ACS Publications. Most Trusted. Most Cited. Most Read
A “Catalyst Switch” Strategy for the Sequential Metal-Free Polymerization of Epoxides and Cyclic Esters/Carbonate
My Activity

Figure 1Loading Img
    Article

    A “Catalyst Switch” Strategy for the Sequential Metal-Free Polymerization of Epoxides and Cyclic Esters/Carbonate
    Click to copy article linkArticle link copied!

    View Author Information
    Physical Sciences and Engineering Division and Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
    *(N.H.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Macromolecules

    Cite this: Macromolecules 2014, 47, 12, 3814–3822
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma500830v
    Published June 3, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A “catalyst switch” strategy was used to synthesize well-defined polyether–polyester/polycarbonate block copolymers. Epoxides (ethylene oxide and/or 1,2-butylene oxide) were first polymerized from a monoalcohol in the presence of a strong phosphazene base promoter (t-BuP4). Then an excess of diphenyl phosphate (DPP) was introduced, followed by the addition and polymerization of a cyclic ester (ε-caprolactone or δ-valerolactone) or a cyclic carbonate (trimethylene carbonate), where DPP acted as both the neutralizer of phosphazenium alkoxide (polyether chain end) and the activator of cyclic ester/carbonate. This work has provided a one-pot sequential polymerization method for the metal-free synthesis of block copolymers from monomers which are suited for different types of organic catalysts.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional 1H NMR and MALDI–TOF MS spectra, dependence of conversion plots, SEC traces, kinetic plots. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 84 publications.

    1. Chao Chen, Yves Gnanou, Xiaoshuang Feng. Borinane Boosted Bifunctional Organocatalysts for Ultrafast Ring-Opening Polymerization of Cyclic Ethers. Macromolecules 2022, 55 (23) , 10662-10669. https://doi.org/10.1021/acs.macromol.2c02078
    2. Qin Yan, Changjian Li, Ting Yan, Yong Shen, Zhibo Li. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-renewable δ-Caprolactone. Macromolecules 2022, 55 (10) , 3860-3868. https://doi.org/10.1021/acs.macromol.2c00439
    3. Rui Wang, Houyu Zhang, Min Jiang, Zhipeng Wang, Guangyuan Zhou. Dynamics-Driven Controlled Polymerization to Synthesize Fully Renewable Poly(ester–ether)s. Macromolecules 2022, 55 (1) , 190-200. https://doi.org/10.1021/acs.macromol.1c01899
    4. Carlos Diaz, Tanja Tomković, Chatura Goonesinghe, Savvas G. Hatzikiriakos, Parisa Mehrkhodavandi. One-Pot Synthesis of Oxygenated Block Copolymers by Polymerization of Epoxides and Lactide Using Cationic Indium Complexes. Macromolecules 2020, 53 (20) , 8819-8828. https://doi.org/10.1021/acs.macromol.0c01276
    5. Antonino Puglisi, Ece Bayir, Suna Timur, Yusuf Yagci. pH-Responsive Polymersome Microparticles as Smart Cyclodextrin-Releasing Agents. Biomacromolecules 2019, 20 (10) , 4001-4007. https://doi.org/10.1021/acs.biomac.9b01083
    6. Binhong Lin, James L. Hedrick, Nathaniel H. Park, Robert M. Waymouth. Programmable High-Throughput Platform for the Rapid and Scalable Synthesis of Polyester and Polycarbonate Libraries. Journal of the American Chemical Society 2019, 141 (22) , 8921-8927. https://doi.org/10.1021/jacs.9b02450
