ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Quantitative Product Spectrum Analysis of Poly(butyl acrylate) via Electrospray Ionization Mass Spectrometry

  • Sandy P. S. Koo
    Sandy P. S. Koo
    Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, NSW 2052, Australia
  • Tanja Junkers*
    Tanja Junkers
    Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, NSW 2052, Australia
    * Corresponding authors. Tel: +49 721 608-5641. Fax: +49 721 608-5740. E-mail: [email protected]; [email protected]
  • , and 
  • Christopher Barner-Kowollik*
    Christopher Barner-Kowollik
    Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, NSW 2052, Australia
    * Corresponding authors. Tel: +49 721 608-5641. Fax: +49 721 608-5740. E-mail: [email protected]; [email protected]
Cite this: Macromolecules 2009, 42, 1, 62–69
Publication Date (Web):November 25, 2008
https://doi.org/10.1021/ma801196w
Copyright © 2009 American Chemical Society

    Article Views

    1043

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Electrospray ionization mass spectrometry (ESI-MS) is used to analyze poly(butyl acrylate) samples at full conversion obtained by bulk free radical polymerization in the temperature range of 60−140 °C in the presence of the chain transfer agent (CTA) 1-octanethiol at concentrations varying between 0 and 0.4 mol·L−1. Termination by combination products carrying initiator and transfer-derived fragments as well as three β-scission products were identified in the accessible mass range of up to 2000 m/z. The resulting mass spectra are subsequently quantitatively evaluated via integration to assess product distributions as a function of varying reaction conditions, that is, different temperatures and CTA concentrations. The present study provides for the first time quantitative product distribution data for butyl acrylate polymerization. The main species of interest, defined to be those most sensitive to variations in temperature, CTA concentration, or both, are identified to be thiol-capped polymers (TCPs) produced by the interference of the CTA in the polymerization and βI, the β-scission product produced by chain cleavage of so-called midchain radicals formed via transfer to polymer reactions. Relatively high concentrations of 1-octanethiol produce a very uniform thiol-capped polymer, whereas low concentrations of thiol produce a very large number of β-scission products. Increasing the reaction temperature increases the proportions of β-scission products, and increasing the CTA concentration can suppress and control the amounts and types of species formed to the point where the product spectrum is almost quantitatively constituted of the TCP product. Other species found include conventional termination via combination products and small amounts of β-scission products with initiator end groups. The quantity of combination products has no significant variation under the range of conditions studied, and they are thus considered minor products. The data provided in the present study can constitute the basis for the further quantitative evaluation of reliable rate coefficients for midchain radical formation and depletion pathways.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of the integration procedure and individual integration results for all species. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 59 publications.

    1. Nerea Jiménez, Fernando Ruipérez, Estibaliz González de San Román, José M. Asua, Nicholas Ballard. Fundamental Insights into Free-Radical Polymerization in the Presence of Catechols and Catechol-Functionalized Monomers. Macromolecules 2022, 55 (1) , 49-64. https://doi.org/10.1021/acs.macromol.1c02103
    2. Paul H. M. Van Steenberge, Joke Vandenbergh, Marie-Françoise Reyniers, Tanja Junkers, Dagmar R. D’hooge, Guy B. Marin. Kinetic Monte Carlo Generation of Complete Electron Spray Ionization Mass Spectra for Acrylate Macromonomer Synthesis. Macromolecules 2017, 50 (7) , 2625-2636. https://doi.org/10.1021/acs.macromol.7b00333
