ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Modeling Dielectric Relaxation in Polymer Glass Simulations: Dynamics in the Bulk and in Supported Polymer Films

View Author Information
Institut Charles Sadron, CNRS UPR 22, Université Strasbourg 1, 23 rue du Loess-BP 84047, 67034 Strasbourg Cedex 2, France, and Laboratory of Acoustics and Thermal Physics, Department of Physics and Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
* Corresponding author. E-mail: [email protected]
†Université Strasbourg 1.
‡Katholieke Universiteit Leuven.
Cite this: Macromolecules 2008, 41, 20, 7729–7743
Publication Date (Web):October 2, 2008
https://doi.org/10.1021/ma800694v
Copyright © 2008 American Chemical Society

    Article Views

    1150

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    Abstract Image

    We perform molecular dynamics simulations to study the dielectric relaxation of a bead−spring model for a polymer melt in the bulk and in supported films. By assigning dipole moments parallel and perpendicular to the backbone of all chains in the completed simulation trajectories, we calculate the dielectric spectra of so-called type-A polymers which exhibit relaxation processes due to the local motion of chain segments (“segmental mode”) and due to fluctuations of the end-to-end vector (“normal mode”). We investigate the dependence of both processes on film thickness and chain length and for the segmental mode also on temperature T. We find that the relaxation of both modes is enhanced in the films relative to the bulk. For the segmental mode this difference between film and bulk dynamics increases on cooling toward the glass transition. By a layer-resolved analysis of the segmental relaxation, we show that the acceleration of the average film dynamics is a consequence of a smooth gradient in relaxation, originating from both interfaces where the segmental dipoles relax much faster than in the bulk. Additionally, near the interfaces the segmental relaxation is more strongly stretched than in the center of the film where bulk behavior prevails. As the average film dynamics comprises contributions from all layers, the dielectric spectra of the films are broader than in the bulk at the same T. Finally, starting from the layer-resolved analysis which associates a dielectric function and so a capacitance with each layer, we suggest to think of a film as being a system of capacitors. The capacitors are arranged in series, if the electric (E) field is perpendicular to the plane of the film (the usual experimental situation), and in parallel, if the field is parallel to the plane. Because of these different arrangements of the capacitors, the resulting dielectric spectra depend on the direction of the E-field. For instance, we find that, although the segmental relaxation in each layer is taken to be the same for both field directions, the average dielectric spectra differ because the layer-dependent dielectric strength and the limiting high-frequency permittivity (ε) enter into the average dielectric response in different ways for the E-field being perpendicular or parallel to the film plane.

    Cited By

    This article is cited by 64 publications.