    7. Na Zhao, Chuanli Ren, Yong Shen, Shaofeng Liu, Zhibo Li. Facile Synthesis of Aliphatic ω-Pentadecalactone Containing Diblock Copolyesters via Sequential ROP with l-Lactide, ε-Caprolactone, and δ-Valerolactone Catalyzed by Cyclic Trimeric Phosphazene Base with Inherent Tribasic Characteristics. Macromolecules 2019, 52 (3) , 1083-1091. https://doi.org/10.1021/acs.macromol.8b02690
    8. Heng Li, Huitong Luo, Junpeng Zhao, Guangzhao Zhang. Sequence-Selective Terpolymerization from Monomer Mixtures Using a Simple Organocatalyst. ACS Macro Letters 2018, 7 (12) , 1420-1425. https://doi.org/10.1021/acsmacrolett.8b00865
    9. Wenjing He, Youhua Tao, Xianhong Wang. Functional Polyamides: A Sustainable Access via Lysine Cyclization and Organocatalytic Ring-Opening Polymerization. Macromolecules 2018, 51 (20) , 8248-8257. https://doi.org/10.1021/acs.macromol.8b01790
    10. Viko Ladelta, Joey D. Kim, Panayiotis Bilalis, Yves Gnanou, Nikos Hadjichristidis. Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behavior. Macromolecules 2018, 51 (7) , 2428-2436. https://doi.org/10.1021/acs.macromol.8b00153
    11. Ye Chen, Qilei Song, Junpeng Zhao, Xiangjun Gong, Helmut Schlaad, and Guangzhao Zhang . Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance. ACS Applied Materials & Interfaces 2018, 10 (7) , 6593-6600. https://doi.org/10.1021/acsami.7b16255
    12. Hongxin Zhang, Shuangyan Hu, Junpeng Zhao, and Guangzhao Zhang . Phosphazene-Catalyzed Alternating Copolymerization of Dihydrocoumarin and Ethylene Oxide: Weaker Is Better. Macromolecules 2017, 50 (11) , 4198-4205. https://doi.org/10.1021/acs.macromol.7b00599
    13. Angelika E. Neitzel, Thomas J. Haversang, and Marc A. Hillmyer . Organocatalytic Cationic Ring-Opening Polymerization of a Cyclic Hemiacetal Ester. Industrial & Engineering Chemistry Research 2016, 55 (45) , 11747-11755. https://doi.org/10.1021/acs.iecr.6b03114
    14. Yening Xia, Ye Chen, Qilei Song, Shuangyan Hu, Junpeng Zhao, and Guangzhao Zhang . Base-to-Base Organocatalytic Approach for One-Pot Construction of Poly(ethylene oxide)-Based Macromolecular Structures. Macromolecules 2016, 49 (18) , 6817-6825. https://doi.org/10.1021/acs.macromol.6b01542
    15. Shuangyan Hu, Guoxiong Dai, Junpeng Zhao, and Guangzhao Zhang . Ring-Opening Alternating Copolymerization of Epoxides and Dihydrocoumarin Catalyzed by a Phosphazene Superbase. Macromolecules 2016, 49 (12) , 4462-4472. https://doi.org/10.1021/acs.macromol.6b00840
    16. Charles Romain, Yunqing Zhu, Paul Dingwall, Shyeni Paul, Henry S. Rzepa, Antoine Buchard, and Charlotte K. Williams . Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide. Journal of the American Chemical Society 2016, 138 (12) , 4120-4131. https://doi.org/10.1021/jacs.5b13070
    17. Jana Herzberger, Kerstin Niederer, Hannah Pohlit, Jan Seiwert, Matthias Worm, Frederik R. Wurm, and Holger Frey . Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chemical Reviews 2016, 116 (4) , 2170-2243. https://doi.org/10.1021/acs.chemrev.5b00441
    18. Yusuke Satoh, Kana Miyachi, Hirohiko Matsuno, Takuya Isono, Kenji Tajima, Toyoji Kakuchi, and Toshifumi Satoh . Synthesis of Well-Defined Amphiphilic Star-Block and Miktoarm Star Copolyethers via t-Bu-P4-Catalyzed Ring-Opening Polymerization of Glycidyl Ethers. Macromolecules 2016, 49 (2) , 499-509. https://doi.org/10.1021/acs.macromol.5b02459