    3. Nicholas Ballard, Shaghayegh Hamzehlou, and José M. Asua . Intermolecular Transfer to Polymer in the Radical Polymerization of n-Butyl Acrylate. Macromolecules 2016, 49 (15) , 5418-5426. https://doi.org/10.1021/acs.macromol.6b01195
    4. Nobuhiko Hosono, Mika Gochomori, Ryotaro Matsuda, Hiroshi Sato, and Susumu Kitagawa . Metal–Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis. Journal of the American Chemical Society 2016, 138 (20) , 6525-6531. https://doi.org/10.1021/jacs.6b01758
    5. Nicholas Ballard, José C. de la Cal, and José M. Asua . The Role of Chain Transfer Agent in Reducing Branching Content in Radical Polymerization of Acrylates. Macromolecules 2015, 48 (4) , 987-993. https://doi.org/10.1021/ma502575j
    6. Nicholas Ballard, Simone Rusconi, Elena Akhmatskaya, Dmitri Sokolovski, José C. de la Cal, and José M. Asua . Impact of Competitive Processes on Controlled Radical Polymerization. Macromolecules 2014, 47 (19) , 6580-6590. https://doi.org/10.1021/ma501267a
    7. Joke Vandenbergh, Tanja Junkers. Alpha and Omega: Importance of the Nonliving Chain End in RAFT Multiblock Copolymerization. Macromolecules 2014, 47 (15) , 5051-5059. https://doi.org/10.1021/ma500803k
    8. Nicholas Ballard, Maitane Salsamendi, José Ignacio Santos, Fernando Ruipérez, Jose R. Leiza, and Jose M. Asua . Experimental Evidence Shedding Light on the Origin of the Reduction of Branching of Acrylates in ATRP. Macromolecules 2014, 47 (3) , 964-972. https://doi.org/10.1021/ma4025637
    9. Joke Vandenbergh, Tanja Junkers. Synthesis of Macromonomers from High-Temperature Activation of Nitroxide Mediated Polymerization (NMP)-made Polyacrylates. Macromolecules 2013, 46 (9) , 3324-3331. https://doi.org/10.1021/ma400477t
    10. Joke Vandenbergh, Tanja Junkers. Macromonomers from AGET Activation of Poly(n-butyl acrylate) Precursors: Radical Transfer Pathways and Midchain Radical Migration. Macromolecules 2012, 45 (17) , 6850-6856. https://doi.org/10.1021/ma301233v
    11. Yohann Guillaneuf, Didier Gigmes, Tanja Junkers. Investigation of the End Group Fidelity at High Conversion during Nitroxide-Mediated Acrylate Polymerizations. Macromolecules 2012, 45 (13) , 5371-5378. https://doi.org/10.1021/ma300953b
    12. Matthias Conradi, Tanja Junkers. Photoinduced Conjugation of Aldehyde Functional Polymers with Olefins via [2 + 2]-Cycloaddition. Macromolecules 2011, 44 (20) , 7969-7976. https://doi.org/10.1021/ma2017748
    13. Lebohang Hlalele and Bert Klumperman . In Situ1H NMR Studies of High-Temperature Nitroxide-Mediated Polymerization of n-Butyl Acrylate. Macromolecules 2011, 44 (18) , 7100-7108. https://doi.org/10.1021/ma201216e
    14. Anna-Marie Zorn, Tanja Junkers, Christopher Barner-Kowollik. A Detailed Investigation of the Free Radical Copolymerization Behavior of n-Butyl Acrylate Macromonomers. Macromolecules 2011, 44 (17) , 6691-6700. https://doi.org/10.1021/ma201345m
    15. Paola Rizzarelli, Daniela Zampino, Loredana Ferreri, and Giuseppe Impallomeni . Direct Electrospray Ionization Mass Spectrometry Quantitative Analysis of Sebacic and Terephthalic Acids in Biodegradable Polymers. Analytical Chemistry 2011, 83 (3) , 654-660. https://doi.org/10.1021/ac102579q
    16. Junkan Song, Jan W. van Velde, Luc L. T. Vertommen, Leo G. J. van der Ven, Ron M. A. Heeren and Oscar F. van den Brink . Investigation of Polymerization Mechanisms of Poly(n-Butyl Acrylate)s Generated in Different Solvents by LC−ESI−MS2. Macromolecules 2010, 43 (17) , 7082-7089. https://doi.org/10.1021/ma101390j
    17. Marianne Gaborieau, Sandy P. S. Koo, Patrice Castignolles, Tanja Junkers, Christopher Barner-Kowollik. Reducing the Degree of Branching in Polyacrylates via Midchain Radical Patching: A Quantitative Melt-State NMR Study. Macromolecules 2010, 43 (13) , 5492-5495. https://doi.org/10.1021/ma100991c
    18. Tanja Junkers, Iyomali Abeysekera. Folding mass spectra: how to deal with the signal to noise dilemma. Polymer Chemistry 2023, 15 (1) , 6-10. https://doi.org/10.1039/D3PY01174G
