ACS Publications. Most Trusted. Most Cited. Most Read
Viscoelastic Properties of Poly(vinyl alcohol) Hydrogels Having Permanent and Transient Cross-Links Studied by Microrheology, Classical Rheometry, and Dynamic Light Scattering
My Activity

Figure 1Loading Img
    Article

    Viscoelastic Properties of Poly(vinyl alcohol) Hydrogels Having Permanent and Transient Cross-Links Studied by Microrheology, Classical Rheometry, and Dynamic Light Scattering
    Click to copy article linkArticle link copied!

    View Author Information
    Laboratoire PPMD-SIMM, UPMC-ESPCI ParisTech-CNRS UMR7615, 10 rue Vauquelin, 75005 Paris, France
    IPCMS/CNRS UMR 7504, 23 rue du Loess PB43 67034 Strasbourg Cedex, France
    *E-mail: (T.N.) [email protected]
    Other Access Options

    Macromolecules

    Cite this: Macromolecules 2013, 46, 10, 4174–4183
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma400600f
    Published May 16, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Dynamics of poly(vinyl alcohol) (PVA) hydrogels having chemical and physical transient cross-links simultaneously (dual cross-link PVA gels) were studied by microrheology based on diffusing-wave spectroscopy (DWS), classical rheology and single dynamic light scattering (DLS), and compared with those of corresponding chemical and physical PVA gels. Three different relaxation modes (fast, intermediate and slow modes) are observed for physical gels, while one mode (fast mode) is found for chemical gels, and two (fast and intermediate) for dual cross-link gels. The three modes are attributed respectively to Brownian diffusion of PVA polymer or collective diffusion of the network or gel mode (fast mode), macroscopic stress relaxation (intermediate mode whose characteristic time shows q0 dependence) and Brownian diffusion of aggregates (slow mode). Microrheological measurements are in good agreement with macrorheological showing segmental Rouse mode dynamics in the high frequency range. For physical gels, we found Maxwell type viscoelasticity characterized by a crossover frequency (maximum of G″) and G′ ∼ ω2 and G″ ∼ ω1 in the lower frequency range. The chemical gels displayed an elastic plateau with low G″ at low frequency. For the dual cross-link gel a maximum of G″ was observed, and its characteristic time agrees with that of the intermediate mode measured by DLS. We show that this relaxation mode corresponds to the associative Rouse mode characterized by G′ = G″ ∼ ω0.5, depending on the dissociation rate of the reversible transient cross-links. We propose a stress relaxation mechanism of the PVA chains in the presence of elastically inactive but associative transient cross-links which induces incomplete stress relaxation.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 162 publications.

    1. Yuta Yamamoto, Yoshifumi Yamagata, Taisuke Sato, Koshiro Nakamura, Ren Sato, Mitsuru Naito, Ung-il Chung, Takuya Katashima. Elucidating Nonlinear Stress Relaxation in Transient Networks through Two-Dimensional Rheo-Optics. ACS Macro Letters 2024, 13 (9) , 1171-1178. https://doi.org/10.1021/acsmacrolett.4c00338
    2. Yuhui Du, Xinqian Zheng, Yuan Ma, Fangjun Ge, Qiuyan Li, Hao Xiang, Xueyi Chen, Hai Zhou, Taolin Sun, Tingjian Chen. Preparation of Biomass-Derived DNA-Chitosan Polyelectrolyte Complex Hydrogels for Economical and Reliable DNA Preservation and Protein Immobilization. ACS Sustainable Chemistry & Engineering 2024, 12 (33) , 12562-12575. https://doi.org/10.1021/acssuschemeng.4c04145
    3. Yahui Li, Yao Li, Renkuan Cao, Jiayu Xie, Wei Chen. Amplifying the Mechanical Resilience of Chemically Cross-Linked Poly(vinyl alcohol) Films with the Addition of Boric Acid. Macromolecules 2024, 57 (13) , 6321-6332. https://doi.org/10.1021/acs.macromol.4c01098
