ACS Publications. Most Trusted. Most Cited. Most Read
A Study into the Stability of 3,6-Dihydro-2H-thiopyran Rings: Key Linkages in the RAFT Hetero-Diels−Alder Click Concept
My Activity

Figure 1Loading Img
    Article

    A Study into the Stability of 3,6-Dihydro-2H-thiopyran Rings: Key Linkages in the RAFT Hetero-Diels−Alder Click Concept
    Click to copy article linkArticle link copied!

    • Sebastian Sinnwell
      Sebastian Sinnwell
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymer Chemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
    • Christopher V. Synatschke
      Christopher V. Synatschke
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymer Chemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
    • Tanja Junkers
      Tanja Junkers
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymer Chemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
    • Martina H. Stenzel*
      Martina H. Stenzel
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymer Chemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
      * Corresponding authors. (C.B-K.) Fax: +49 721 6085740. E-mail: [email protected]. (M.H.S.) Fax: +61 2 93856250. E-mail: [email protected]
    • Christopher Barner-Kowollik*
      Christopher Barner-Kowollik
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymer Chemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences and Engineering, The University of New South Wales, Sydney NSW 2052, Australia
      * Corresponding authors. (C.B-K.) Fax: +49 721 6085740. E-mail: [email protected]. (M.H.S.) Fax: +61 2 93856250. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Macromolecules

    Cite this: Macromolecules 2008, 41, 21, 7904–7912
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma8013959
    Published October 14, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The combination of RAFT chemistry and hetero-Diels−Alder (HDA) cycloaddition provides a convenient conjugation tool for the construction of macromolecular architectures. The actual conjugation linkage, which is formed in the RAFT HDA approach, consists of a 3,6-dihydro-2H-thiopyran ring. Herein, a careful study into the stability of polymer linked by 3,6-dihydro-2H-thiopyran rings under different thermal and pH conditions is performed. As polymeric model system, a 3,6-dihydro-2H-thiopyran functionalized poly(ethylene glycol) (PEG) obtained after a HDA cycloaddition between a diene functionalized PEG and 1-phenylethyl (diethoxyphosphoryl)dithioformate or 1-phenylethyl pyridin-2-yldithioformate is used. Electrospray ionization mass spectrometry (ESI-MS) is employed to map the generated products. The stability tests under thermal conditions showed for the diethoxyphosphoryl derivative the preservation of the polymer end-groups after 24 h at temperatures up to 80 °C. At higher temperatures degradation reactions of the 3,6-dihydro-2H-thiopyran ring including the retro HDA reaction occurred. A complete fragmentation was observed after 24 h at 160 °C. The pyridinyl derivative was found to be slightly more temperature stable since its structure was unaffected at conditions up to 24 h at 120 °C and full cleavage was only observed after 24 h at 180 °C. In this case the fragmentation mechanism occurred exclusively via the retro HDA reaction and the resulting diene functionalized polymer was the only detected product species. Both conjugates showed an excellent stability toward hydrolysis in aqueous media under strong acidic (0.1 and 1 m HCL) and strong basic (0.1 and 1 M NaOH) conditions.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Figures showing 1H NMR spectra of 3, 6, and 7. This information is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 52 publications.

    1. Timothé Maujean, Patrick Wagner, Christel Valencia, Stéphanie Riché, Xavier Iturrioz, Pascal Villa, Nicolas Girard, Julie Karpenko, Mihaela Gulea, Dominique Bonnet. Rapid and Highly Selective Fluorescent Labeling of Peptides via a Thia-Diels–Alder Cycloaddition: Application to Apelin. Bioconjugate Chemistry 2023, 34 (1) , 162-168. https://doi.org/10.1021/acs.bioconjchem.2c00500
    2. Brian J. Levandowski, Ronald T. Raines. Click Chemistry with Cyclopentadiene. Chemical Reviews 2021, 121 (12) , 6777-6801. https://doi.org/10.1021/acs.chemrev.0c01055
    3. Matthias Dübner, Tugce N. Gevrek, Amitav Sanyal, Nicholas D. Spencer, and Celestino Padeste . Fabrication of Thiol–Ene “Clickable” Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography. ACS Applied Materials & Interfaces 2015, 7 (21) , 11337-11345. https://doi.org/10.1021/acsami.5b01804
    4. Christoph J. Dürr, Lebohang Hlalele, Andreas Kaiser, Sven Brandau, and Christopher Barner-Kowollik . Mild and Efficient Modular Synthesis of Poly(acrylonitrile-co-butadiene) Block and Miktoarm Star Copolymer Architectures. Macromolecules 2013, 46 (1) , 49-62. https://doi.org/10.1021/ma302017c
    5. Matthias Conradi, Tanja Junkers. Photoinduced Conjugation of Aldehyde Functional Polymers with Olefins via [2 + 2]-Cycloaddition. Macromolecules 2011, 44 (20) , 7969-7976. https://doi.org/10.1021/ma2017748
    6. Frank Biedermann, Eric A. Appel, Jesús del Barrio, Till Gruendling, Christopher Barner-Kowollik, and Oren A. Scherman . Postpolymerization Modification of Hydroxyl-Functionalized Polymers with Isocyanates. Macromolecules 2011, 44 (12) , 4828-4835. https://doi.org/10.1021/ma2008018
    7. Anja S. Goldmann, Thomas Tischer, Leonie Barner, Michael Bruns, and Christopher Barner-Kowollik . Mild and Modular Surface Modification of Cellulose via Hetero Diels−Alder (HDA) Cycloaddition. Biomacromolecules 2011, 12 (4) , 1137-1145. https://doi.org/10.1021/bm101461h
    8. Andrew J. Inglis, Leena Nebhani, Ozcan Altintas, Friedrich Georg Schmidt and Christopher Barner-Kowollik . Rapid Bonding/Debonding on Demand: Reversibly Cross-Linked Functional Polymers via Diels−Alder Chemistry. Macromolecules 2010, 43 (13) , 5515-5520. https://doi.org/10.1021/ma100945b
    9. Steffen M. Weidner and Sarah Trimpin. Mass Spectrometry of Synthetic Polymers. Analytical Chemistry 2010, 82 (12) , 4811-4829. https://doi.org/10.1021/ac101080n
    10. Peter J. Roth, Florian D. Jochum, Rudolf Zentel and Patrick Theato . Synthesis of Hetero-Telechelic α,ω Bio-Functionalized Polymers. Biomacromolecules 2010, 11 (1) , 238-244. https://doi.org/10.1021/bm901095j
    11. Jakov Kulis, Craig A. Bell, Aaron S. Micallef, Zhongfan Jia and Michael J. Monteiro. Rapid, Selective, and Reversible Nitroxide Radical Coupling (NRC) Reactions at Ambient Temperature. Macromolecules 2009, 42 (21) , 8218-8227. https://doi.org/10.1021/ma9014565
    12. Timothé Maujean, Patrice Marchand, Patrick Wagner, Stéphanie Riché, Frédéric Boisson, Nicolas Girard, Dominique Bonnet, Mihaela Gulea. Hetero-Diels–Alder click reaction of dithioesters for a catalyst-free indirect 18 F-radiolabelling of peptides. Chemical Communications 2022, 58 (79) , 11151-11154. https://doi.org/10.1039/D2CC04148K
    13. Graeme Moad. Dithioesters in RAFT Polymerization. 2021, 223-358. https://doi.org/10.1002/9783527821358.ch8
    14. Zhishuai Geng, Jaeman J. Shin, Yumeng Xi, Craig J. Hawker. Click chemistry strategies for the accelerated synthesis of functional macromolecules. Journal of Polymer Science 2021, 59 (11) , 963-1042. https://doi.org/10.1002/pol.20210126
    15. Mo Zhu, Nairong Hao, Muhammad Zaheer, Jinxian Yang, Lianwei Li. Preparation of Functional Long‐Subchain Hyperbranched Polystyrenes via Post‐polymerization Modification: Study on the Critical Role of Chemical Stability of Branching Linkage. ChemistryOpen 2020, 9 (9) , 967-974. https://doi.org/10.1002/open.202000143
    16. Antoniya Toncheva, Loïc Blanc, Pierre Lambert, Philippe Dubois, Jean‐Marie Raquez. Multi‐responsive Polymer Actuators by Thermo‐reversible Chemistry. 2020, 277-306. https://doi.org/10.1002/9783527822201.ch11
    17. Charlotte Petit, Lukas D. Bangert, Mahdi Abbasi, Manfred Wilhelm, Anja S. Goldmann, Christopher Barner-Kowollik. Stability of Diels–Alder photoadducts in macromolecules. Polymer Chemistry 2018, 9 (28) , 3850-3854. https://doi.org/10.1039/C8PY00748A
    18. Christopher Barner‐Kowollik, Martin Bastmeyer, Eva Blasco, Guillaume Delaittre, Patrick Müller, Benjamin Richter, Martin Wegener. 3D‐Laser‐Mikro‐Nanodruck: Herausforderungen für die Chemie. Angewandte Chemie 2017, 129 (50) , 16038-16056. https://doi.org/10.1002/ange.201704695
    19. Christopher Barner‐Kowollik, Martin Bastmeyer, Eva Blasco, Guillaume Delaittre, Patrick Müller, Benjamin Richter, Martin Wegener. 3D Laser Micro‐ and Nanoprinting: Challenges for Chemistry. Angewandte Chemie International Edition 2017, 56 (50) , 15828-15845. https://doi.org/10.1002/anie.201704695
    20. Hatice Mutlu, Christian W. Schmitt, Nils Wedler-Jasinski, Hendrik Woehlk, Kathryn E. Fairfull-Smith, James P. Blinco, Christopher Barner-Kowollik. Spin fluorescence silencing enables an efficient thermally driven self-reporting polymer release system. Polymer Chemistry 2017, 8 (40) , 6199-6203. https://doi.org/10.1039/C7PY01437F
    21. M.U. Kahveci, Y. Yagci, A. Avgeropoulos, C. Tsitsilianis. Polymeric Materials – Well Defined Block Copolymers. 2016https://doi.org/10.1016/B978-0-12-803581-8.01447-8
    22. Mehmet Atilla Tasdelen, Baris Kiskan, Yusuf Yagci. Externally stimulated click reactions for macromolecular syntheses. Progress in Polymer Science 2016, 52 , 19-78. https://doi.org/10.1016/j.progpolymsci.2015.09.003
    23. Johannes A. van Hensbergen, Robert P. Burford, Andrew B. Lowe. ROMP (co)polymers with pendent alkyne side groups: post-polymerization modification employing thiol–yne and CuAAC coupling chemistries. Polym. Chem. 2014, 5 (18) , 5339-5349. https://doi.org/10.1039/C4PY00604F
    24. Johannes A. van Hensbergen, Taylor W. Gaines, Kenneth B. Wagener, Robert P. Burford, Andrew B. Lowe. Functional α,ω-dienes via thiol-Michael chemistry: synthesis, oxidative protection, acyclic diene metathesis (ADMET) polymerization and radical thiol–ene modification. Polym. Chem. 2014, 5 (21) , 6225-6235. https://doi.org/10.1039/C4PY00783B
    25. Zhijian Wang, Zhiyong Ma, Zhenyu Zhang, Feng Wu, Hong Jiang, Xinru Jia. Mechanical activation of a dithioester derivative-based retro RAFT-HDA reaction. Polym. Chem. 2014, 5 (24) , 6893-6897. https://doi.org/10.1039/C4PY00964A
    26. Naoko Yoshie. Diels–Alder Polymers. 2013https://doi.org/10.1002/0471440264.pst607
    27. Cé Guinto Gamys, Jean‐Marc Schumers, Clément Mugemana, Charles‐André Fustin, Jean‐François Gohy. Pore‐Functionalized Nanoporous Materials Derived from Block Copolymers. Macromolecular Rapid Communications 2013, 34 (12) , 962-982. https://doi.org/10.1002/marc.201300214
    28. Alexander H. Soeriyadi, Michael R.Whittaker, Cyrille Boyer, Thomas P. Davis. Soft ionization mass spectroscopy: Insights into the polymerization mechanism. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (7) , 1475-1505. https://doi.org/10.1002/pola.26536
    29. Joke Vandenbergh, Kayte Ranieri, Tanja Junkers. Synthesis of (Bio)‐Degradable Poly( β ‐thioester)s via Amine Catalyzed Thiol−Ene Click Polymerization. Macromolecular Chemistry and Physics 2012, 213 (24) , 2611-2617. https://doi.org/10.1002/macp.201200470
    30. M.U. Kahveci, Y. Yagci, A. Avgeropoulos, C. Tsitsilianis. Well-Defined Block Copolymers. 2012, 455-509. https://doi.org/10.1016/B978-0-444-53349-4.00171-0
    31. Andrew Gregory, Martina H. Stenzel. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Progress in Polymer Science 2012, 37 (1) , 38-105. https://doi.org/10.1016/j.progpolymsci.2011.08.004
    32. Jiawen Zhou, Nathalie K. Guimard, Andrew J. Inglis, Mansoor Namazian, Ching Y. Lin, Michelle L. Coote, Emmanouil Spyrou, Stefan Hilf, Friedrich Georg Schmidt, Christopher Barner-Kowollik. Thermally reversible Diels–Alder-based polymerization: an experimental and theoretical assessment. Polym. Chem. 2012, 3 (3) , 628-639. https://doi.org/10.1039/C1PY00356A
    33. M. Alyse Harvison, Andrew B. Lowe. Combining RAFT Radical Polymerization and Click/Highly Efficient Coupling Chemistries: A Powerful Strategy for the Preparation of Novel Materials. Macromolecular Rapid Communications 2011, 32 (11) , 779-800. https://doi.org/10.1002/marc.201100156
    34. Mieke Lammens, Filip Du Prez. Highly Branched Functional Polymer Architectures by Click‐Chemistry Strategies. 2011, 229-265. https://doi.org/10.1002/9780470825150.ch8
    35. Graeme Moad, Ezio Rizzardo, San H Thang. End‐functional polymers, thiocarbonylthio group removal/transformation and reversible addition–fragmentation–chain transfer (RAFT) polymerization. Polymer International 2011, 60 (1) , 9-25. https://doi.org/10.1002/pi.2988
    36. Graeme Moad, Ming Chen, Matthias Häussler, Almar Postma, Ezio Rizzardo, San H. Thang. Functional polymers for optoelectronic applications by RAFT polymerization. Polym. Chem. 2011, 2 (3) , 492-519. https://doi.org/10.1039/C0PY00179A
    37. Mathias Glassner, James P. Blinco, Christopher Barner-Kowollik. Formation of nanoporous materials via mild retro-Diels–Alder chemistry. Polym. Chem. 2011, 2 (1) , 83-87. https://doi.org/10.1039/C0PY00267D
    38. Mehmet Atilla Tasdelen. Diels–Alder “click” reactions: recent applications in polymer and material science. Polymer Chemistry 2011, 2 (10) , 2133. https://doi.org/10.1039/c1py00041a
    39. Ming Chen, Graeme Moad, Ezio Rizzardo. A Potential New RAFT - Click Reaction or a Cautionary Note on the Use of Diazomethane to Methylate RAFT-synthesized Polymers. Australian Journal of Chemistry 2011, 64 (4) , 433. https://doi.org/10.1071/CH10471
    40. M. Alyse Harvison, Peter J. Roth, Thomas P. Davis, Andrew B. Lowe. End Group Reactions of RAFT-Prepared (Co)Polymers. Australian Journal of Chemistry 2011, 64 (8) , 992. https://doi.org/10.1071/CH11152
    41. Thomas Paulöhrl, Andrew J. Inglis, Christopher Barner‐Kowollik. Reversible Diels‐Alder Chemistry as a Modular Polymeric Color Switch. Advanced Materials 2010, 22 (25) , 2788-2791. https://doi.org/10.1002/adma.201000361
    42. Leena Nebhani, Detlef Schmiedl, Leonie Barner, Christopher Barner‐Kowollik. Quantification of Grafting Densities Achieved via Modular “Grafting‐to” Approaches onto Divinylbenzene Microspheres. Advanced Functional Materials 2010, 20 (12) , 2010-2020. https://doi.org/10.1002/adfm.200902330
    43. Jakov Kulis, Craig A. Bell, Aaron S. Micallef, Michael J. Monteiro. Kinetic analysis of nitroxide radical coupling reactions mediated by CuBr. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (10) , 2214-2223. https://doi.org/10.1002/pola.23991
    44. Andrew B. Lowe. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1 (1) , 17-36. https://doi.org/10.1039/B9PY00216B
    45. Till Gruendling, Steffen Weidner, Jana Falkenhagen, Christopher Barner-Kowollik. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polymer Chemistry 2010, 1 (5) , 599. https://doi.org/10.1039/b9py00347a
    46. Ulrich Mansfeld, Christian Pietsch, Richard Hoogenboom, C. Remzi Becer, Ulrich S. Schubert. Clickable initiators, monomers and polymers in controlled radical polymerizations – a prospective combination in polymer science. Polymer Chemistry 2010, 1 (10) , 1560. https://doi.org/10.1039/c0py00168f
    47. Jakov Kulis, Craig A. Bell, Aaron S. Micallef, Michael J. Monteiro. Ultrafast and Reversible Multiblock Formation by the SET-Nitroxide Radical Coupling Reaction. Australian Journal of Chemistry 2010, 63 (8) , 1227. https://doi.org/10.1071/CH10092
    48. Leena Nebhani, Peter Gerstel, Petia Atanasova, Michael Bruns, Christopher Barner‐Kowollik. Efficient and mild modification of Si surfaces via orthogonal hetero Diels‐Alder chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (24) , 7090-7095. https://doi.org/10.1002/pola.23756
    49. Leena Nebhani, Sebastian Sinnwell, Ching Yeh Lin, Michelle L. Coote, Martina H. Stenzel, Christopher Barner‐Kowollik. Strongly electron deficient sulfonyldithioformate based RAFT agents for hetero Diels‐Alder conjugation: Computational design and experimental evaluation. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (22) , 6053-6071. https://doi.org/10.1002/pola.23647
    50. Andrew J. Inglis, Martina H. Stenzel, Christopher Barner‐Kowollik. Ultra‐Fast RAFT‐HDA Click Conjugation: An Efficient Route to High Molecular Weight Block Copolymers. Macromolecular Rapid Communications 2009, 30 (21) , 1792-1798. https://doi.org/10.1002/marc.200900363
    51. Sebastian Sinnwell, Mieke Lammens, Martina H. Stenzel, Filip E. Du Prez, Christopher Barner‐Kowollik. Efficient access to multi‐arm star block copolymers by a combination of ATRP and RAFT‐HDA click chemistry. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (8) , 2207-2213. https://doi.org/10.1002/pola.23299
    52. Graeme Moad, Ezio Rizzardo, San H. Thang. Living Radical Polymerization by the RAFT Process - A Second Update. Australian Journal of Chemistry 2009, 62 (11) , 1402. https://doi.org/10.1071/CH09311

    Macromolecules

    Cite this: Macromolecules 2008, 41, 21, 7904–7912
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma8013959
    Published October 14, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1417

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.