    19. Jonas Mätzig, Marco Drache, Georg Drache, Sabine Beuermann. Kinetic Monte Carlo Simulations as a Tool for Unraveling the Impact of Solvent and Temperature on Polymer Topology for Self‐Initiated Butyl Acrylate Radical Polymerizations at High Temperatures. Macromolecular Theory and Simulations 2023, 32 (4) https://doi.org/10.1002/mats.202300007
    20. Bo Zhang, Yiyu Feng, Wei Feng. Azobenzene-Based Solar Thermal Fuels: A Review. Nano-Micro Letters 2022, 14 (1) https://doi.org/10.1007/s40820-022-00876-8
    21. Ian Gray, Frank Heatley, Peter Alfred Lovell. Effect of side-group structure and temperature on chain transfer to polymer and branching in acrylate homopolymerizations. Colloid and Polymer Science 2022, 300 (4) , 445-463. https://doi.org/10.1007/s00396-021-04935-1
    22. Jean-Baptiste Lena, Alexander M. van Herk, Satyasankar Jana. Effect of anethole on the copolymerization of vinyl monomers. Polymer Chemistry 2020, 11 (35) , 5630-5641. https://doi.org/10.1039/D0PY00833H
    23. Ataulla Shegiwal, Alan M. Wemyss, Evelina Liarou, James Town, Geogios Patias, Christophe J. Atkins, Arkadios Marathianos, Daniel W. Lester, Spyridon Efstathiou, David M. Haddleton. Polymerisable surfactants for polymethacrylates using catalytic chain transfer polymerisation (CCTP) combined with sulfur free-RAFT in emulsion polymerisation. European Polymer Journal 2020, 125 , 109491. https://doi.org/10.1016/j.eurpolymj.2020.109491
    24. Marco Drache, Maria Stehle, Jonas Mätzig, Katrin Brandl, Marcel Jungbluth, Jan C. Namyslo, Andreas Schmidt, Sabine Beuermann. Identification of β scission products from free radical polymerizations of butyl acrylate at high temperature. Polymer Chemistry 2019, 10 (15) , 1956-1967. https://doi.org/10.1039/C9PY00103D
    25. Nicholas Ballard, Antonio Veloso, José Asua. Mid-Chain Radical Migration in the Radical Polymerization of n-Butyl Acrylate. Polymers 2018, 10 (7) , 765. https://doi.org/10.3390/polym10070765
    26. Jean‐Baptiste Lena, Michaël Deschamps, Natasha F. Sciortino, Sarah L. Masters, Marie A. Squire, Gregory T. Russell. Effects of Chain Transfer Agent and Temperature on Branching and β‐Scission in Radical Polymerization of 2‐Ethylhexyl Acrylate. Macromolecular Chemistry and Physics 2018, 219 (9) https://doi.org/10.1002/macp.201700579
    27. Nicholas Ballard, Jose M. Asua. Radical polymerization of acrylic monomers: An overview. Progress in Polymer Science 2018, 79 , 40-60. https://doi.org/10.1016/j.progpolymsci.2017.11.002
    28. Anil B. Vir, Y. W. Marien, Paul H. M. Van Steenberge, Christopher Barner-Kowollik, Marie-Françoise Reyniers, Guy B. Marin, Dagmar R. D'hooge. Access to the β-scission rate coefficient in acrylate radical polymerization by careful scanning of pulse laser frequencies at elevated temperature. Reaction Chemistry & Engineering 2018, 3 (5) , 807-815. https://doi.org/10.1039/C8RE00171E
    29. Joris J. Haven, Neomy Zaquen, Maarten Rubens, Tanja Junkers. The Kinetics of n ‐Butyl Acrylate Radical Polymerization Revealed in a Single Experiment by Real Time On‐line Mass Spectrometry Monitoring. Macromolecular Reaction Engineering 2017, 11 (4) https://doi.org/10.1002/mren.201700016
    30. Xiaoze Zhao, Yiyu Feng, Chengqun Qin, Weixiang Yang, Qianyu Si, Wei Feng. Controlling Heat Release from a Close‐Packed Bisazobenzene–Reduced‐Graphene‐Oxide Assembly Film for High‐Energy Solid‐State Photothermal Fuels. ChemSusChem 2017, 10 (7) , 1395-1404. https://doi.org/10.1002/cssc.201601551
    31. Jean-Baptiste Lena, Alexander K. Goroncy, Joel J. Thevarajah, Alison R. Maniego, Gregory T. Russell, Patrice Castignolles, Marianne Gaborieau. Effect of transfer agent, temperature and initial monomer concentration on branching in poly(acrylic acid): A study by 13 C NMR spectroscopy and capillary electrophoresis. Polymer 2017, 114 , 209-220. https://doi.org/10.1016/j.polymer.2017.01.030
    32. Nicholas Ballard, Shaghayegh Hamzehlou, Fernando Ruipérez, José M. Asua. On the Termination Mechanism in the Radical Polymerization of Acrylates. Macromolecular Rapid Communications 2016, 37 (16) , 1364-1368. https://doi.org/10.1002/marc.201600278
    33. Loïc Pichavant, Céline Guillermain, Dominique Harakat, Xavier Coqueret. Photo-initiated copolymerization of allyl and vinyl ethers with dialkyl fumarates: A mechanistic investigation by ESI mass spectrometry. European Polymer Journal 2016, 80 , 99-116. https://doi.org/10.1016/j.eurpolymj.2016.05.003
    34. Christopher Barner-Kowollik, Sabine Beuermann, Michael Buback, Patrice Castignolles, Bernadette Charleux, Michelle L. Coote, Robin A. Hutchinson, Tanja Junkers, Igor Lacík, Gregory T. Russell, Marek Stach, Alex M. van Herk. Critically evaluated rate coefficients in radical polymerization – 7. Secondary-radical propagation rate coefficients for methyl acrylate in the bulk. Polymer Chemistry 2014, 5 (1) , 204-212. https://doi.org/10.1039/C3PY00774J
    35. Johannes Barth, Michael Buback, Christopher Barner‐Kowollik, Tanja Junkers, Gregory T. Russell. Single‐pulse pulsed laser polymerization–electron paramagnetic resonance investigations into the termination kinetics of n ‐butyl acrylate macromonomers. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (22) , 4740-4748. https://doi.org/10.1002/pola.26295
    36. Thomas Tischer, Anja S. Goldmann, Katharina Linkert, Vanessa Trouillet, Hans G. Börner, Christopher Barner‐Kowollik. Modular Ligation of Thioamide Functional Peptides onto Solid Cellulose Substrates. Advanced Functional Materials 2012, 22 (18) , 3853-3864. https://doi.org/10.1002/adfm.201200266
    37. Helen Chirowodza, Patrice C. Hartmann, Harald Pasch. MALDI‐TOF MS Analysis of the Grafting of Clay Nanoparticles with Poly(butyl acrylate). Macromolecular Chemistry and Physics 2012, 213 (8) , 847-857. https://doi.org/10.1002/macp.201100671
    38. Sabrina Carroccio, Paola Rizzarelli, Daniela Zampino. A Snapshot of Thermo‐Oxidative Degradation Products in Poly(bisphenol A carbonate) by Electrospray Ionization Mass Spectrometry and Matrix‐Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry. Macromolecular Chemistry and Physics 2011, 212 (24) , 2648-2666. https://doi.org/10.1002/macp.201100417
    39. Michael Buback, Gregory T. Russell, Philipp Vana. Elucidation of Reaction Mechanisms: Conventional Radical Polymerization. 2011, 319-372. https://doi.org/10.1002/9783527641826.ch10
    40. Till Gruendling, William E. Wallace, Christopher Barner‐Kowollik, Charles M. Guttman, Anthony J. Kearsly. Automated Data Processing and Quantification in Polymer Mass Spectrometry. 2011, 237-280. https://doi.org/10.1002/9783527641826.ch8
    41. Anna-Marie Zorn, Michael Malkoch, Anna Carlmark, Christopher Barner-Kowollik. High temperature synthesis of vinyl terminated polymers based on dendronized acrylates: a detailed product analysis study. Polymer Chemistry 2011, 2 (5) , 1163-1173. https://doi.org/10.1039/C0PY00411A
    42. Christopher Barner‐Kowollik, Tanja Junker. Kinetic and mechanistic similarities between reversible addition fragmentation chain transfer intermediate and acrylate midchain radicals. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (5) , 1293-1297. https://doi.org/10.1002/pola.24546
    43. Andrew J. Inglis, Christopher Barner-Kowollik. Visualizing the efficiency of rapid modular block copolymer construction. Polym. Chem. 2011, 2 (1) , 126-136. https://doi.org/10.1039/C0PY00189A
    44. Junkan Song, Christian H. Grün, Ron M. A. Heeren, Hans‐Gerd Janssen, Oscar F. van den Brink. High‐Resolution Ion Mobility Spectrometry–Mass Spectrometry on Poly(methyl methacrylate). Angewandte Chemie 2010, 122 (52) , 10366-10369. https://doi.org/10.1002/ange.201005225
    45. Junkan Song, Christian H. Grün, Ron M. A. Heeren, Hans‐Gerd Janssen, Oscar F. van den Brink. High‐Resolution Ion Mobility Spectrometry–Mass Spectrometry on Poly(methyl methacrylate). Angewandte Chemie International Edition 2010, 49 (52) , 10168-10171. https://doi.org/10.1002/anie.201005225
    46. Francesca Bennet, Gene Hart‐Smith, Till Gruendling, Thomas P. Davis, Philip J. Barker, Christopher Barner‐Kowollik. Degradation of Poly(methyl methacrylate) Model Compounds Under Extreme Environmental Conditions. Macromolecular Chemistry and Physics 2010, 211 (10) , 1083-1097. https://doi.org/10.1002/macp.200900625
    47. Christopher Barner-Kowollik, Francesca Bennet, Maria Schneider-Baumann, Dominik Voll, Thomas Rölle, Thomas Fäcke, Marc-Stephan Weiser, Friedrich-Karl Bruder, Tanja Junkers. Detailed investigation of the propagation rate of urethane acrylates. Polymer Chemistry 2010, 1 (4) , 470-479. https://doi.org/10.1039/B9PY00352E
    48. Sandy P. S. Koo, Milan M. Stamenović, R. Arun Prasath, Andrew J. Inglis, Filip E. Du Prez, Christopher Barner‐Kowollik, Wim Van Camp, Tanja Junker. Limitations of radical thiol‐ene reactions for polymer–polymer conjugation. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (8) , 1699-1713. https://doi.org/10.1002/pola.23933
    49. Till Gruendling, Tanja Junkers, Michael Guilhaus, Christopher Barner‐Kowollik. Mark–Houwink Parameters for the Universal Calibration of Acrylate, Methacrylate and Vinyl Acetate Polymers Determined by Online Size‐Exclusion Chromatography—Mass Spectrometry. Macromolecular Chemistry and Physics 2010, 211 (5) , 520-528. https://doi.org/10.1002/macp.200900323
    50. Till Gruendling, Steffen Weidner, Jana Falkenhagen, Christopher Barner-Kowollik. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polymer Chemistry 2010, 1 (5) , 599. https://doi.org/10.1039/b9py00347a
    51. Anna‐Marie Zorn, Tanja Junkers, Christopher Barner‐Kowollik. Synthesis of a Macromonomer Library from High‐Temperature Acrylate Polymerization. Macromolecular Rapid Communications 2009, 30 (23) , 2028-2035. https://doi.org/10.1002/marc.200900536
    52. Markus Griesser, Dmytro Neshchadin, Kurt Dietliker, Norbert Moszner, Robert Liska, Georg Gescheidt. Maßgebliche Reaktionsschritte zu Beginn photoinitiierter radikalischer Polymerisationen. Angewandte Chemie 2009, 121 (49) , 9523-9525. https://doi.org/10.1002/ange.200904473
    53. Markus Griesser, Dmytro Neshchadin, Kurt Dietliker, Norbert Moszner, Robert Liska, Georg Gescheidt. Decisive Reaction Steps at Initial Stages of Photoinitiated Radical Polymerizations. Angewandte Chemie International Edition 2009, 48 (49) , 9359-9361. https://doi.org/10.1002/anie.200904473
    54. Tanja Junkers, Christopher Barner‐Kowollik. Optimum Reaction Conditions for the Synthesis of Macromonomers Via the High‐Temperature Polymerization of Acrylates. Macromolecular Theory and Simulations 2009, 18 (7-8) , 421-433. https://doi.org/10.1002/mats.200900025
    55. Michael Buback, Holm Frauendorf, Fabian Günzler, Felix Huff, Philipp Vana. Determining Initiator Efficiency in Radical Polymerization by Electrospray‐Ionization Mass Spectrometry. Macromolecular Chemistry and Physics 2009, 210 (19) , 1591-1599. https://doi.org/10.1002/macp.200900237
    56. Marion Girod, Michaël Mazarin, Trang N. T. Phan, Didier Gigmes, Laurence Charles. Determination of block size in poly(ethylene oxide)‐ b ‐polystyrene block copolymers by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (13) , 3380-3390. https://doi.org/10.1002/pola.23414
    57. Michael Buback, Tanja Junkers, Matthias Müller. Free-radical propagation and termination kinetics of the butyl acrylate dimer studied by pulsed laser polymerization techniques. Polymer 2009, 50 (14) , 3111-3118. https://doi.org/10.1016/j.polymer.2009.04.036
    58. . Current literature in mass spectrometry. Journal of Mass Spectrometry 2009, 986-997. https://doi.org/10.1002/jms.1491
    59. Fabian Günzler, Tanja Junker, Christopher Barner‐Kowollik. Studying the mechanism of thioketone‐mediated polymerization via electrospray ionization mass spectrometry. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (7) , 1864-1876. https://doi.org/10.1002/pola.23280

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect