A “Catalyst Switch” Strategy for the Sequential Metal-Free Polymerization of Epoxides and Cyclic Esters/CarbonateClick to copy article linkArticle link copied!
Abstract
A “catalyst switch” strategy was used to synthesize well-defined polyether–polyester/polycarbonate block copolymers. Epoxides (ethylene oxide and/or 1,2-butylene oxide) were first polymerized from a monoalcohol in the presence of a strong phosphazene base promoter (t-BuP4). Then an excess of diphenyl phosphate (DPP) was introduced, followed by the addition and polymerization of a cyclic ester (ε-caprolactone or δ-valerolactone) or a cyclic carbonate (trimethylene carbonate), where DPP acted as both the neutralizer of phosphazenium alkoxide (polyether chain end) and the activator of cyclic ester/carbonate. This work has provided a one-pot sequential polymerization method for the metal-free synthesis of block copolymers from monomers which are suited for different types of organic catalysts.
Cited By
This article is cited by 84 publications.
- Chao Chen, Yves Gnanou, Xiaoshuang Feng. Borinane Boosted Bifunctional Organocatalysts for Ultrafast Ring-Opening Polymerization of Cyclic Ethers. Macromolecules 2022, 55
(23)
, 10662-10669. https://doi.org/10.1021/acs.macromol.2c02078
- Qin Yan, Changjian Li, Ting Yan, Yong Shen, Zhibo Li. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-renewable δ-Caprolactone. Macromolecules 2022, 55
(10)
, 3860-3868. https://doi.org/10.1021/acs.macromol.2c00439
- Rui Wang, Houyu Zhang, Min Jiang, Zhipeng Wang, Guangyuan Zhou. Dynamics-Driven Controlled Polymerization to Synthesize Fully Renewable Poly(ester–ether)s. Macromolecules 2022, 55
(1)
, 190-200. https://doi.org/10.1021/acs.macromol.1c01899
- Carlos Diaz, Tanja Tomković, Chatura Goonesinghe, Savvas G. Hatzikiriakos, Parisa Mehrkhodavandi. One-Pot Synthesis of Oxygenated Block Copolymers by Polymerization of Epoxides and Lactide Using Cationic Indium Complexes. Macromolecules 2020, 53
(20)
, 8819-8828. https://doi.org/10.1021/acs.macromol.0c01276
- Antonino Puglisi, Ece Bayir, Suna Timur, Yusuf Yagci. pH-Responsive Polymersome Microparticles as Smart Cyclodextrin-Releasing Agents. Biomacromolecules 2019, 20
(10)
, 4001-4007. https://doi.org/10.1021/acs.biomac.9b01083
- Binhong Lin, James L. Hedrick, Nathaniel H. Park, Robert M. Waymouth. Programmable High-Throughput Platform for the Rapid and Scalable Synthesis of Polyester and Polycarbonate Libraries. Journal of the American Chemical Society 2019, 141
(22)
, 8921-8927. https://doi.org/10.1021/jacs.9b02450
- Na Zhao, Chuanli Ren, Yong Shen, Shaofeng Liu, Zhibo Li. Facile Synthesis of Aliphatic ω-Pentadecalactone Containing Diblock Copolyesters via Sequential ROP with l-Lactide, ε-Caprolactone, and δ-Valerolactone Catalyzed by Cyclic Trimeric Phosphazene Base with Inherent Tribasic Characteristics. Macromolecules 2019, 52
(3)
, 1083-1091. https://doi.org/10.1021/acs.macromol.8b02690
- Heng Li, Huitong Luo, Junpeng Zhao, Guangzhao Zhang. Sequence-Selective Terpolymerization from Monomer Mixtures Using a Simple Organocatalyst. ACS Macro Letters 2018, 7
(12)
, 1420-1425. https://doi.org/10.1021/acsmacrolett.8b00865
