Mason. Aluminum alkoxide, amide and halide complexes supported by a bulky dipyrromethene ligand: synthesis, characterization, and preliminary ε-caprolactone polymerization activity. Dalton Transactions 2016, 45 (35) , 13787-13797. https://doi.org/10.1039/C6DT02449A
    30. Jose A. Castro-Osma, Carlos Alonso-Moreno, Agustín Lara-Sánchez, Antonio Otero, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Ana M. Rodríguez. Catalytic behaviour in the ring-opening polymerisation of organoaluminiums supported by bulky heteroscorpionate ligands. Dalton Transactions 2015, 44 (27) , 12388-12400. https://doi.org/10.1039/C4DT03475A
    31. Phonpimon Wongmahasirikun, Paweenuch Prom-on, Preeyanuch Sangtrirutnugul, Palangpon Kongsaeree, Khamphee Phomphrai. Synthesis of cyclic polyesters: effects of alkoxy side chains in salicylaldiminato tin( ii ) complexes. Dalton Transactions 2015, 44 (27) , 12357-12364. https://doi.org/10.1039/C5DT00139K

    Macromolecules

    Cite this: Macromolecules 2013, 46, 9, 3273–3279
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma400046x
    Published April 19, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1434

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.