    4. Yuanyuan Wei, Donghao Zhao, Costantino Creton, Tetsuharu Narita. Structural Heterogeneity and Its Influence on Nonlinear Deformation and the Fracture of Ultrasoft Hydrogels. Macromolecules 2023, 56 (23) , 9604-9615. https://doi.org/10.1021/acs.macromol.3c01581
    5. Yusuke Yasuda, Shintaro Nakagawa, Hirohiko Houjou, Naoko Yoshie, Hiroshi Morita. Coarse-Grained Molecular Dynamics Simulations of Dynamic Bond Elastomers Using Interbead Potentials for Entropy- and Enthalpy-Driven Mechanisms in Their Dynamics and Mechanical Properties. Macromolecules 2023, 56 (18) , 7432-7444. https://doi.org/10.1021/acs.macromol.3c00221
    6. Akbar Ali, Saroj Saroj, Sunita Saha, Sanjay Kumar Gupta, Tatini Rakshit, Suchetan Pal. Glucose-Responsive Chitosan Nanoparticle/Poly(vinyl alcohol) Hydrogels for Sustained Insulin Release In Vivo. ACS Applied Materials & Interfaces 2023, 15 (27) , 32240-32250. https://doi.org/10.1021/acsami.3c05031
    7. Xiaoqiang Xue, Kang Liang, Wenyan Huang, Hongjun Yang, Li Jiang, Qimin Jiang, Tao Jiang, Binzhe Lin, Yangjing Chen, Bibiao Jiang, Sridhar Komarneni. Molecular Engineering of Injectable, Fast Self-Repairing Hydrogels with Tunable Gelation Time: Characterization by Diffusing Wave Spectroscopy. Macromolecules 2022, 55 (15) , 6474-6486. https://doi.org/10.1021/acs.macromol.2c00899
    8. Takuya Katashima, Ryota Kudo, Mitsuru Naito, Satoru Nagatoishi, Kanjiro Miyata, Ung-il Chung, Kouhei Tsumoto, Takamasa Sakai. Experimental Comparison of Bond Lifetime and Viscoelastic Relaxation in Transient Networks with Well-Controlled Structures. ACS Macro Letters 2022, 11 (6) , 753-759. https://doi.org/10.1021/acsmacrolett.2c00152
    9. Jingwen Zhao, Jingyi Guo, Costantino Creton, Chung Yuen Hui, Tetsuharu Narita. Dynamics of Hydrogels with a Variable Ratio of Permanent and Transient Cross-Links: Constitutive Model and Its Molecular Interpretation. Macromolecules 2022, 55 (9) , 3550-3562. https://doi.org/10.1021/acs.macromol.1c02440
    10. Martha Franziska Koziol, Karl Fischer, Sebastian Seiffert. Structural and Gelation Characteristics of Metallo-Supramolecular Polymer Model-Network Hydrogels Probed by Static and Dynamic Light Scattering. Macromolecules 2021, 54 (9) , 4375-4386. https://doi.org/10.1021/acs.macromol.1c00036
    11. Mostafa Ahmadi, Sebastian Seiffert. Coordination Geometry Preference Regulates the Structure and Dynamics of Metallo-Supramolecular Polymer Networks. Macromolecules 2021, 54 (3) , 1388-1400. https://doi.org/10.1021/acs.macromol.0c02524
    12. David E. Delgado, Daniel R. King, Kunpeng Cui, Jian Ping Gong, Kenneth R. Shull. High-Fidelity Hydrogel Thin Films Processed from Deep Eutectic Solvents. ACS Applied Materials & Interfaces 2020, 12 (38) , 43191-43200. https://doi.org/10.1021/acsami.0c09618
    13. Hui Yang, Sina Ghiassinejad, Evelyne van Ruymbeke, Charles-André Fustin. Tunable Interpenetrating Polymer Network Hydrogels Based on Dynamic Covalent Bonds and Metal–Ligand Bonds. Macromolecules 2020, 53 (16) , 6956-6967. https://doi.org/10.1021/acs.macromol.0c00494
    14. Takuro Kimura, Kenji Urayama. Multiaxial Stress Relaxation of Dual-Cross-Link Poly(vinyl alcohol) Hydrogels. ACS Macro Letters 2020, 9 (1) , 1-6. https://doi.org/10.1021/acsmacrolett.9b00896
    15. Franco Furlani, Pasquale Sacco, Michela Cok, Gaia de Marzo, Eleonora Marsich, Sergio Paoletti, Ivan Donati. Biomimetic, Multiresponsive, and Self-Healing Lactose-Modified Chitosan (CTL)-Based Gels Formed via Competitor-Assisted Mechanism. ACS Biomaterials Science & Engineering 2019, 5 (10) , 5539-5547. https://doi.org/10.1021/acsbiomaterials.9b01256