    19. Shuangyan Hu, Junpeng Zhao, and Guangzhao Zhang . Noncopolymerization Approach to Copolymers via Concurrent Transesterification and Ring-Opening Reactions. ACS Macro Letters 2016, 5 (1) , 40-44. https://doi.org/10.1021/acsmacrolett.5b00839
    20. Jan Seiwert, Daniel Leibig, Ulrike Kemmer-Jonas, Marius Bauer, Igor Perevyazko, Jasmin Preis, and Holger Frey . Hyperbranched Polyols via Copolymerization of 1,2-Butylene Oxide and Glycidol: Comparison of Batch Synthesis and Slow Monomer Addition. Macromolecules 2016, 49 (1) , 38-47. https://doi.org/10.1021/acs.macromol.5b02402
    21. Laetitia Dentzer, Caroline Bray, Sylvie Noinville, Nicolas Illy, and Philippe Guégan . Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of 1,2-Epoxybutane Initiated by Secondary Amides. Macromolecules 2015, 48 (21) , 7755-7764. https://doi.org/10.1021/acs.macromol.5b01638
    22. Peter Olsén, Karin Odelius, Helmut Keul, and Ann-Christine Albertsson . Macromolecular Design via an Organocatalytic, Monomer-Specific and Temperature-Dependent “On/Off Switch”. High Precision Synthesis of Polyester/Polycarbonate Multiblock Copolymers. Macromolecules 2015, 48 (6) , 1703-1710. https://doi.org/10.1021/acs.macromol.5b00254
    23. Fan Yang, Lucie Guillaume, Régis M. Gauvin, Christophe M. Thomas. One‐Pot Catalytic Approaches: Building a New Toolbox for Macromolecular Design. ChemCatChem 2024, 16 (24) https://doi.org/10.1002/cctc.202400443
    24. Hong Qiu, Peng-Fei Zhang, Jun-Peng Zhao. Amine-Actuated Catalyst Switch for One-Pot Synthesis of Ether-Ester Type Block Copolymers. Chinese Journal of Polymer Science 2024, 42 (12) , 1925-1932. https://doi.org/10.1007/s10118-024-3193-6
    25. Tingwei Chen, Chenke Zhao, Tao Lai, Junpeng Zhao. Cationic Ring-Opening Polymerization of 2-Oxazolines in γ-Butyrolactones using Various Initiators. Polymer Chemistry 2024, https://doi.org/10.1039/D4PY01422G
    26. Pengfei Zhang, Viko Ladelta, Edy Abou-hamad, Alejandro J. Müller, Nikos Hadjichristidis. Catalyst switch strategy enabled a single polymer with five different crystalline phases. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-42955-3
    27. Sungwhan Kim, Hyein Park, Fabian Fuẞ, Yan Lee. Synthesis of ROS-responsive poly(thioacetal)s with narrow molecular weight distributions via lactone ring-opening polymerization. Polymer Chemistry 2023, 14 (21) , 2610-2616. https://doi.org/10.1039/D3PY00239J
    28. Xiangming Fu, Yanqiu Wang, Liang Xu, Atsushi Narumi, Shin-ichiro Sato, Xiande Shen, Toyoji Kakuchi. One-pot catalyst-switching synthesis of thermoresponsive amphiphilic diblock copolymers consisting of poly( N , N -diethylacrylamide) and biodegradable polyesters. Polymer Chemistry 2023, 14 (15) , 1727-1735. https://doi.org/10.1039/D3PY00195D
    29. Meng-Qi Ge, Xiang-Yi Wang, Ning Ren, Gang-Sheng Tong, Xin-Yuan Zhu. Multi-Polymerization: From Simple to Complex. Chinese Journal of Polymer Science 2023, 41 (2) , 179-186. https://doi.org/10.1007/s10118-022-2836-8
    30. Shuo Tang, Hongyi Suo, Rui Qu, Hao Tang, Miao Sun, Yusheng Qin. Copolymerization of Carbon Dioxide with 1,2-Butylene Oxide and Terpolymerization with Various Epoxides for Tailorable Properties. Polymers 2023, 15 (3) , 748. https://doi.org/10.3390/polym15030748