    1. Bidur Rijal, Laurent Delbreilh, Cyrille Sollogoub, Eric Baer, Allisson Saiter-Fourcin. Multiscale Analysis of Segmental Relaxation in PC/PETg Multilayers: Evidence of Immiscible Nanodroplets. Macromolecules 2022, 55 (15) , 6562-6572. https://doi.org/10.1021/acs.macromol.2c00691
    2. Bram Vanroy, Michael Wübbenhorst, Simone Napolitano. Remotely Controlling the Crystallization of Thin Polymer Coatings. Macromolecules 2020, 53 (12) , 4882-4888. https://doi.org/10.1021/acs.macromol.0c00887
    3. David Nieto Simavilla, Weide Huang, Philippe Vandestrick, Jean-Paul Ryckaert, Michele Sferrazza, and Simone Napolitano . Mechanisms of Polymer Adsorption onto Solid Substrates. ACS Macro Letters 2017, 6 (9) , 975-979. https://doi.org/10.1021/acsmacrolett.7b00473
    4. Vaidyanathan Sethuraman, Victor Pryamitsyn, and Venkat Ganesan . Normal Modes and Dielectric Spectra of Diblock Copolymers in Lamellar Phases. Macromolecules 2016, 49 (7) , 2821-2831. https://doi.org/10.1021/acs.macromol.5b02721
    5. Fabienne Barroso-Bujans, Silvina Cerveny, Ángel Alegría, and Juan Colmenero . Chain Length Effects on the Dynamics of Poly(ethylene oxide) Confined in Graphite Oxide: A Broadband Dielectric Spectroscopy Study. Macromolecules 2013, 46 (19) , 7932-7939. https://doi.org/10.1021/ma401373p
    6. Christopher M. Evans, Hui Deng, Wolter F. Jager, and John M. Torkelson . Fragility is a Key Parameter in Determining the Magnitude of Tg-Confinement Effects in Polymer Films. Macromolecules 2013, 46 (15) , 6091-6103. https://doi.org/10.1021/ma401017n
    7. Huajie Yin, Simone Napolitano, and Andreas Schönhals . Molecular Mobility and Glass Transition of Thin Films of Poly(bisphenol A carbonate). Macromolecules 2012, 45 (3) , 1652-1662. https://doi.org/10.1021/ma202127p
    8. Mohammed Zakaria Slimani, Angel J. Moreno, and Juan Colmenero . Heterogeneity of the Segmental Dynamics in Lamellar Phases of Diblock Copolymers. Macromolecules 2011, 44 (17) , 6952-6961. https://doi.org/10.1021/ma200470a
    9. Soyoung Kim and John M. Torkelson . Distribution of Glass Transition Temperatures in Free-Standing, Nanoconfined Polystyrene Films: A Test of de Gennes’ Sliding Motion Mechanism. Macromolecules 2011, 44 (11) , 4546-4553. https://doi.org/10.1021/ma200617j
    10. Cinzia Rotella, Simone Napolitano, Lieven De Cremer, Guy Koeckelberghs, and Michael Wübbenhorst . Distribution of Segmental Mobility in Ultrathin Polymer Films. Macromolecules 2010, 43 (20) , 8686-8691. https://doi.org/10.1021/ma101695y
    11. Justin E. Pye, Kate A. Rohald, Elizabeth A. Baker, and Connie B. Roth. Physical Aging in Ultrathin Polystyrene Films: Evidence of a Gradient in Dynamics at the Free Surface and Its Connection to the Glass Transition Temperature Reductions. Macromolecules 2010, 43 (19) , 8296-8303. https://doi.org/10.1021/ma101412r
    12. S. Capponi, S. Napolitano, N. R. Behrnd, G. Couderc, J. Hulliger, and M. Wübbenhorst . Structural Relaxation in Nanometer Thin Layers of Glycerol. The Journal of Physical Chemistry C 2010, 114 (39) , 16696-16699. https://doi.org/10.1021/jp108151p
    13. Salim Ok and Martin Steinhart, Anca Şerbescu, Cornelius Franz, Fabián Vaca Chávez and Kay Saalwächter. Confinement Effects on Chain Dynamics and Local Chain Order in Entangled Polymer Melts. Macromolecules 2010, 43 (10) , 4429-4434. https://doi.org/10.1021/ma1003248
    14. Cinzia Rotella, Simone Napolitano and Michael Wübbenhorst. Segmental Mobility and Glass Transition Temperature of Freely Suspended Ultrathin Polymer Membranes. Macromolecules 2009, 42 (5) , 1415-1417. https://doi.org/10.1021/ma8027968
    15. Yuanbiao Liu, Gaopeng Shi, Guozhang Wu. Mediating the slow dynamics of polyacrylates by small molecule-bridged hydrogen bonds. Soft Matter 2022, 18 (23) , 4445-4454. https://doi.org/10.1039/D2SM00453D