    16. Kunpeng Cui, Ya Nan Ye, Tao Lin Sun, Liang Chen, Xueyu Li, Takayuki Kurokawa, Tasuku Nakajima, Takayuki Nonoyama, Jian Ping Gong. Effect of Structure Heterogeneity on Mechanical Performance of Physical Polyampholytes Hydrogels. Macromolecules 2019, 52 (19) , 7369-7378. https://doi.org/10.1021/acs.macromol.9b01676
    17. Cong Du, Reghan J. Hill. Complementary-DNA-Strand Cross-Linked Polyacrylamide Hydrogels. Macromolecules 2019, 52 (17) , 6683-6697. https://doi.org/10.1021/acs.macromol.9b01338
    18. Pasquale Sacco, Franco Furlani, Sergio Paoletti, Ivan Donati. pH-Assisted Gelation of Lactose-Modified Chitosan. Biomacromolecules 2019, 20 (8) , 3070-3075. https://doi.org/10.1021/acs.biomac.9b00636
    19. Yingjun Liu, Zhenghai Tang, Siwu Wu, Baochun Guo. Integrating Sacrificial Bonds into Dynamic Covalent Networks toward Mechanically Robust and Malleable Elastomers. ACS Macro Letters 2019, 8 (2) , 193-199. https://doi.org/10.1021/acsmacrolett.9b00012
    20. Luca Martinetti, Olivia Carey-De La Torre, Kenneth S. Schweizer, Randy H. Ewoldt. Inferring the Nonlinear Mechanisms of a Reversible Network. Macromolecules 2018, 51 (21) , 8772-8789. https://doi.org/10.1021/acs.macromol.8b01295
    21. Mohammad Hossein Ghanian, Hamid Mirzadeh, Hossein Baharvand. In Situ Forming, Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic and Click Cross-Linked Alginate. Biomacromolecules 2018, 19 (5) , 1646-1662. https://doi.org/10.1021/acs.biomac.8b00140
    22. Brad A. Krajina, Carolina Tropini, Audrey Zhu, Philip DiGiacomo, Justin L. Sonnenburg, Sarah C. Heilshorn, and Andrew J. Spakowitz . Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials. ACS Central Science 2017, 3 (12) , 1294-1303. https://doi.org/10.1021/acscentsci.7b00449
    23. Xueting Zou, Xing Kui, Rongchun Zhang, Yue Zhang, Xiaoliang Wang, Qiang Wu, Tiehong Chen, and Pingchuan Sun . Viscoelasticity and Structures in Chemically and Physically Dual-Cross-Linked Hydrogels: Insights from Rheology and Proton Multiple-Quantum NMR Spectroscopy. Macromolecules 2017, 50 (23) , 9340-9352. https://doi.org/10.1021/acs.macromol.7b01854
    24. Jialong Shen and Alan E. Tonelli . Demonstrating Unique Behaviors of Polymers. Journal of Chemical Education 2017, 94 (11) , 1738-1745. https://doi.org/10.1021/acs.jchemed.7b00008
    25. Costantino Creton . 50th Anniversary Perspective: Networks and Gels: Soft but Dynamic and Tough. Macromolecules 2017, 50 (21) , 8297-8316. https://doi.org/10.1021/acs.macromol.7b01698
    26. Gang Huang, Huanhuan Zhang, Yulin Liu, Haijian Chang, Hongwei Zhang, Hongzan Song, Donghua Xu, and Tongfei Shi . Strain Hardening Behavior of Poly(vinyl alcohol)/Borate Hydrogels. Macromolecules 2017, 50 (5) , 2124-2135. https://doi.org/10.1021/acs.macromol.6b02393
    27. Tetsuharu Narita and Tsutomu Indei . Microrheological Study of Physical Gelation in Living Polymeric Networks. Macromolecules 2016, 49 (12) , 4634-4646. https://doi.org/10.1021/acs.macromol.6b00745
    28. Jingyi Guo, Rong Long, Koichi Mayumi, and Chung-Yuen Hui . Mechanics of a Dual Cross-Link Gel with Dynamic Bonds: Steady State Kinetics and Large Deformation Effects. Macromolecules 2016, 49 (9) , 3497-3507. https://doi.org/10.1021/acs.macromol.6b00421
    29. Rong Long, Koichi Mayumi, Costantino Creton, Tetsuharu Narita, and Chung-Yuen Hui . Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments. Macromolecules 2014, 47 (20) , 7243-7250. https://doi.org/10.1021/ma501290h
    30. Yuan Liu, Hao Meng, Shari Konst, Ryan Sarmiento, Rupak Rajachar, and Bruce P. Lee . Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity. ACS Applied Materials & Interfaces 2014, 6 (19) , 16982-16992. https://doi.org/10.1021/am504566v
    31. Israel González de Torre, Luis Quintanilla, Guillermo Pinedo-Martín, Matilde Alonso, and José Carlos Rodríguez-Cabello . Nanogel Formation from Dilute Solutions of Clickable Elastin-like Recombinamers and its Dependence on Temperature: Two Fractal Gelation Modes. ACS Applied Materials & Interfaces 2014, 6 (16) , 14509-14515. https://doi.org/10.1021/am503651y
    32. Sergey O. Ilyin, Alexander Ya. Malkin, Valery G. Kulichikhin, Yulia I. Denisova, Liya B. Krentsel, Georgiy A. Shandryuk, Arkadiy D. Litmanovich, Ekaterina A. Litmanovich, Galina N. Bondarenko, and Yaroslav V. Kudryavtsev . Effect of Chain Structure on the Rheological Properties of Vinyl Acetate–Vinyl Alcohol Copolymers in Solution and Bulk. Macromolecules 2014, 47 (14) , 4790-4804. https://doi.org/10.1021/ma5003326
    33. Koichi Mayumi, Alba Marcellan, Guylaine Ducouret, Costantino Creton, and Tetsuharu Narita . Stress–Strain Relationship of Highly Stretchable Dual Cross-Link Gels: Separability of Strain and Time Effect. ACS Macro Letters 2013, 2 (12) , 1065-1068. https://doi.org/10.1021/mz4005106
    34. Xiaoqiang Xue, Xuepei Miao, Jian Liu, Yi Ding, Yuheng Zhang, Yunkai Sun, Wenyan Huang, Qimin Jiang, Bibiao Jiang, Sridhar Komarneni. Investigating the pH-Dependence of gelation process in chitosan-glutaraldehyde hydrogels with diffusing wave spectroscopy. Polymer 2025, 316 , 127827. https://doi.org/10.1016/j.polymer.2024.127827
    35. Sunita Saha, Akbar Ali, Saroj Saroj, Dharmesh Jinagal, Tatini Rakshit, Suchetan Pal. In‐situ Forming Multipolymeric Glucose‐Responsive Hydrogels. Chemistry – An Asian Journal 2024, 19 (23) https://doi.org/10.1002/asia.202400873
    36. Huating Ye, Baohu Wu, Shengtong Sun, Peiyi Wu. Self-compliant ionic skin by leveraging hierarchical hydrogen bond association. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45079-4
    37. Daniil E. Larin, Andrey V. Shibaev, Ch.-Y. Liu, Alexander V. Emelyanenko. The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels. Giant 2024, 20 , 100341. https://doi.org/10.1016/j.giant.2024.100341
    38. Yue Song, Litao Ma, Qingfei Duan, Huifang Xie, Xinyi Dong, Huaran Zhang, Long Yu. Development of Slow-Release Fertilizers with Function of Water Retention Using Eco-Friendly Starch Hydrogels. Molecules 2024, 29 (20) , 4835. https://doi.org/10.3390/molecules29204835
    39. Woojin Choi, Milae Lee, Hyungseok Yong, Deokjae Heo, Taesuk Jun, Hanwook Ryu, Ji-Yeong Kim, Dingyun Cui, Du Yeol Ryu, Sang-Young Lee, Sung-Hwan Choi, Byeong-Su Kim, Jiyu Kim, Se Yong Jung, Sangmin Lee, Jinkee Hong. Anisotropic Liesegang pattern for the nonlinear elastic biomineral-hydrogel complex. Science Advances 2024, 10 (17) https://doi.org/10.1126/sciadv.adl3075
    40. Yanjie Zhang, Jian Tang, Quan Chen, Youngdon Kwon, Yumi Matsumiya, Hiroshi Watanabe. Nonlinear Stress Relaxation of End-Associative Star Chain 1. Behavior Under Single-Step Strain. Nihon Reoroji Gakkaishi 2024, 52 (2) , 123-141. https://doi.org/10.1678/rheology.52.123
    41. Banani Mishra, Sidhartha S. Jena. Transition in solution dynamics of polyacrylic acid: An interplay between nonergodicity and triple mode relaxation. Journal of Polymer Science 2024, 62 (7) , 1394-1410. https://doi.org/10.1002/pol.20230605
    42. Yingdong Wu, Lu Bai, Junping Zheng. A robust and efficiently reprocessable poly(dimethylsiloxane) elastomers enhanced by self‐catalysis Z n( II )‐ligand bonds and silyl ethers. Journal of Polymer Science 2024, 62 (5) , 870-879. https://doi.org/10.1002/pol.20230431
    43. Yong Liu, Jing Ge, Ce Wang, Ping Hu. New lens materials and processing methods. 2024, 273-292. https://doi.org/10.1016/B978-0-443-19407-8.00006-3
    44. Xueyu Li, Kunpeng Cui, Yong Zheng, Ya Nan Ye, Chengtao Yu, Wenqi Yang, Tasuku Nakajima, Jian Ping Gong. Role of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching. Science Advances 2023, 9 (51) https://doi.org/10.1126/sciadv.adj6856