    31. Guanchen He, Heng Li, Junpeng Zhao. One‐Step Sequence‐Selective Synthesis of Block Copolyester from Mixed Phthalic Anhydride, Cyclohexene Oxide, and δ ‐Valerolactone. Macromolecular Chemistry and Physics 2022, 223 (12) https://doi.org/10.1002/macp.202100321
    32. Julie Meimoun, Audrey Favrelle-Huret, Julien De Winter, Philippe Zinck. Poly(L-lactide) Epimerization and Chain Scission in the Presence of Organic Bases. Macromol 2022, 2 (2) , 236-246. https://doi.org/10.3390/macromol2020016
    33. Jiaxi Xu, Xin Wang, Nikos Hadjichristidis. Diblock dialternating terpolymers by one-step/one-pot highly selective organocatalytic multimonomer polymerization. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27377-3
    34. Tingyu He, Atsushi Narumi, Yanqiu Wang, Liang Xu, Shin-ichiro Sato, Xiande Shen, Toyoji Kakuchi. Amphiphilic diblock copolymers of poly(glycidol) with biodegradable polyester/polycarbonate. organocatalytic one-pot ROP and self-assembling property. Polymer Chemistry 2021, 12 (40) , 5787-5795. https://doi.org/10.1039/D1PY01026C
    35. Huishan Huang, Wenyi Luo, Linlin Zhu, Ying Wang, Zhen Zhang. Organocatalytic sequential ring-opening polymerization of cyclic ester/epoxide and N -sulfonyl aziridine: metal-free and easy access to block copolymers. Polymer Chemistry 2021, 12 (37) , 5328-5335. https://doi.org/10.1039/D1PY00890K
    36. Wenhao Xiao, Liguo Xu, Pan Liu, Yang Chen, Jie Zhang, Jinbao Xu. Hybrid Copolymerization of Ethylene Oxide and tert-Butyl Methacrylate with Organocatalyst. Polymers 2021, 13 (15) , 2546. https://doi.org/10.3390/polym13152546
    37. Carlos Diaz, Parisa Mehrkhodavandi. Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polymer Chemistry 2021, 12 (6) , 783-806. https://doi.org/10.1039/D0PY01534B
    38. Lucie Reinišová, Soňa Hermanová. Poly(trimethylene carbonate- co -valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Advances 2020, 10 (72) , 44111-44120. https://doi.org/10.1039/D0RA08087J
    39. Linnea Cederholm, Peter Olsén, Minna Hakkarainen, Karin Odelius. Turning natural δ-lactones to thermodynamically stable polymers with triggered recyclability. Polymer Chemistry 2020, 11 (30) , 4883-4894. https://doi.org/10.1039/D0PY00270D
    40. Robert Mundil, Franck Kayser, Audrey Favrelle-Huret, Grégory Stoclet, Philippe Zinck. Organocatalytic sequential ring-opening polymerization of a cyclic ester and anionic polymerization of a vinyl monomer. Chemical Communications 2020, 56 (58) , 8067-8070. https://doi.org/10.1039/D0CC02906H
    41. Sungwhan Kim, Kamila I. Wittek, Yan Lee. Synthesis of poly(disulfide)s with narrow molecular weight distributions via lactone ring-opening polymerization. Chemical Science 2020, 11 (19) , 4882-4886. https://doi.org/10.1039/D0SC00834F
    42. Wissam Farhat, Antonino Biundo, Arne Stamm, Eva Malmström, Per‐Olof Syrén. Lactone monomers obtained by enzyme catalysis and their use in reversible thermoresponsive networks. Journal of Applied Polymer Science 2020, 137 (18) https://doi.org/10.1002/app.48949
    43. Lei Xia, Ze Zhang, Chun-Yan Hong, Ye-Zi You. Synthesis of copolymer via hybrid polymerization: From random to well-defined sequence. European Polymer Journal 2020, 122 , 109374. https://doi.org/10.1016/j.eurpolymj.2019.109374
    44. Sreenath Pappuru, Debashis Chakraborty. Progress in metal-free cooperative catalysis for the ring-opening copolymerization of cyclic anhydrides and epoxides. European Polymer Journal 2019, 121 , 109276. https://doi.org/10.1016/j.eurpolymj.2019.109276
