ACS Publications. Most Trusted. Most Cited. Most Read
Quantifying the Efficiency of Photoinitiation Processes in Methyl Methacrylate Free Radical Polymerization via Electrospray Ionization Mass Spectrometry
My Activity
    Article

    Quantifying the Efficiency of Photoinitiation Processes in Methyl Methacrylate Free Radical Polymerization via Electrospray Ionization Mass Spectrometry
    Click to copy article linkArticle link copied!

    • Fabian Günzler
      Fabian Günzler
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
    • Edgar H. H. Wong
      Edgar H. H. Wong
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
    • Sandy P. S. Koo
      Sandy P. S. Koo
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
    • Tanja Junkers
      Tanja Junkers
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
    • Christopher Barner-Kowollik*
      Christopher Barner-Kowollik
      Preparative Macromolecular Chemistry, Institut für Technische Chemie and Polymerchemie, Universität Karlsruhe (TH)/Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany, and Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
      * Corresponding author. E-mail: [email protected]
    Other Access Options

    Macromolecules

    Cite this: Macromolecules 2009, 42, 5, 1488–1493
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma802308z
    Published February 17, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Photolytically generated radicals (at a wavelength of 351 nm) derived from the acetophenone-type photoinitiators benzoin (2-hydroxy-1,2-diphenylethanone) and mesitil (1,2-dimesitylethane-1,2-dione) (specifically the benzoyl and mesitoyl radicals) are quantified in their ability to serve as initiating species in methyl methacrylate (MMA) bulk free radical polymerizations at 5 °C. The polymerizations are initiated by the pulsing action of a high-frequency excimer laser (100 Hz) operated at the 351 nm XeF line. The pulsing action of the laser serves to limit the molecular weight of the generated polymer to allow its analysis via electrospray ionization mass spectrometry (ESI-MS) employing a quadrupole ion trap analyzer. MMA-derived propagating radicals terminate to a large proportion via disproportionation. These disproportionation products can be unambiguously detected via ESI-MS. The resulting disproportionation signals can—within each repeat unit and over the entire mass spectrum—be quantitatively evaluated. The ratio of benzoyl and mesitoyl end groups is demonstrated to be independent of the polymer chain length, and no mass bias is observed in the ESI-MS spectra. Benzoin and mesitil are employed in variable ratios in the reaction mixture as a cocktail. A plot of the ratio of benzoyl to mesitoyl end groups vs the ratio of both initiators in the reaction mixture indicates that the benzoyl radical is 8.6 times more likely to initiate the polymerization process than the mesitoyl fragment.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 38 publications.

    1. Oisin J. Shiels, Maria Menti-Platten, Fostino R. B. Bokosi, Brett R. Burns, Sinead T. Keaveney, Paul A. Keller, Philip J. Barker, Adam J. Trevitt. A Photoreactor-Interfaced Mass Spectrometer: An Online Platform to Monitor Photochemical Reactions. Analytical Chemistry 2023, 95 (42) , 15472-15476. https://doi.org/10.1021/acs.analchem.3c03294
    2. Philipp Jöckle, Philipp W. Kamm, Iris Lamparth, Norbert Moszner, Andreas-Neil Unterreiner, Christopher Barner-Kowollik. More than Expected: Overall Initiation Efficiencies of Mono-, Bis-, and Tetraacylgermane Radical Initiators. Macromolecules 2019, 52 (1) , 281-291. https://doi.org/10.1021/acs.macromol.8b02404
    3. Jan P. Menzel, Benjamin B. Noble, Andrea Lauer, Michelle L. Coote, James P. Blinco, and Christopher Barner-Kowollik . Wavelength Dependence of Light-Induced Cycloadditions. Journal of the American Chemical Society 2017, 139 (44) , 15812-15820. https://doi.org/10.1021/jacs.7b08047
    4. Paul H. M. Van Steenberge, Joke Vandenbergh, Marie-Françoise Reyniers, Tanja Junkers, Dagmar R. D’hooge, Guy B. Marin. Kinetic Monte Carlo Generation of Complete Electron Spray Ionization Mass Spectra for Acrylate Macromonomer Synthesis. Macromolecules 2017, 50 (7) , 2625-2636. https://doi.org/10.1021/acs.macromol.7b00333
    5. Elena Frick, Caroline Schweigert, Benjamin B. Noble, Hanna A. Ernst, Andrea Lauer, Yu Liang, Dominik Voll, Michelle L. Coote, Andreas-Neil Unterreiner, and Christopher Barner-Kowollik . Toward a Quantitative Description of Radical Photoinitiator Structure–Reactivity Correlations. Macromolecules 2016, 49 (1) , 80-89. https://doi.org/10.1021/acs.macromol.5b02336
    6. Joke Vandenbergh, Tanja Junkers. Alpha and Omega: Importance of the Nonliving Chain End in RAFT Multiblock Copolymerization. Macromolecules 2014, 47 (15) , 5051-5059. https://doi.org/10.1021/ma500803k
    7. Dominik Voll, Dmytro Neshchadin, Kai Hiltebrandt, Georg Gescheidt, and Christopher Barner-Kowollik . UV-Triggered End Group Conversion of Photo-Initiated Poly(methyl methacrylate). Macromolecules 2012, 45 (15) , 5850-5858. https://doi.org/10.1021/ma301275b
    8. Thomas J. A. Wolf, Dominik Voll, Christopher Barner-Kowollik, and Andreas-Neil Unterreiner . Elucidating the Early Steps in Photoinitiated Radical Polymerization via Femtosecond Pump–Probe Experiments and DFT Calculations. Macromolecules 2012, 45 (5) , 2257-2266. https://doi.org/10.1021/ma202673q
    9. Dominik Voll, Tanja Junkers, Christopher Barner-Kowollik. Quantitative Comparison of the Mesitoyl vs the Benzoyl Fragment in Photoinitiation: A Question of Origin. Macromolecules 2011, 44 (8) , 2542-2551. https://doi.org/10.1021/ma2001977
    10. . Cleavable Radical Photoinitiators. 2021, 55-116. https://doi.org/10.1002/9783527821297.ch3
    11. Emilia Hola, Maciej Pilch, Joanna Ortyl. Thioxanthone Derivatives as a New Class of Organic Photocatalysts for Photopolymerisation Processes and the 3D Printing of Photocurable Resins under Visible Light. Catalysts 2020, 10 (8) , 903. https://doi.org/10.3390/catal10080903
    12. Philipp Jöckle, Iris Lamparth, Norbert Moszner, Christopher Barner-Kowollik, Andreas-Neil Unterreiner. Evidence for ultrafast formation of tribenzoylgermyl radicals originating from tetraacylgermane photoinitiators. Polymer Chemistry 2020, 11 (24) , 3972-3979. https://doi.org/10.1039/D0PY00344A
    13. Kristina Jovic, Tobias Nitsche, Christiane Lang, James P. Blinco, Kevin De Bruycker, Christopher Barner-Kowollik. Hyphenation of size-exclusion chromatography to mass spectrometry for precision polymer analysis – a tutorial review. Polymer Chemistry 2019, 10 (24) , 3241-3256. https://doi.org/10.1039/C9PY00370C
    14. Laurence Charles, Esra Altuntaş. Liquid Chromatography‐Electrospray Ionization Mass Spectrometry of Synthetic Polymers. 2015, 1-26. https://doi.org/10.1002/9780470027318.a9407
    15. Josef Brandt, Kim K. Oehlenschlaeger, Friedrich Georg Schmidt, Christopher Barner‐Kowollik, Albena Lederer. State‐of‐the‐Art Analytical Methods for Assessing Dynamic Bonding Soft Matter Materials. Advanced Materials 2014, 26 (33) , 5758-5785. https://doi.org/10.1002/adma.201400521
    16. Elena Frick, Hanna A. Ernst, Dominik Voll, Thomas J. A. Wolf, Andreas-Neil Unterreiner, Christopher Barner-Kowollik. Studying the polymerization initiation efficiency of acetophenone-type initiators via PLP-ESI-MS and femtosecond spectroscopy. Polym. Chem. 2014, 5 (17) , 5053-5068. https://doi.org/10.1039/C4PY00418C
    17. Dominik Voll, Tanja Junkers, Christopher Barner‐Kowollik. A qualitative and quantitative post‐mortem analysis: Studying free‐radical initiation processes via soft ionization mass spectrometry. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (14) , 2739-2757. https://doi.org/10.1002/pola.26076
    18. . One‐Component Photoinitiating Systems. 2012, 127-197. https://doi.org/10.1002/9783527648245.ch8
    19. Markus Griesser, Claudia Dworak, Sigrid Jauk, Michael Höfer, Arnulf Rosspeintner, Gottfried Grabner, Robert Liska, Georg Gescheidt. Photoinitiators with β-Phenylogous Cleavage: An Evaluation of Reaction Mechanisms and Performance. Macromolecules 2012, 45 (4) , 1737-1745. https://doi.org/10.1021/ma3000225
    20. Dominik Voll, Andrea Hufendiek, Tanja Junkers, Christopher Barner‐Kowollik. Quantifying Photoinitiation Efficiencies in a Multiphotoinitiated Free‐Radical Polymerization. Macromolecular Rapid Communications 2012, 33 (1) , 47-53. https://doi.org/10.1002/marc.201100655
    21. Esra Altuntaş, Katrin Knop, Lutz Tauhardt, Kristian Kempe, Anna C. Crecelius, Michael Jäger, Martin D. Hager, Ulrich S. Schubert. Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization (MALDI). Journal of Mass Spectrometry 2012, 47 (1) , 105-114. https://doi.org/10.1002/jms.2032
    22. Fredrik Nyström, Alexander H. Soeriyadi, Cyrille Boyer, Per B. Zetterlund, Michael R. Whittaker. End‐group fidelity of copper(0)‐meditated radical polymerization at high monomer conversion: an ESI‐MS investigation. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (24) , 5313-5321. https://doi.org/10.1002/pola.25010
    23. Michael Buback, Gregory T. Russell, Philipp Vana. Elucidation of Reaction Mechanisms: Conventional Radical Polymerization. 2011, 319-372. https://doi.org/10.1002/9783527641826.ch10
    24. Jana Falkenhagen, Steffen Weidner. Hyphenated Techniques. 2011, 209-235. https://doi.org/10.1002/9783527641826.ch7
    25. Till Gruendling, William E. Wallace, Christopher Barner‐Kowollik, Charles M. Guttman, Anthony J. Kearsly. Automated Data Processing and Quantification in Polymer Mass Spectrometry. 2011, 237-280. https://doi.org/10.1002/9783527641826.ch8
    26. Inga C. Wienhöfer, Heinrich Luftmann, Armido Studer. Nitroxide-Mediated Copolymerization of MMA with Styrene: Sequence Analysis of Oligomers by Using Mass Spectrometry. Macromolecules 2011, 44 (8) , 2510-2523. https://doi.org/10.1021/ma1029482
    27. Andrew J. Inglis, Christopher Barner-Kowollik. Visualizing the efficiency of rapid modular block copolymer construction. Polym. Chem. 2011, 2 (1) , 126-136. https://doi.org/10.1039/C0PY00189A
    28. Esra Altuntaş, Kristian Kempe, Anna Crecelius, Richard Hoogenboom, Ulrich S. Schubert. ESI‐MS & MS/MS Analysis of Poly(2‐oxazoline)s with Different Side Groups. Macromolecular Chemistry and Physics 2010, 211 (21) , 2312-2322. https://doi.org/10.1002/macp.201000323
    29. Gene Hart‐Smith, Christopher Barner‐Kowollik. Contemporary Mass Spectrometry and the Analysis of Synthetic Polymers: Trends, Techniques and Untapped Potential. Macromolecular Chemistry and Physics 2010, 211 (14) , 1507-1529. https://doi.org/10.1002/macp.201000107
    30. Sandy P. S. Koo, Milan M. Stamenović, R. Arun Prasath, Andrew J. Inglis, Filip E. Du Prez, Christopher Barner‐Kowollik, Wim Van Camp, Tanja Junker. Limitations of radical thiol‐ene reactions for polymer–polymer conjugation. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (8) , 1699-1713. https://doi.org/10.1002/pola.23933
    31. Till Gruendling, Tanja Junkers, Michael Guilhaus, Christopher Barner‐Kowollik. Mark–Houwink Parameters for the Universal Calibration of Acrylate, Methacrylate and Vinyl Acetate Polymers Determined by Online Size‐Exclusion Chromatography—Mass Spectrometry. Macromolecular Chemistry and Physics 2010, 211 (5) , 520-528. https://doi.org/10.1002/macp.200900323
    32. Till Gruendling, Dominik Voll, Michael Guilhaus, Christopher Barner‐Kowollik. A Perfect Couple: PLP/SEC/ESI‐MS for the Accurate Determination of Propagation Rate Coefficients in Free Radical Polymerization. Macromolecular Chemistry and Physics 2010, 211 (1) , 80-90. https://doi.org/10.1002/macp.200900394
    33. Till Gruendling, Steffen Weidner, Jana Falkenhagen, Christopher Barner-Kowollik. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polymer Chemistry 2010, 1 (5) , 599. https://doi.org/10.1039/b9py00347a
    34. Atsushi Kajiwara. Time‐Resolved Electron Spin Resonance Spectroscopy of Radicals Formed During Free Radical Polymerizations of Alkyl Acrylates. Macromolecular Rapid Communications 2009, 30 (23) , 1975-1980. https://doi.org/10.1002/marc.200900606
    35. Christopher Barner‐Kowollik. Radikalische Polymerisation: Kann man das Unumkehrbare umkehren?. Angewandte Chemie 2009, 121 (49) , 9386-9388. https://doi.org/10.1002/ange.200905145
    36. Christopher Barner‐Kowollik. Radical Polymerization: Reversing the Irreversible?. Angewandte Chemie International Edition 2009, 48 (49) , 9222-9224. https://doi.org/10.1002/anie.200905145
    37. Michael Buback, Holm Frauendorf, Fabian Günzler, Felix Huff, Philipp Vana. Determining Initiator Efficiency in Radical Polymerization by Electrospray‐Ionization Mass Spectrometry. Macromolecular Chemistry and Physics 2009, 210 (19) , 1591-1599. https://doi.org/10.1002/macp.200900237
    38. . Current literature in mass spectrometry. Journal of Mass Spectrometry 2009, 1262-1273. https://doi.org/10.1002/jms.1493

    Macromolecules

    Cite this: Macromolecules 2009, 42, 5, 1488–1493
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ma802308z
    Published February 17, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    829

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.