    45. Alberto Varela-Feijoo, Philippe Djemia, Tetsuharu Narita, Frédéric Pignon, Armelle Baeza-Squiban, Valentina Sirri, Alain Ponton. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility. Soft Matter 2023, 19 (31) , 5942-5955. https://doi.org/10.1039/D3SM00159H
    46. Jikun Wang, Bangguo Zhu, Chung-Yuen Hui, Alan T. Zehnder. Determination of material parameters in constitutive models using adaptive neural network machine learning. Journal of the Mechanics and Physics of Solids 2023, 177 , 105324. https://doi.org/10.1016/j.jmps.2023.105324
    47. Appu Vinod, Rafael Tadmor, David Katoshevski, Ephraim J. Gutmark. Gels That Serve as Mucus Simulants: A Review. Gels 2023, 9 (7) , 555. https://doi.org/10.3390/gels9070555
    48. Juan F. Vega, Mercedes Fernández, Andrés Cardil, Itxaso Calafel, Itziar Martínez-Soroa, Ane Pérez Sarriegui, Arantxa Acera. Shedding light on the viscoelastic behavior of artificial and human tears: A microrheological approach. Physics of Fluids 2023, 35 (7) https://doi.org/10.1063/5.0152482
    49. Chayma Abbes, Marouen Zammali, Hasna Faten Mahjoub, Tahar Othman. Microrheological study of PVA–borax physical gel: effects of charge screening. Macromolecular Research 2023, 31 (7) , 637-648. https://doi.org/10.1007/s13233-023-00146-5
    50. Koduvayur A. Ramya, Abhijit P. Deshpande. Selection of geometry for nonlinear rheology using large amplitude oscillatory shear: Poly (vinyl alcohol) based complex network systems. Journal of Vinyl and Additive Technology 2023, 29 (4) , 724-736. https://doi.org/10.1002/vnl.21999
    51. Yanjie Zhang, Quan Chen, Hiroshi Watanabe. Nonlinear shear rheology of concentrated poly(vinyl alcohol)/borax aqueous solution: Nonlinearity of sticky Rouse relaxation. Journal of Non-Newtonian Fluid Mechanics 2023, 316 , 105012. https://doi.org/10.1016/j.jnnfm.2023.105012
    52. Wang Liao, Zihang Li, Ling Yang. Cross Network Composite Aerogel Towards Robust and Fire‐Resist Thermal Insulation Material. Advanced Engineering Materials 2023, 25 (9) https://doi.org/10.1002/adem.202201443
    53. Ananya Sharma, Sai Geetha Marapureddy, Abhijit Paul, Sapna R. Bisht, Manik Kakkar, Prachi Thareja, Karla P. Mercado-Shekhar. Characterizing Viscoelastic Polyvinyl Alcohol Phantoms for Ultrasound Elastography. Ultrasound in Medicine & Biology 2023, 49 (2) , 497-511. https://doi.org/10.1016/j.ultrasmedbio.2022.09.019
    54. Marshall R. McCraw, Berkin Uluutku, Halen D. Solomon, Megan S. Anderson, Kausik Sarkar, Santiago D. Solares. Optimizing the accuracy of viscoelastic characterization with AFM force–distance experiments in the time and frequency domains. Soft Matter 2023, 19 (3) , 451-467. https://doi.org/10.1039/D2SM01331B
    55. Elena Kelbysheva, Alexander N. Danilin, Vadim Gorodov, Irina Kuchkina, Nikolay Semenov. SULFONIC ACID POLYIMIDES AND THEIR SALTS: PROPERTIES OF THEIR PARTICLES IN SOLUTION AND SUSPENSION. Nanoscience and Technology: An International Journal 2023, 14 (3) , 29-42. https://doi.org/10.1615/NanoSciTechnolIntJ.2022045709
    56. Jitender Dhiman, Kumar Anupam, Vaneet Kumar, Saruchi. Bio-based Superabsorbent Polymers: An Overview. 2023, 1-27. https://doi.org/10.1007/978-981-99-3094-4_1
    57. Jikun Wang, Kunpeng Cui, Bangguo Zhu, Jian Ping Gong, Chung-Yuen Hui, Alan T. Zehnder. Load transfer between permanent and dynamic networks due to stress gradients in nonlinear viscoelastic hydrogels. Extreme Mechanics Letters 2023, 58 , 101928. https://doi.org/10.1016/j.eml.2022.101928
    58. Takuya Katashima, Ryunosuke Kobayashi, Shohei Ishikawa, Mitsuru Naito, Kanjiro Miyata, Ung-il Chung, Takamasa Sakai. Decoupling between Translational Diffusion and Viscoelasticity in Transient Networks with Controlled Network Connectivity. Gels 2022, 8 (12) , 830. https://doi.org/10.3390/gels8120830
    59. Amrutha Manigandan, Ramya Dhandapani, Shambhavi Bagewadi, Palaniappan Sethu, Swaminathan Sethuraman, Anuradha Subramanian. Facile fabrication of Bi-layered perfusable hydrogel tubes as biomimetic 3D arterial construct. Biomedical Materials 2022, 17 (6) , 065008. https://doi.org/10.1088/1748-605X/ac91ba
    60. Jianzhu Ju, Luca Cipelletti, Stephan Zoellner, Tetsuharu Narita, Costantino Creton. Multispeckle diffusing wave spectroscopy as a tool to study heterogeneous mechanical behavior in soft solids. Journal of Rheology 2022, 66 (6) , 1269-1283. https://doi.org/10.1122/8.0000401
    61. Jingwen Zhao, Louis Debertrand, Tetsuharu Narita, Costantino Creton. Fracture of dual crosslink gels with permanent and transient crosslinks: Effect of the relaxation time of the transient crosslinks. Journal of Rheology 2022, 66 (6) , 1255-1266. https://doi.org/10.1122/8.0000460
    62. Rowanne Lyons, Larissa Hammer, Alexis André, Charles-André Fustin, Renaud Nicolaÿ, Evelyne van Ruymbeke. Equilibration dynamics of a dynamic covalent network diluted in a metallosupramolecular polymer matrix. Journal of Rheology 2022, 66 (6) , 1349-1364. https://doi.org/10.1122/8.0000473
    63. Yanzhao Li, Christina Pyromali, Flanco Zhuge, Charles-André Fustin, Jean-François Gohy, Dimitris Vlassopoulos, Evelyne van Ruymbeke. Dynamics of entangled metallosupramolecular polymer networks combining stickers with different lifetimes. Journal of Rheology 2022, 66 (6) , 1203-1220. https://doi.org/10.1122/8.0000418
    64. Paola Nicolella, Sebastian Seiffert. Mechanical switching of a comblike dual dynamic polymer network. Journal of Rheology 2022, 66 (6) , 1153-1161. https://doi.org/10.1122/8.0000388
    65. Kunpeng Cui, Jian Ping Gong. How double dynamics affects the large deformation and fracture behaviors of soft materials. Journal of Rheology 2022, 66 (6) , 1093-1111. https://doi.org/10.1122/8.0000438
    66. Milad Kamkar, Mohsen Janmaleki, Elnaz Erfanian, Amir Sanati‐Nezhad, Uttandaraman Sundararaj. Covalently cross‐linked hydrogels: Mechanisms of nonlinear viscoelasticity. The Canadian Journal of Chemical Engineering 2022, 100 (11) , 3227-3239. https://doi.org/10.1002/cjce.24388
    67. Robert J. Wagner, Jinyue Dai, Xinfu Su, Franck J. Vernerey. A mesoscale model for the micromechanical study of gels. Journal of the Mechanics and Physics of Solids 2022, 167 , 104982. https://doi.org/10.1016/j.jmps.2022.104982
    68. Akbar Ali, Shaista Nouseen, Saroj Saroj, Meenakshi Shegane, Priyankar Majumder, Aarti Puri, Tatini Rakshit, Debasish Manna, Suchetan Pal. Repurposing pinacol esters of boronic acids for tuning viscoelastic properties of glucose-responsive polymer hydrogels: effects on insulin release kinetics. Journal of Materials Chemistry B 2022, 10 (37) , 7591-7599. https://doi.org/10.1039/D2TB00603K
    69. Tadashi Kajiya, Daisuke Sawai, Koji Miyata, Yosuke Miyashita, Hiroyuki Noda. Simple method to measure rheological properties of soft surfaces by a micro-needle contact. The European Physical Journal E 2022, 45 (9) https://doi.org/10.1140/epje/s10189-022-00227-w
    70. Takuro Kimura, Takuma Aoyama, Masaki Nakahata, Yoshinori Takashima, Motomu Tanaka, Akira Harada, Kenji Urayama. Time–strain inseparability in multiaxial stress relaxation of supramolecular gels formed via host–guest interactions. Soft Matter 2022, 18 (26) , 4953-4962. https://doi.org/10.1039/D2SM00285J
    71. Sujata Dhakal, Zehao Chen, Daniel Estrin, Svetlana Morozova. Spatially-Resolved Network Dynamics of Poly(vinyl alcohol) Gels Measured with Dynamic Small Angle Light Scattering. Gels 2022, 8 (7) , 394. https://doi.org/10.3390/gels8070394
    72. Wenhao Du, Zhixin Zhao, Xi Zhang. Sodium alginate crosslinker engineered UCST hydrogel towards superior mechanical properties and controllable dye removal. Carbohydrate Polymers 2022, 285 , 119232. https://doi.org/10.1016/j.carbpol.2022.119232
    73. Jianzhu Ju, Ken Sekimoto, Luca Cipelletti, Costantino Creton, Tetsuharu Narita. Heterogeneous nucleation of creases in swelling polymer gels. Physical Review E 2022, 105 (3) https://doi.org/10.1103/PhysRevE.105.034504
    74. Somnath Maji, Hyungseok Lee. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences 2022, 23 (5) , 2662. https://doi.org/10.3390/ijms23052662
    75. Takuya Katashima. Molecular Understanding of Viscoelasticity in Transient Polymer Networks Based on Multiple Methods. Nihon Reoroji Gakkaishi 2022, 50 (1) , 51-56. https://doi.org/10.1678/rheology.50.51
    76. Koichi Mayumi. Mechanical and Fracture Properties of Dynamically Cross-Linked Polymeric Materials. Nihon Reoroji Gakkaishi 2021, 49 (5) , 295-301. https://doi.org/10.1678/rheology.49.295
    77. Chiara Raffaelli, Wouter G. Ellenbroek. Stress relaxation in tunable gels. Soft Matter 2021, 17 (45) , 10254-10262. https://doi.org/10.1039/D1SM00091H
    78. Leif Kari. Effective visco-elastic models of tough, doubly cross-linked, single-network polyvinyl alcohol (PVA) hydrogels. Continuum Mechanics and Thermodynamics 2021, 33 (6) , 2315-2329. https://doi.org/10.1007/s00161-020-00874-4
    79. Michael R. Buche, Meredith N. Silberstein. Chain breaking in the statistical mechanical constitutive theory of polymer networks. Journal of the Mechanics and Physics of Solids 2021, 156 , 104593. https://doi.org/10.1016/j.jmps.2021.104593
    80. Yan‐Jie Wang, Yang He, Si Yu Zheng, Ziyang Xu, Jia Li, Yiping Zhao, Li Chen, Wenguang Liu. Polymer Pressure‐Sensitive Adhesive with A Temperature‐Insensitive Loss Factor Operating Under Water and Oil. Advanced Functional Materials 2021, 31 (48) https://doi.org/10.1002/adfm.202104296
    81. Takuya Katashima. Rheological studies on polymer networks with static and dynamic crosslinks. Polymer Journal 2021, 53 (10) , 1073-1082. https://doi.org/10.1038/s41428-021-00505-y
    82. Lu Bai, Xingxing Yan, Bingwei Feng, Junping Zheng. Mechanically strong, healable, and reprocessable conductive carbon black/silicone elastomer nanocomposites based on dynamic imine bonds and sacrificial coordination bonds. Composites Part B: Engineering 2021, 223 , 109123. https://doi.org/10.1016/j.compositesb.2021.109123
    83. Junyue Chen, Lingling Cui, Chengqi Yan, Dangsheng Xiong. Mechanical and Tribological Study of PVA–pMPDSAH Double-Network Hydrogel Prepared by Ultraviolet Irradiation and Freeze–Thaw Methods for Bionic Articular Cartilage. Journal of Bionic Engineering 2021, 18 (5) , 1192-1201. https://doi.org/10.1007/s42235-021-00079-8
    84. Jikun Wang, Tianjiao Li, Fan Cui, Chung-Yuen Hui, Jingjie Yeo, Alan T. Zehnder. Metamodeling of constitutive model using Gaussian process machine learning. Journal of the Mechanics and Physics of Solids 2021, 154 , 104532. https://doi.org/10.1016/j.jmps.2021.104532
    85. Yi Wang, Hongyan Ouyang, Lijuan Zhao, Jinrong Wu. A novel network construction method based on degenerative chain transfer effect to toughen hydrogels. Polymer 2021, 231 , 124147. https://doi.org/10.1016/j.polymer.2021.124147
    86. Akbar Ali, Sai P. Nagumantri, Tatini Rakshit, Suchetan Pal. Control of Glucose‐Induced Degradation and Cargo Release in Multi‐Responsive Polymer Hydrogels. Macromolecular Chemistry and Physics 2021, 222 (16) https://doi.org/10.1002/macp.202100121
    87. Maksim Rodin, Jie Li, Dirk Kuckling. Dually cross-linked single networks: structures and applications. Chemical Society Reviews 2021, 50 (14) , 8147-8177. https://doi.org/10.1039/D0CS01585G
    88. Qingbin He, Yanjie Zhang, Quan Chen. Crosslinking ABA-type elastomers with polyoxometalate: A convenient molecular design of double network. Polymer 2021, 228 , 123932. https://doi.org/10.1016/j.polymer.2021.123932
    89. Qianyu Yang, Chen Gao, Xuemei Zhang, Chihui Tsou, Xingyu Zhao, Manuel Reyes De Guzman, Zejun Pu, Xinyue Li, Yue Lu, Chunyan Zeng, Li Yuan, Yiqing Xia, Yuping Sheng, Yiqing Fu. A Dual Physical Cross‐Linking Strategy to Construct Tough Hydrogels with High Strength, Excellent Fatigue Resistance, and Stretching‐Induced Strengthening Effect. Macromolecular Materials and Engineering 2021, 306 (7) https://doi.org/10.1002/mame.202100093
    90. Takuro Taniguchi, Kenji Urayama. Linear Dynamic Viscoelasticity of Dual Cross-Link Poly(Vinyl Alcohol) Hydrogel with Determined Borate Ion Concentration. Gels 2021, 7 (2) , 71. https://doi.org/10.3390/gels7020071
    91. Mao-Hua Cai, Xiao-Yi Chen, Luo-Qin Fu, Wen-Lin Du, Xue Yang, Xiao-Zhou Mou, Pei-Yang Hu. Design and Development of Hybrid Hydrogels for Biomedical Applications: Recent Trends in Anticancer Drug Delivery and Tissue Engineering. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.630943
    92. Mostafa Ahmadi, Donya Monji, Faramarz Afshar Taromi. Bio-inspired surface modification of iron oxide nanoparticles for active stabilization in hydrogels. Soft Matter 2021, 17 (4) , 955-964. https://doi.org/10.1039/D0SM01776K
    93. Yi Wang, Zhenxing Cao, Changshu Ma, Rui Wu, Anji Du, Guangsu Huang, Jing Zheng, Jinrong Wu. Mechanically robust smart hydrogels enabled by an organic-inorganic hybridized crosslinker. Polymer 2021, 214 , 123236. https://doi.org/10.1016/j.polymer.2020.123236
    94. Sairam Pamulaparthi Venkata, Kunpeng Cui, Jingyi Guo, Alan T. Zehnder, Jian Ping Gong, Chung-Yuen Hui. Constitutive modeling of bond breaking and healing kinetics of physical Polyampholyte (PA) gel. Extreme Mechanics Letters 2021, 43 , 101184. https://doi.org/10.1016/j.eml.2021.101184
    95. Leif Kari. Numerically Exploring the Potential of Abating the Energy Flow Peaks through Tough, Single Network Hydrogel Vibration Isolators with Chemical and Physical Cross-Links. Materials 2021, 14 (4) , 886. https://doi.org/10.3390/ma14040886
    96. Jiaqi Su, Yongjian Cai, Kedong Tai, Qing Guo, Shaoxin Zhu, Like Mao, Yanxiang Gao, Fang Yuan, Paul Van der Meeren. High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Food & Function 2021, 12 (1) , 70-82. https://doi.org/10.1039/D0FO01659D
    97. Pasquale Sacco, Franco Furlani, Andrea Marfoglia, Michela Cok, Chiara Pizzolitto, Eleonora Marsich, Ivan Donati. Temporary/Permanent Dual Cross‐Link Gels Formed of a Bioactive Lactose‐Modified Chitosan. Macromolecular Bioscience 2020, 20 (12) , 2000236. https://doi.org/10.1002/mabi.202000236
    98. Ellen Cesewski, Manjot Singh, Yang Liu, Junru Zhang, Alexander P. Haring, Blake N. Johnson. Real-time monitoring of hydrogel rheological property changes and gelation processes using high-order modes of cantilever sensors. Journal of Applied Physics 2020, 128 (17) https://doi.org/10.1063/5.0020547
    99. Leif Kari. Are Single Polymer Network Hydrogels with Chemical and Physical Cross-Links a Promising Dynamic Vibration Absorber Material? A Simulation Model Inquiry. Materials 2020, 13 (22) , 5127. https://doi.org/10.3390/ma13225127
    100. Tong Shen, Franck J. Vernerey. Rate-dependent fracture of transient networks. Journal of the Mechanics and Physics of Solids 2020, 143 , 104028. https://doi.org/10.1016/j.jmps.2020.104028
    Load all citations

    Macromolecules

    Cite this: Macromolecules 2013, 46, 10, 4174–4183
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma400600f
    Published May 16, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    5291

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.