- Wenjing He, Youhua Tao, Xianhong Wang. Functional Polyamides: A Sustainable Access via Lysine Cyclization and Organocatalytic Ring-Opening Polymerization. Macromolecules 2018, 51
(20)
, 8248-8257. https://doi.org/10.1021/acs.macromol.8b01790
- Viko Ladelta, Joey D. Kim, Panayiotis Bilalis, Yves Gnanou, Nikos Hadjichristidis. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior. Macromolecules 2018, 51
(7)
, 2428-2436. https://doi.org/10.1021/acs.macromol.8b00153
- Ye Chen, Qilei Song, Junpeng Zhao, Xiangjun Gong, Helmut Schlaad, and Guangzhao Zhang . Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance. ACS Applied Materials & Interfaces 2018, 10
(7)
, 6593-6600. https://doi.org/10.1021/acsami.7b16255
- Hongxin Zhang, Shuangyan Hu, Junpeng Zhao, and Guangzhao Zhang . Phosphazene-Catalyzed Alternating Copolymerization of Dihydrocoumarin and Ethylene Oxide: Weaker Is Better. Macromolecules 2017, 50
(11)
, 4198-4205. https://doi.org/10.1021/acs.macromol.7b00599
- Angelika E. Neitzel, Thomas J. Haversang, and Marc A. Hillmyer . Organocatalytic Cationic Ring-Opening Polymerization of a Cyclic Hemiacetal Ester. Industrial & Engineering Chemistry Research 2016, 55
(45)
, 11747-11755. https://doi.org/10.1021/acs.iecr.6b03114
- Yening Xia, Ye Chen, Qilei Song, Shuangyan Hu, Junpeng Zhao, and Guangzhao Zhang . Base-to-Base Organocatalytic Approach for One-Pot Construction of Poly(ethylene oxide)-Based Macromolecular Structures. Macromolecules 2016, 49
(18)
, 6817-6825. https://doi.org/10.1021/acs.macromol.6b01542
- Shuangyan Hu, Guoxiong Dai, Junpeng Zhao, and Guangzhao Zhang . Ring-Opening Alternating Copolymerization of Epoxides and Dihydrocoumarin Catalyzed by a Phosphazene Superbase. Macromolecules 2016, 49
(12)
, 4462-4472. https://doi.org/10.1021/acs.macromol.6b00840
- Charles Romain, Yunqing Zhu, Paul Dingwall, Shyeni Paul, Henry S. Rzepa, Antoine Buchard, and Charlotte K. Williams . Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide. Journal of the American Chemical Society 2016, 138
(12)
, 4120-4131. https://doi.org/10.1021/jacs.5b13070
- Jana Herzberger, Kerstin Niederer, Hannah Pohlit, Jan Seiwert, Matthias Worm, Frederik R. Wurm, and Holger Frey . Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chemical Reviews 2016, 116
(4)
, 2170-2243. https://doi.org/10.1021/acs.chemrev.5b00441
- Yusuke Satoh, Kana Miyachi, Hirohiko Matsuno, Takuya Isono, Kenji Tajima, Toyoji Kakuchi, and Toshifumi Satoh . Synthesis of Well-Defined Amphiphilic Star-Block and Miktoarm Star Copolyethers via t-Bu-P4-Catalyzed Ring-Opening Polymerization of Glycidyl Ethers. Macromolecules 2016, 49
(2)
, 499-509. https://doi.org/10.1021/acs.macromol.5b02459
- Shuangyan Hu, Junpeng Zhao, and Guangzhao Zhang . Noncopolymerization Approach to Copolymers via Concurrent Transesterification and Ring-Opening Reactions. ACS Macro Letters 2016, 5
(1)
, 40-44. https://doi.org/10.1021/acsmacrolett.5b00839
- Jan Seiwert, Daniel Leibig, Ulrike Kemmer-Jonas, Marius Bauer, Igor Perevyazko, Jasmin Preis, and Holger Frey . Hyperbranched Polyols via Copolymerization of 1,2-Butylene Oxide and Glycidol: Comparison of Batch Synthesis and Slow Monomer Addition. Macromolecules 2016, 49
(1)
, 38-47. https://doi.org/10.1021/acs.macromol.5b02402
- Laetitia Dentzer, Caroline Bray, Sylvie Noinville, Nicolas Illy, and Philippe Guégan . Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of 1,2-Epoxybutane Initiated by Secondary Amides. Macromolecules 2015, 48
(21)
, 7755-7764. https://doi.org/10.1021/acs.macromol.5b01638
- Peter Olsén, Karin Odelius, Helmut Keul, and Ann-Christine Albertsson . Macromolecular Design via an Organocatalytic, Monomer-Specific and Temperature-Dependent “On/Off Switch”. High Precision Synthesis of Polyester/Polycarbonate Multiblock Copolymers. Macromolecules 2015, 48
(6)
, 1703-1710. https://doi.org/10.1021/acs.macromol.5b00254
- Fan Yang, Lucie Guillaume, Régis M. Gauvin, Christophe M. Thomas. One‐Pot Catalytic Approaches: Building a New Toolbox for Macromolecular Design. ChemCatChem 2024, 16
(24)
https://doi.org/10.1002/cctc.202400443
- Hong Qiu, Peng-Fei Zhang, Jun-Peng Zhao. Amine-Actuated Catalyst Switch for One-Pot Synthesis of Ether-Ester Type Block Copolymers. Chinese Journal of Polymer Science 2024, 42
(12)
, 1925-1932. https://doi.org/10.1007/s10118-024-3193-6
- Tingwei Chen, Chenke Zhao, Tao Lai, Junpeng Zhao. Cationic Ring-Opening Polymerization of 2-Oxazolines in γ-Butyrolactones using Various Initiators. Polymer Chemistry 2024, https://doi.org/10.1039/D4PY01422G
- Pengfei Zhang, Viko Ladelta, Edy Abou-hamad, Alejandro J. Müller, Nikos Hadjichristidis. Catalyst switch strategy enabled a single polymer with five different crystalline phases. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-42955-3
- Sungwhan Kim, Hyein Park, Fabian Fuẞ, Yan Lee. Synthesis of ROS-responsive poly(thioacetal)s with narrow molecular weight distributions
via
lactone ring-opening polymerization. Polymer Chemistry 2023, 14
(21)
, 2610-2616. https://doi.org/10.1039/D3PY00239J
- Xiangming Fu, Yanqiu Wang, Liang Xu, Atsushi Narumi, Shin-ichiro Sato, Xiande Shen, Toyoji Kakuchi. One-pot catalyst-switching synthesis of thermoresponsive amphiphilic diblock copolymers consisting of poly(
N
,
N
-diethylacrylamide) and biodegradable polyesters. Polymer Chemistry 2023, 14
(15)
, 1727-1735. https://doi.org/10.1039/D3PY00195D
- Meng-Qi Ge, Xiang-Yi Wang, Ning Ren, Gang-Sheng Tong, Xin-Yuan Zhu. Multi-Polymerization: From Simple to Complex. Chinese Journal of Polymer Science 2023, 41
(2)
, 179-186. https://doi.org/10.1007/s10118-022-2836-8
- Shuo Tang, Hongyi Suo, Rui Qu, Hao Tang, Miao Sun, Yusheng Qin. Copolymerization of Carbon Dioxide with 1,2-Butylene Oxide and Terpolymerization with Various Epoxides for Tailorable Properties. Polymers 2023, 15
(3)
, 748. https://doi.org/10.3390/polym15030748
- Guanchen He, Heng Li, Junpeng Zhao. One‐Step Sequence‐Selective Synthesis of Block Copolyester from Mixed Phthalic Anhydride, Cyclohexene Oxide, and
δ
‐Valerolactone. Macromolecular Chemistry and Physics 2022, 223
(12)
https://doi.org/10.1002/macp.202100321
- Julie Meimoun, Audrey Favrelle-Huret, Julien De Winter, Philippe Zinck. Poly(L-lactide) Epimerization and Chain Scission in the Presence of Organic Bases. Macromol 2022, 2