    16. Alokmay Datta. Evolution of Order in Soft Materials under Nanoscale Confinement: Structure and Bonding. Material Science Research India 2020, 17 (3) , 192-200. https://doi.org/10.13005/msri/170301
    17. Yancong Feng, Peiyin Liang, Biao Tang, Yao Wang, Jun Liu, Lingling Shui, Hao Li, Ming Tian, Liqun Zhang, Guofu Zhou. Construction of particle network for ultrahigh permittivity of dielectric polymer composite toward energy devices: A molecular dynamics study. Nano Energy 2019, 64 , 103985. https://doi.org/10.1016/j.nanoen.2019.103985
    18. Marwa Kchaou, Pierre Alcouffe, Sivasurender Chandran, Philippe Cassagnau, Günter Reiter, Samer Al Akhrass. Tuning relaxation dynamics and mechanical properties of polymer films of identical thickness. Physical Review E 2018, 97 (3) https://doi.org/10.1103/PhysRevE.97.032507
    19. Mathieu Solar, Wolfgang Paul. Dipolar Correlations in 1,4-Polybutadiene Across the Timescales: A Numerical Molecular Dynamics Simulation Investigation. 2018, 353-374. https://doi.org/10.1007/978-3-319-72706-6_11
    20. M. Solar, K. Binder, W. Paul. Relaxation processes and glass transition of confined polymer melts: A molecular dynamics simulation of 1,4-polybutadiene between graphite walls. The Journal of Chemical Physics 2017, 146 (20) https://doi.org/10.1063/1.4975390
    21. M. Krutyeva, S. Pasini, M. Monkenbusch, J. Allgaier, J. Maiz, C. Mijangos, B. Hartmann-Azanza, M. Steinhart, N. Jalarvo, D. Richter. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study. The Journal of Chemical Physics 2017, 146 (20) https://doi.org/10.1063/1.4974836
    22. Alexey V. Lyulin, Nikolay K. Balabaev, Arlette R. C. Baljon, Gerardo Mendoza, Curtis W. Frank, Do Y. Yoon. Interfacial and topological effects on the glass transition in free-standing polystyrene films. The Journal of Chemical Physics 2017, 146 (20) https://doi.org/10.1063/1.4977042
    23. Simone Napolitano, Emmanouil Glynos, Nicholas B Tito. Glass transition of polymers in bulk, confined geometries, and near interfaces. Reports on Progress in Physics 2017, 80 (3) , 036602. https://doi.org/10.1088/1361-6633/aa5284
    24. Jörg Baschnagel, Ivan Kriuchevskyi, Julian Helfferich, Céline Ruscher, Hendrik Meyer, Olivier Benzerara, Jean Farago, Joachim Wittmer. Glass transition and relaxation behavior of supercooled polymer melts: An introduction to modeling approaches by molecular dynamics simulations and to comparisons with mode-coupling theory. 2016, 55-105. https://doi.org/10.1201/9781315305158-5
    25. T. Davris, A.V. Lyulin. Coarse‐grained molecular‐dynamics simulations of capped crosslinked polymer films: Equilibrium structure and glass‐transition temperature. Polymer Composites 2015, 36 (6) , 1012-1019. https://doi.org/10.1002/pc.23413
    26. M. Solar, W. Paul. Dielectric α-relaxation of 1,4-polybutadiene confined between graphite walls. The European Physical Journal E 2015, 38 (5) https://doi.org/10.1140/epje/i2015-15037-0
    27. Caroline Housmans, Philippe Vandestrick, Michele Sferrazza, Jean-Paul Ryckaert, Simone Napolitano. Kinetics of Irreversible Adsorption of Polymer Melts onto Solid Substrates. 2015, 111-128. https://doi.org/10.1007/978-3-319-21948-6_5
    28. Emmanuel Urandu Mapesa, Ludwig Popp, Wycliffe Kiprop Kipnusu, Martin Tress, Friedrich Kremer. Molecular Dynamics in 1- and 2-D Confinement as Studied for the Case of Poly( Cis -1,4-Isoprene). Soft Materials 2014, 12 (sup1) , S22-S30. https://doi.org/10.1080/1539445X.2014.928320
    29. Mathieu Solar, Leonid Yelash, Peter Virnau, Kurt Binder, Wolfgang Paul. Polymer Dynamics in a Polymer-Solid Interphase: Molecular Dynamics Simulations of 1,4-Polybutadiene At a Graphite Surface. Soft Materials 2014, 12 (sup1) , S80-S89. https://doi.org/10.1080/1539445X.2014.937495
    30. Jalal Sarabadani, Andrey Milchev, Andres De Virgiliis, Thomas A. Vilgis. Molecular Dynamic Study of the Structure and Dynamics of Polymer Melt at Solid Surfaces. Soft Materials 2014, 12 (sup1) , S56-S70. https://doi.org/10.1080/1539445X.2014.957833