    45. Rui Feng, Suyun Jie, Pierre Braunstein, Bo-Geng Li. Pyridyl-urea catalysts for the solvent-free ring-opening polymerization of lactones and trimethylene carbonate. European Polymer Journal 2019, 121 , 109293. https://doi.org/10.1016/j.eurpolymj.2019.109293
    46. Tim Stößer, Gregory S. Sulley, Georgina L. Gregory, Charlotte K. Williams. Easy access to oxygenated block polymers via switchable catalysis. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10481-w
    47. He-Yuan Ji, Dong-Po Song, Bin Wang, Li Pan, Yue-Sheng Li. Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chemistry 2019, 21 (22) , 6123-6132. https://doi.org/10.1039/C9GC02429H
    48. Viko Ladelta, George Zapsas, Edy Abou‐hamad, Yves Gnanou, Nikos Hadjichristidis. Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie International Edition 2019, 58 (45) , 16267-16274. https://doi.org/10.1002/anie.201908688
    49. Viko Ladelta, George Zapsas, Edy Abou‐hamad, Yves Gnanou, Nikos Hadjichristidis. Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angewandte Chemie 2019, 131 (45) , 16413-16420. https://doi.org/10.1002/ange.201908688
    50. Shan Liu, Tianwen Bai, Kang Ni, Ye Chen, Junpeng Zhao, Jun Ling, Xiaodong Ye, Guangzhao Zhang. Biased Lewis Pairs: A General Catalytic Approach to Ether‐Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie International Edition 2019, 58 (43) , 15478-15487. https://doi.org/10.1002/anie.201908904
    51. Shan Liu, Tianwen Bai, Kang Ni, Ye Chen, Junpeng Zhao, Jun Ling, Xiaodong Ye, Guangzhao Zhang. Biased Lewis Pairs: A General Catalytic Approach to Ether‐Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie 2019, 131 (43) , 15624-15633. https://doi.org/10.1002/ange.201908904
    52. Gorkem Yilmaz. One-Pot Synthesis of Star Copolymers by the Combination of Metal-Free ATRP and ROP Processes. Polymers 2019, 11 (10) , 1577. https://doi.org/10.3390/polym11101577
    53. Li Zhou, Guangqiang Xu, Qaiser Mahmood, Chengdong Lv, Xiaowu Wang, Xitong Sun, Kai Guo, Qinggang Wang. N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ring-opening polymerization of δ-valerolactone. Polymer Chemistry 2019, 10 (14) , 1832-1838. https://doi.org/10.1039/C9PY00018F
    54. F. Simal Aykac, Cansu Aydogan, Yusuf Yagci. A robust strategy for the synthesis of miktoarm star copolymers by combination of ROP and photoinitiated free radical polymerization. European Polymer Journal 2018, 109 , 499-505. https://doi.org/10.1016/j.eurpolymj.2018.10.019
    55. Shaofeng Liu, Chuanli Ren, Na Zhao, Yong Shen, Zhibo Li. Phosphazene Bases as Organocatalysts for Ring‐Opening Polymerization of Cyclic Esters. Macromolecular Rapid Communications 2018, 39 (24) https://doi.org/10.1002/marc.201800485
    56. Blanca Martin-Vaca, Didier Bourissou. Ring-opening Polymerization Promoted by Brønsted Acid Catalysts. 2018, 37-86. https://doi.org/10.1039/9781788015738-00037
    57. Stefan Naumann. Base Catalysts for Organopolymerization. 2018, 121-197. https://doi.org/10.1039/9781788015738-00121
    58. Daniel Taton. Metal-free Polyether Synthesis by Organocatalyzed Ring-opening Polymerization. 2018, 328-366. https://doi.org/10.1039/9781788015738-00328
    59. Yening Xia, Junpeng Zhao. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. Polymer 2018, 143 , 343-361. https://doi.org/10.1016/j.polymer.2018.03.047
    60. Alexander Balint, Marius Papendick, Manuel Clauss, Carsten Müller, Frank Giesselmann, Stefan Naumann. Controlled preparation of amphiphilic triblock-copolyether in a metal- and solvent-free approach for tailored structure-directing agents. Chemical Communications 2018, 54 (18) , 2220-2223. https://doi.org/10.1039/C7CC09031E
    61. Yaya Liu, Xin Wang, Zhenjiang Li, Fulan Wei, Hui Zhu, He Dong, Siming Chen, Herui Sun, Kun Yang, Kai Guo. A switch from anionic to bifunctional H-bonding catalyzed ring-opening polymerizations towards polyether–polyester diblock copolymers. Polymer Chemistry 2018, 9 (2) , 154-159. https://doi.org/10.1039/C7PY01842H
    62. Xiaodong Liu, Yuanyuan Ni, Jian Wu, Hongjuan Jiang, Zhengbiao Zhang, Lifen Zhang, Zhenping Cheng, Xiulin Zhu. A sustainable photocontrolled ATRP strategy: facile separation and recycling of a visible-light-mediated catalyst fac -[Ir(ppy) 3 ]. Polymer Chemistry 2018, 9 (5) , 584-592. https://doi.org/10.1039/C7PY02008B
    63. Linggao Li, Qiyuan Wang, Ruiliang Lyu, Li Yu, Shan Su, Fu-Sheng Du, Zi-Chen Li. Synthesis of a ROS-responsive analogue of poly(ε-caprolactone) by the living ring-opening polymerization of 1,4-oxathiepan-7-one. Polymer Chemistry 2018, 9 (36) , 4574-4584. https://doi.org/10.1039/C8PY00798E
    64. Špela Gradišar, Ema Žagar, David Pahovnik. Hybrid block copolymers of polyesters/polycarbonates and polypeptides synthesized via one-pot sequential ring-opening polymerization. Polymer Chemistry 2018, 9 (38) , 4764-4771. https://doi.org/10.1039/C8PY00835C
    65. Konstantinos Ntetsikas, Yahya Alzahrany, George Polymeropoulos, Panayiotis Bilalis, Yves Gnanou, Nikos Hadjichristidis. Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases. Polymers 2017, 9 (12) , 538. https://doi.org/10.3390/polym9100538
    66. Shuangyan Hu, Junpeng Zhao, Guangzhao Zhang, Helmut Schlaad. Macromolecular architectures through organocatalysis. Progress in Polymer Science 2017, 74 , 34-77. https://doi.org/10.1016/j.progpolymsci.2017.07.002
    67. Na Zhao, Chuanli Ren, Huaike Li, Yunxin Li, Shaofeng Liu, Zhibo Li. Selective Ring‐Opening Polymerization of Non‐Strained γ‐Butyrolactone Catalyzed by A Cyclic Trimeric Phosphazene Base. Angewandte Chemie 2017, 129 (42) , 13167-13170. https://doi.org/10.1002/ange.201707122
    68. Na Zhao, Chuanli Ren, Huaike Li, Yunxin Li, Shaofeng Liu, Zhibo Li. Selective Ring‐Opening Polymerization of Non‐Strained γ‐Butyrolactone Catalyzed by A Cyclic Trimeric Phosphazene Base. Angewandte Chemie International Edition 2017, 56 (42) , 12987-12990. https://doi.org/10.1002/anie.201707122
    69. Hongxin Zhang, Shuangyan Hu, Junpeng Zhao, Guangzhao Zhang. Expanding the scope of organocatalysis for alternating copolymerization of dihydrocoumarin and styrene oxide. European Polymer Journal 2017, 95 , 693-701. https://doi.org/10.1016/j.eurpolymj.2017.06.005
    70. Melania Bednarek, Malgorzata Basko, Przemysław Kubisa. Functional polylactide by cationic ring-opening copolymerization of lactide with epoxides. Reactive and Functional Polymers 2017, 119 , 9-19. https://doi.org/10.1016/j.reactfunctpolym.2017.07.008
    71. Qi-lei Song, Shuang-yan Hu, Jun-peng Zhao, Guang-zhao Zhang. Organocatalytic copolymerization of mixed type monomers. Chinese Journal of Polymer Science 2017, 35 (5) , 581-601. https://doi.org/10.1007/s10118-017-1925-6
    72. Viko Ladelta, Panayiotis Bilalis, Yves Gnanou, Nikos Hadjichristidis. Ring-opening polymerization of ω-pentadecalactone catalyzed by phosphazene superbases. Polymer Chemistry 2017, 8 (3) , 511-515. https://doi.org/10.1039/C6PY01983H
    73. Cansu Aydogan, Ceren Kutahya, Andrit Allushi, Gorkem Yilmaz, Yusuf Yagci. Block copolymer synthesis in one shot: concurrent metal-free ATRP and ROP processes under sunlight. Polymer Chemistry 2017, 8 (19) , 2899-2903. https://doi.org/10.1039/C7PY00069C
    74. L. Hassouna, N. Illy, P. Guégan. Phosphazene/triisobutylaluminum-promoted anionic ring-opening polymerization of 1,2-epoxybutane initiated by secondary carbamates. Polymer Chemistry 2017, 8 (27) , 4005-4013. https://doi.org/10.1039/C7PY00675F
    75. Qian Ma, Kewen Lei, Jian Ding, Lin Yu, Jiandong Ding. Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates. Polymer Chemistry 2017, 8 (43) , 6665-6674. https://doi.org/10.1039/C7PY01411B
    76. Huaike Li, Na Zhao, Chuanli Ren, Shaofeng Liu, Zhibo Li. Synthesis of linear and star poly(ε-caprolactone) with controlled and high molecular weights via cyclic trimeric phosphazene base catalyzed ring-opening polymerization. Polymer Chemistry 2017, 8 (47) , 7369-7374. https://doi.org/10.1039/C7PY01673E
    77. Mustafa Ciftci, Gorkem Yilmaz, Yusuf Yagci. Photoinitiated Metal Free Living Radical and Cationic Polymerizations. Journal of Photopolymer Science and Technology 2017, 30 (4) , 385-392. https://doi.org/10.2494/photopolymer.30.385
    78. Hiroharu Ajiro, Yoshiaki Haramiishi, Nalinthip Chanthaset, Mitsuru Akashi. Polymer design using trimethylene carbonate with ethylene glycol units for biomedical applications. Polymer Journal 2016, 48 (7) , 751-760. https://doi.org/10.1038/pj.2016.35
    79. Winnie Nzahou Ottou, Haritz Sardon, David Mecerreyes, Joan Vignolle, Daniel Taton. Update and challenges in organo-mediated polymerization reactions. Progress in Polymer Science 2016, 56 , 64-115. https://doi.org/10.1016/j.progpolymsci.2015.12.001
    80. G. Rokicki, P.G. Parzuchowski. ROP of Cyclic Carbonates and ROP of Macrocycles – Latest Developments. 2016https://doi.org/10.1016/B978-0-12-803581-8.01381-3
    81. Haleema Alamri, Nikos Hadjichristidis. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach. Polymer Chemistry 2016, 7 (19) , 3225-3228. https://doi.org/10.1039/C6PY00314A
    82. Junpeng Zhao, David Pahovnik, Yves Gnanou, Nikos Hadjichristidis. One-pot synthesis of linear- and three-arm star-tetrablock quarterpolymers via sequential metal-free ring-opening polymerization using a “catalyst switch” strategy. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (2) , 304-312. https://doi.org/10.1002/pola.27332
    83. Junpeng Zhao, Nikos Hadjichristidis. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polymer Chemistry 2015, 6 (14) , 2659-2668. https://doi.org/10.1039/C5PY00019J
    84. Stéphane Carlotti, Frédéric Peruch. Cyclic Monomers: Epoxides, Lactide, Lactones, Lactams, Cyclic Silicon-Containing Monomers, Cyclic Carbonates, and Others. 2015, 191-305. https://doi.org/10.1007/978-4-431-54186-8_5

    Macromolecules

    Cite this: Macromolecules 2014, 47, 12, 3814–3822
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma500830v
    Published June 3, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    2889

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.