(2)
, 236-246. https://doi.org/10.3390/macromol2020016
- Jiaxi Xu, Xin Wang, Nikos Hadjichristidis. Diblock dialternating terpolymers by one-step/one-pot highly selective organocatalytic multimonomer polymerization. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-27377-3
- Tingyu He, Atsushi Narumi, Yanqiu Wang, Liang Xu, Shin-ichiro Sato, Xiande Shen, Toyoji Kakuchi. Amphiphilic diblock copolymers of poly(glycidol) with biodegradable polyester/polycarbonate. organocatalytic one-pot ROP and self-assembling property. Polymer Chemistry 2021, 12
(40)
, 5787-5795. https://doi.org/10.1039/D1PY01026C
- Huishan Huang, Wenyi Luo, Linlin Zhu, Ying Wang, Zhen Zhang. Organocatalytic sequential ring-opening polymerization of cyclic ester/epoxide and
N
-sulfonyl aziridine: metal-free and easy access to block copolymers. Polymer Chemistry 2021, 12
(37)
, 5328-5335. https://doi.org/10.1039/D1PY00890K
- Wenhao Xiao, Liguo Xu, Pan Liu, Yang Chen, Jie Zhang, Jinbao Xu. Hybrid Copolymerization of Ethylene Oxide and tert-Butyl Methacrylate with Organocatalyst. Polymers 2021, 13
(15)
, 2546. https://doi.org/10.3390/polym13152546
- Carlos Diaz, Parisa Mehrkhodavandi. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polymer Chemistry 2021, 12
(6)
, 783-806. https://doi.org/10.1039/D0PY01534B
- Lucie Reinišová, Soňa Hermanová. Poly(trimethylene carbonate-
co
-valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Advances 2020, 10
(72)
, 44111-44120. https://doi.org/10.1039/D0RA08087J
- Linnea Cederholm, Peter Olsén, Minna Hakkarainen, Karin Odelius. Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polymer Chemistry 2020, 11
(30)
, 4883-4894. https://doi.org/10.1039/D0PY00270D
- Robert Mundil, Franck Kayser, Audrey Favrelle-Huret, Grégory Stoclet, Philippe Zinck. Organocatalytic sequential ring-opening polymerization of a cyclic ester and anionic polymerization of a vinyl monomer. Chemical Communications 2020, 56
(58)
, 8067-8070. https://doi.org/10.1039/D0CC02906H
- Sungwhan Kim, Kamila I. Wittek, Yan Lee. Synthesis of poly(disulfide)s with narrow molecular weight distributions
via
lactone ring-opening polymerization. Chemical Science 2020, 11
(19)
, 4882-4886. https://doi.org/10.1039/D0SC00834F
- Wissam Farhat, Antonino Biundo, Arne Stamm, Eva Malmström, Per‐Olof Syrén. Lactone monomers obtained by enzyme catalysis and their use in reversible thermoresponsive networks. Journal of Applied Polymer Science 2020, 137
(18)
https://doi.org/10.1002/app.48949
- Lei Xia, Ze Zhang, Chun-Yan Hong, Ye-Zi You. Synthesis of copolymer via hybrid polymerization: From random to well-defined sequence. European Polymer Journal 2020, 122 , 109374. https://doi.org/10.1016/j.eurpolymj.2019.109374
- Sreenath Pappuru, Debashis Chakraborty. Progress in metal-free cooperative catalysis for the ring-opening copolymerization of cyclic anhydrides and epoxides. European Polymer Journal 2019, 121 , 109276. https://doi.org/10.1016/j.eurpolymj.2019.109276
- Rui Feng, Suyun Jie, Pierre Braunstein, Bo-Geng Li. Pyridyl-urea catalysts for the solvent-free ring-opening polymerization of lactones and trimethylene carbonate. European Polymer Journal 2019, 121 , 109293. https://doi.org/10.1016/j.eurpolymj.2019.109293
- Tim Stößer, Gregory S. Sulley, Georgina L. Gregory, Charlotte K. Williams. Easy access to oxygenated block polymers via switchable catalysis. Nature Communications 2019, 10
(1)
https://doi.org/10.1038/s41467-019-10481-w
- He-Yuan Ji, Dong-Po Song, Bin Wang, Li Pan, Yue-Sheng Li. Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chemistry 2019, 21
(22)
, 6123-6132. https://doi.org/10.1039/C9GC02429H
- Viko Ladelta, George Zapsas, Edy Abou‐hamad, Yves Gnanou, Nikos Hadjichristidis. Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie International Edition 2019, 58
(45)
, 16267-16274. https://doi.org/10.1002/anie.201908688
- Viko Ladelta, George Zapsas, Edy Abou‐hamad, Yves Gnanou, Nikos Hadjichristidis. Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie 2019, 131
(45)
, 16413-16420. https://doi.org/10.1002/ange.201908688
- Shan Liu, Tianwen Bai, Kang Ni, Ye Chen, Junpeng Zhao, Jun Ling, Xiaodong Ye, Guangzhao Zhang. Biased Lewis Pairs: A General Catalytic Approach to Ether‐Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie International Edition 2019, 58
(43)
, 15478-15487. https://doi.org/10.1002/anie.201908904
- Shan Liu, Tianwen Bai, Kang Ni, Ye Chen, Junpeng Zhao, Jun Ling, Xiaodong Ye, Guangzhao Zhang. Biased Lewis Pairs: A General Catalytic Approach to Ether‐Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie 2019, 131
(43)
, 15624-15633. https://doi.org/10.1002/ange.201908904
- Gorkem Yilmaz. One-Pot Synthesis of Star Copolymers by the Combination of Metal-Free ATRP and ROP Processes. Polymers 2019, 11
(10)
, 1577. https://doi.org/10.3390/polym11101577
- Li Zhou, Guangqiang Xu, Qaiser Mahmood, Chengdong Lv, Xiaowu Wang, Xitong Sun, Kai Guo, Qinggang Wang. N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ring-opening polymerization of δ-valerolactone. Polymer Chemistry 2019, 10
(14)
, 1832-1838. https://doi.org/10.1039/C9PY00018F
- F. Simal Aykac, Cansu Aydogan, Yusuf Yagci. A robust strategy for the synthesis of miktoarm star copolymers by combination of ROP and photoinitiated free radical polymerization. European Polymer Journal 2018, 109 , 499-505. https://doi.org/10.1016/j.eurpolymj.2018.10.019
- Shaofeng Liu, Chuanli Ren, Na Zhao, Yong Shen, Zhibo Li. Phosphazene Bases as Organocatalysts for Ring‐Opening Polymerization of Cyclic Esters. Macromolecular Rapid Communications 2018, 39
(24)
https://doi.org/10.1002/marc.201800485
- Blanca Martin-Vaca, Didier Bourissou. Ring-opening Polymerization Promoted by Brønsted Acid Catalysts. 2018, 37-86. https://doi.org/10.1039/9781788015738-00037
- Stefan Naumann. Base Catalysts for Organopolymerization. 2018, 121-197. https://doi.org/10.1039/9781788015738-00121
- Daniel Taton. Metal-free Polyether Synthesis by Organocatalyzed Ring-opening Polymerization. 2018, 328-366. https://doi.org/10.1039/9781788015738-00328
- Yening Xia, Junpeng Zhao. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. Polymer 2018, 143 , 343-361. https://doi.org/10.1016/j.polymer.2018.03.047