    31. Jalal Sarabadani, Andrey Milchev, Thomas A. Vilgis. Structure and dynamics of polymer melt confined between two solid surfaces: A molecular dynamics study. The Journal of Chemical Physics 2014, 141 (4) https://doi.org/10.1063/1.4890820
    32. Benjamin Pollard, Eric A. Muller, Karsten Hinrichs, Markus B. Raschke. Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms4587
    33. Qiyun Tang, Wenbing Hu, Simone Napolitano. Slowing Down of Accelerated Structural Relaxation in Ultrathin Polymer Films. Physical Review Letters 2014, 112 (14) https://doi.org/10.1103/PhysRevLett.112.148306
    34. Mathieu Solar, Kurt Binder, Wolfgang Paul. Dielectric Relaxation of a Polybutadiene Melt at a Crystalline Graphite Surface: Atomistic Molecular Dynamics Simulations. 2014, 1-15. https://doi.org/10.1007/978-3-319-06100-9_1
    35. Michael Wübbenhorst, Simone Napolitano. Deviations from Bulk Glass Transition Dynamics of Small Molecule Glass Formers: Some Scenarios in Relation to the Dimensionality of the Confining Geometry. 2014, 247-277. https://doi.org/10.1007/978-3-319-06100-9_10
    36. M. Solar, E. U. Mapesa, F. Kremer, K. Binder, W. Paul. The dielectric α -relaxation in polymer films: A comparison between experiments and atomistic simulations. EPL (Europhysics Letters) 2013, 104 (6) , 66004. https://doi.org/10.1209/0295-5075/104/66004
    37. Simone Napolitano, Simona Capponi, Bram Vanroy. Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. The European Physical Journal E 2013, 36 (6) https://doi.org/10.1140/epje/i2013-13061-8
    38. Ying Li, Brendan Abberton, Martin Kröger, Wing Liu. Challenges in Multiscale Modeling of Polymer Dynamics. Polymers 2013, 5 (2) , 751-832. https://doi.org/10.3390/polym5020751
    39. M. Solar, H. Meyer, C. Gauthier. Analysis of local properties during a scratch test on a polymeric surface using molecular dynamics simulations. The European Physical Journal E 2013, 36 (3) https://doi.org/10.1140/epje/i2013-13029-8
    40. Dmytro Hudzinskyy, Matthias A. J. Michels, Alexey V. Lyulin. Rejuvenation, Aging, and Confinement Effects in Atactic-Polystyrene Films Subjected to Oscillatory Shear. Macromolecular Theory and Simulations 2013, 22 (1) , 71-84. https://doi.org/10.1002/mats.201200050
    41. Naisheng Jiang, Maya K Endoh, Tadanori Koga. ‘Marker’ grazing-incidence X-ray photon correlation spectroscopy: a new tool to peer into the interfaces of nanoconfined polymer thin films. Polymer Journal 2013, 45 (1) , 26-33. https://doi.org/10.1038/pj.2012.184
    42. E. Tilo Hoppe, Isabel Hopp, Max Port, Bernhard Menges, Christine M. Papadakis. Optical properties of polybutadiene in the bulk and near a gold interface. Colloid and Polymer Science 2012, 290 (17) , 1731-1741. https://doi.org/10.1007/s00396-012-2711-1
    43. Mathieu Solar, Hendrik Meyer, Christian Gauthier, Christophe Fond, Olivier Benzerara, Robert Schirrer, Jörg Baschnagel. Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations. Physical Review E 2012, 85 (2) https://doi.org/10.1103/PhysRevE.85.021808
    44. Karen Johnston, Vagelis Harmandaris. Properties of short polystyrene chains confined between two gold surfaces through a combined density functional theory and classical molecular dynamics approach. Soft Matter 2012, 8 (23) , 6320. https://doi.org/10.1039/c2sm25567g
    45. M. Müller. Polymers at Interfaces and Surfaces and in Confined Geometries. 2012, 387-416. https://doi.org/10.1016/B978-0-444-53349-4.00006-6
    46. H. Peng, R. Nieuwendaal, C.L. Soles. Polymer Dynamics in Constrained Geometries. 2012, 345-376. https://doi.org/10.1016/B978-0-444-53349-4.00188-6
    47. Simona Capponi, Simone Napolitano, Michael Wübbenhorst. Supercooled liquids with enhanced orientational order. Nature Communications 2012, 3 (1) https://doi.org/10.1038/ncomms2228
    48. Günter Reiter. Probing Properties of Polymers in Thin Films Via Dewetting. 2012, 29-63. https://doi.org/10.1007/12_2012_174