- Alexander Balint, Marius Papendick, Manuel Clauss, Carsten Müller, Frank Giesselmann, Stefan Naumann. Controlled preparation of amphiphilic triblock-copolyether in a metal- and solvent-free approach for tailored structure-directing agents. Chemical Communications 2018, 54
(18)
, 2220-2223. https://doi.org/10.1039/C7CC09031E
- Yaya Liu, Xin Wang, Zhenjiang Li, Fulan Wei, Hui Zhu, He Dong, Siming Chen, Herui Sun, Kun Yang, Kai Guo. A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether–polyester diblock copolymers. Polymer Chemistry 2018, 9
(2)
, 154-159. https://doi.org/10.1039/C7PY01842H
- Xiaodong Liu, Yuanyuan Ni, Jian Wu, Hongjuan Jiang, Zhengbiao Zhang, Lifen Zhang, Zhenping Cheng, Xiulin Zhu. A sustainable photocontrolled ATRP strategy: facile separation and recycling of a visible-light-mediated catalyst
fac
-[Ir(ppy)
3
]. Polymer Chemistry 2018, 9
(5)
, 584-592. https://doi.org/10.1039/C7PY02008B
- Linggao Li, Qiyuan Wang, Ruiliang Lyu, Li Yu, Shan Su, Fu-Sheng Du, Zi-Chen Li. Synthesis of a ROS-responsive analogue of poly(ε-caprolactone) by the living ring-opening polymerization of 1,4-oxathiepan-7-one. Polymer Chemistry 2018, 9
(36)
, 4574-4584. https://doi.org/10.1039/C8PY00798E
- Špela Gradišar, Ema Žagar, David Pahovnik. Hybrid block copolymers of polyesters/polycarbonates and polypeptides synthesized
via
one-pot sequential ring-opening polymerization. Polymer Chemistry 2018, 9
(38)
, 4764-4771. https://doi.org/10.1039/C8PY00835C
- Konstantinos Ntetsikas, Yahya Alzahrany, George Polymeropoulos, Panayiotis Bilalis, Yves Gnanou, Nikos Hadjichristidis. Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases. Polymers 2017, 9
(12)
, 538. https://doi.org/10.3390/polym9100538
- Shuangyan Hu, Junpeng Zhao, Guangzhao Zhang, Helmut Schlaad. Macromolecular architectures through organocatalysis. Progress in Polymer Science 2017, 74 , 34-77. https://doi.org/10.1016/j.progpolymsci.2017.07.002
- Na Zhao, Chuanli Ren, Huaike Li, Yunxin Li, Shaofeng Liu, Zhibo Li. Selective Ring‐Opening Polymerization of Non‐Strained γ‐Butyrolactone Catalyzed by A Cyclic Trimeric Phosphazene Base. Angewandte Chemie 2017, 129
(42)
, 13167-13170. https://doi.org/10.1002/ange.201707122
- Na Zhao, Chuanli Ren, Huaike Li, Yunxin Li, Shaofeng Liu, Zhibo Li. Selective Ring‐Opening Polymerization of Non‐Strained γ‐Butyrolactone Catalyzed by A Cyclic Trimeric Phosphazene Base. Angewandte Chemie International Edition 2017, 56
(42)
, 12987-12990. https://doi.org/10.1002/anie.201707122
- Hongxin Zhang, Shuangyan Hu, Junpeng Zhao, Guangzhao Zhang. Expanding the scope of organocatalysis for alternating copolymerization of dihydrocoumarin and styrene oxide. European Polymer Journal 2017, 95 , 693-701. https://doi.org/10.1016/j.eurpolymj.2017.06.005
- Melania Bednarek, Malgorzata Basko, Przemysław Kubisa. Functional polylactide by cationic ring-opening copolymerization of lactide with epoxides. Reactive and Functional Polymers 2017, 119 , 9-19. https://doi.org/10.1016/j.reactfunctpolym.2017.07.008
- Qi-lei Song, Shuang-yan Hu, Jun-peng Zhao, Guang-zhao Zhang. Organocatalytic copolymerization of mixed type monomers. Chinese Journal of Polymer Science 2017, 35
(5)
, 581-601. https://doi.org/10.1007/s10118-017-1925-6
- Viko Ladelta, Panayiotis Bilalis, Yves Gnanou, Nikos Hadjichristidis. Ring-opening polymerization of ω-pentadecalactone catalyzed by phosphazene superbases. Polymer Chemistry 2017, 8
(3)
, 511-515. https://doi.org/10.1039/C6PY01983H
- Cansu Aydogan, Ceren Kutahya, Andrit Allushi, Gorkem Yilmaz, Yusuf Yagci. Block copolymer synthesis in one shot: concurrent metal-free ATRP and ROP processes under sunlight. Polymer Chemistry 2017, 8
(19)
, 2899-2903. https://doi.org/10.1039/C7PY00069C
- L. Hassouna, N. Illy, P. Guégan. Phosphazene/triisobutylaluminum-promoted anionic ring-opening polymerization of 1,2-epoxybutane initiated by secondary carbamates. Polymer Chemistry 2017, 8
(27)
, 4005-4013. https://doi.org/10.1039/C7PY00675F
- Qian Ma, Kewen Lei, Jian Ding, Lin Yu, Jiandong Ding. Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates. Polymer Chemistry 2017, 8
(43)
, 6665-6674. https://doi.org/10.1039/C7PY01411B
- Huaike Li, Na Zhao, Chuanli Ren, Shaofeng Liu, Zhibo Li. Synthesis of linear and star poly(ε-caprolactone) with controlled and high molecular weights
via
cyclic trimeric phosphazene base catalyzed ring-opening polymerization. Polymer Chemistry 2017, 8
(47)
, 7369-7374. https://doi.org/10.1039/C7PY01673E
- Mustafa Ciftci, Gorkem Yilmaz, Yusuf Yagci. Photoinitiated Metal Free Living Radical and Cationic Polymerizations. Journal of Photopolymer Science and Technology 2017, 30
(4)
, 385-392. https://doi.org/10.2494/photopolymer.30.385
- Hiroharu Ajiro, Yoshiaki Haramiishi, Nalinthip Chanthaset, Mitsuru Akashi. Polymer design using trimethylene carbonate with ethylene glycol units for biomedical applications. Polymer Journal 2016, 48
(7)
, 751-760. https://doi.org/10.1038/pj.2016.35
- Winnie Nzahou Ottou, Haritz Sardon, David Mecerreyes, Joan Vignolle, Daniel Taton. Update and challenges in organo-mediated polymerization reactions. Progress in Polymer Science 2016, 56 , 64-115. https://doi.org/10.1016/j.progpolymsci.2015.12.001
- G. Rokicki, P.G. Parzuchowski. ROP of Cyclic Carbonates and ROP of Macrocycles – Latest Developments. 2016https://doi.org/10.1016/B978-0-12-803581-8.01381-3
- Haleema Alamri, Nikos Hadjichristidis. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach. Polymer Chemistry 2016, 7
(19)
, 3225-3228. https://doi.org/10.1039/C6PY00314A
- Junpeng Zhao, David Pahovnik, Yves Gnanou, Nikos Hadjichristidis. One-pot synthesis of linear- and three-arm star-tetrablock quarterpolymers via sequential metal-free ring-opening polymerization using a “catalyst switch” strategy. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53
(2)
, 304-312. https://doi.org/10.1002/pola.27332
- Junpeng Zhao, Nikos Hadjichristidis. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polymer Chemistry 2015, 6
(14)
, 2659-2668. https://doi.org/10.1039/C5PY00019J
- Stéphane Carlotti, Frédéric Peruch. Cyclic Monomers: Epoxides, Lactide, Lactones, Lactams, Cyclic Silicon-Containing Monomers, Cyclic Carbonates, and Others. 2015, 191-305. https://doi.org/10.1007/978-4-431-54186-8_5
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.