    49. Yves Termonia. Two-dimensional nanometric confinement of entangled polymer melts. Polymer 2011, 52 (22) , 5193-5196. https://doi.org/10.1016/j.polymer.2011.09.004
    50. A. El Ouakili, G. Vignaud, E. Balnois, J.-F. Bardeau, Y. Grohens. Glass transition temperatures of isotactic poly(methymethacrylate) thin films and individual chains probed by multi wavelength ellipsometry. The European Physical Journal Applied Physics 2011, 56 (1) , 13703. https://doi.org/10.1051/epjap/2010100221
    51. M. Solar, H. Meyer, C. Gauthier, O. Benzerara, R. Schirrer, J. Baschnagel. Molecular dynamics simulations of the scratch test on linear amorphous polymer surfaces: A study of the local friction coefficient. Wear 2011, 271 (11-12) , 2751-2758. https://doi.org/10.1016/j.wear.2011.05.026
    52. B. Schnell, H. Meyer, C. Fond, J. P. Wittmer, J. Baschnagel. Simulated glass-forming polymer melts: Glass transition temperature and elastic constants of the glassy state. The European Physical Journal E 2011, 34 (9) https://doi.org/10.1140/epje/i2011-11097-4
    53. Simone Napolitano, Michael Wübbenhorst. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nature Communications 2011, 2 (1) https://doi.org/10.1038/ncomms1259
    54. Abderrahim El Ouakili, Guillaume Vignaud, Eric Balnois, Jean-François Bardeau, Yves Grohens. Multiple glass transition temperatures of polymer thin films as probed by multi-wavelength ellipsometry. Thin Solid Films 2011, 519 (6) , 2031-2036. https://doi.org/10.1016/j.tsf.2010.10.015
    55. Cinzia Rotella, Michael Wübbenhorst, Simone Napolitano. Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 2011, 7 (11) , 5260. https://doi.org/10.1039/c1sm05430a
    56. Günter Reiter, Simone Napolitano. Possible origin of thickness-dependent deviations from bulk properties of thin polymer films. Journal of Polymer Science Part B: Polymer Physics 2010, 48 (24) , 2544-2547. https://doi.org/10.1002/polb.22134
    57. M Solar, H Meyer, C Gauthier, O Benzerara, H Pelletier, R Schirrer, J Baschnagel. Molecular dynamics simulations as a way to investigate the local physics of contact mechanics: a comparison between experimental data and numerical results. Journal of Physics D: Applied Physics 2010, 43 (45) , 455406. https://doi.org/10.1088/0022-3727/43/45/455406
    58. Simone Napolitano, Michael Wübbenhorst. Structural relaxation and dynamic fragility of freely standing polymer films. Polymer 2010, 51 (23) , 5309-5312. https://doi.org/10.1016/j.polymer.2010.09.060
    59. Jean-Louis Barrat, Jörg Baschnagel, Alexey Lyulin. Molecular dynamics simulations of glassy polymers. Soft Matter 2010, 6 (15) , 3430. https://doi.org/10.1039/b927044b
    60. Fathollah Varnik, Kurt Binder. Multiscale modeling of polymers at interfaces. International Journal of Materials Research 2009, 100 (11) , 1494-1502. https://doi.org/10.3139/146.110209
    61. S. Kim, S. A. Hewlett, C. B. Roth, J. M. Torkelson. Confinement effects on glass transition temperature, transition breadth, and expansivity: Comparison of ellipsometry and fluorescence measurements on polystyrene films. The European Physical Journal E 2009, 30 (1) https://doi.org/10.1140/epje/i2009-10510-y
    62. S. Peter, H. Meyer, J. Baschnagel. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition. The Journal of Chemical Physics 2009, 131 (1) https://doi.org/10.1063/1.3158608
    63. S. Peter, H. Meyer, J. Baschnagel. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. II. Solvent evaporation near the glass transition. The Journal of Chemical Physics 2009, 131 (1) https://doi.org/10.1063/1.3158607
    64. Diana Labahn, Renate Mix, Andreas Schönhals. Dielectric relaxation of ultrathin films of supported polysulfone. Physical Review E 2009, 79 (1) https://doi.org/10.1103/PhysRevE.79.011801

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect