ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Copolymerization and Terpolymerization of CO2 and Epoxides Using a Soluble Zinc Crotonate Catalyst Precursor

View Author Information
Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842
Cite this: Macromolecules 1999, 32, 7, 2137–2140
Publication Date (Web):March 12, 1999
https://doi.org/10.1021/ma9817471
Copyright © 1999 American Chemical Society

    Article Views

    887

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (58 KB)

    Abstract

    A soluble catalyst precursor derived from the reaction of zinc bis(trimethylsilyl)amide, Zn[N(SiMe3)2]2, and crotonic acid has been found to be extremely active toward the copolymerization of cyclohexene oxide and carbon dioxide with turnover frequencies approaching 35 g/g of Zn/h at 80 °C. This catalyst precursor was also demonstrated to be an efficient terpolymerization catalyst when propylene oxide or styrene oxide was added to the cyclohexene oxide/CO2 feed. Extensive characterization of the metal complex proved difficult, but 31P NMR studies have shown that only 10% of the anticipated epoxide binding sites were available for catalysis. This suggests that the complex has several structures at its disposal, only one of which is conducive to copolymerization.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 43 publications.

    1. Stephan Enthaler . Rise of the Zinc Age in Homogeneous Catalysis?. ACS Catalysis 2013, 3 (2) , 150-158. https://doi.org/10.1021/cs300685q
    2. Kiyoshi Nishioka, Hidetoshi Goto, and Hiroshi Sugimoto . Dual Catalyst System for Asymmetric Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Chiral Aluminum Complexes: Lewis Base as Catalyst Activator and Lewis Acid as Monomer Activator. Macromolecules 2012, 45 (20) , 8172-8192. https://doi.org/10.1021/ma301696d
    3. Donald J. Darensbourg,, Jacob R. Wildeson, and, Jason C. Yarbrough. Solid-State Structures of Zinc(II) Benzoate Complexes. Catalyst Precursors for the Coupling of Carbon Dioxide and Epoxides. Inorganic Chemistry 2002, 41 (4) , 973-980. https://doi.org/10.1021/ic0107983
    4. Donald J. Darensbourg,, Jacob R. Wildeson,, Jason C. Yarbrough, and, Joseph H. Reibenspies. Bis 2,6-difluorophenoxide Dimeric Complexes of Zinc and Cadmium and Their Phosphine Adducts:  Lessons Learned Relative to Carbon Dioxide/Cyclohexene Oxide Alternating Copolymerization Processes Catalyzed by Zinc Phenoxides. Journal of the American Chemical Society 2000, 122 (50) , 12487-12496. https://doi.org/10.1021/ja002855h
    5. David K. Tran, Ahmed Z. Rashad, Donald J. Darensbourg, Karen L. Wooley. Sustainable synthesis of CO 2 -derived polycarbonates from d -xylose. Polymer Chemistry 2021, 12 (37) , 5271-5278. https://doi.org/10.1039/D1PY00784J
    6. Z. N. Nysenko, E. E. Said-Galiev, M. I. Buzin, G. G. Nikiforova, M. M. Il’in, V. V. Rusak, A. M. Sakharov. Synthesis, structures, and thermal properties of terpolymers of propylene oxide, carbon dioxide, and cyclohexene oxide. Russian Chemical Bulletin 2019, 68 (11) , 2119-2125. https://doi.org/10.1007/s11172-019-2676-z
    7. Richard M. Gauld, Alan R. Kennedy, Ross McLellan, Jim Barker, Jacqueline Reid, Robert E. Mulvey. Diverse outcomes of CO 2 fixation using alkali metal amides including formation of a heterobimetallic lithium–sodium carbamato-anhydride via lithium–sodium bis-hexamethyldisilazide. Chemical Communications 2019, 55 (10) , 1478-1481. https://doi.org/10.1039/C8CC08308H
    8. Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2019, 323-347. https://doi.org/10.1007/978-1-4939-9060-3_1013
    9. Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2018, 1-25. https://doi.org/10.1007/978-1-4939-2493-6_1013-1
    10. Abbas Jawad, Fateme Rezaei, Ali A. Rownaghi. Porous polymeric hollow fibers as bifunctional catalysts for CO2 conversion to cyclic carbonates. Journal of CO2 Utilization 2017, 21 , 589-596. https://doi.org/10.1016/j.jcou.2017.09.007
    11. Hongye Zhang, Binyuan Liu, Huining Ding, Junwu Chen, Zhongyu Duan. Polycarbonates derived from propylene oxide, CO2, and 4-vinyl cyclohexene oxides terpolymerization catalyzed by bifunctional salcyCoIIINO3 complex and its post-polymerization modification. Polymer 2017, 129 , 5-11. https://doi.org/10.1016/j.polymer.2017.09.033
    12. Angela Dibenedetto, Antonella Angelini, Paolo Stufano. Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. Journal of Chemical Technology & Biotechnology 2014, 89 (3) , 334-353. https://doi.org/10.1002/jctb.4229
    13. Angela Dibenedetto, Antonella Angelini. Synthesis of Organic Carbonates. 2014, 25-81. https://doi.org/10.1016/B978-0-12-420221-4.00002-0
    14. Yonghang Xu, Min Xiao, Shuanjin Wang, Mei Pan, Yuezhong Meng. Activities comparison of Schiff base zinc and tri-zinc complexes for alternating copolymerization of CO2 and epoxides. Polymer Chemistry 2014, 5 (12) , 3838. https://doi.org/10.1039/c4py00008k
    15. Dipankar Dey, Subhadip Roy, R.N. Dutta Purkayastha, Raghavaiah Pallepogu, Patrick McArdle. Zinc carboxylates containing diimine: Synthesis, characterization, crystal structure, and luminescence. Journal of Molecular Structure 2013, 1053 , 127-133. https://doi.org/10.1016/j.molstruc.2013.09.009
    16. Eugenia Katsoulakou, Despina Dermitzaki, Konstantis F. Konidaris, Eleni E. Moushi, Catherine P. Raptopoulou, Vassilis Psycharis, Anastasios J. Tasiopoulos, Vlasoula Bekiari, Evy Manessi-Zoupa, Spyros P. Perlepes, Theocharis C. Stamatatos. Hexanuclear zinc(II) carboxylate complexes from the use of pyridine-2,6-dimethanol: Synthetic, structural and photoluminescence studies. Polyhedron 2013, 52 , 467-475. https://doi.org/10.1016/j.poly.2012.08.049
    17. Rafal Kruszynski, Tomasz Sieranski, Bartlomiej Lewinski, Agata Trzesowska-Kruszynska, Ewelina Czubacka. The Novel Polymorphic Form of Bis(3,5,7-triaza-1-azoniatricyclo[ 3 .3 .1 .1 3,7 ]decane) bis( μ 4 -oxo)-tris( μ 3 -oxo)-nonakis( μ 2 -oxo)-nonaaqua-decaoxo-hepta-molybdenum-di-zinc(II) dihydrate, Synthesis, and Properties. International Journal of Inorganic Chemistry 2012, 2012 , 1-7. https://doi.org/10.1155/2012/516832
    18. Maximilian W. Lehenmeier, Christian Bruckmeier, Stephan Klaus, Joachim E. Dengler, Peter Deglmann, Anna-Katharina Ott, Bernhard Rieger. Differences in Reactivity of Epoxides in the Copolymerisation with Carbon Dioxide by Zinc-Based Catalysts: Propylene Oxide versus Cyclohexene Oxide. Chemistry - A European Journal 2011, 17 (32) , 8858-8869. https://doi.org/10.1002/chem.201100578
    19. W. Marjit Singh, Bigyan R. Jali, Babulal Das, Jubaraj B. Baruah. Synthesis, characterization, and reactivity of zinc carboxylate complexes of 2,3-pyridine dicarboxylic acid and (3-oxo-2,3-dihydro-benzo[1,4]oxazin-4-yl)acetic acid. Inorganica Chimica Acta 2011, 372 (1) , 37-41. https://doi.org/10.1016/j.ica.2010.08.045
    20. Dipankar Dey, Subhadip Roy, R.N. Dutta Purkayastha, Raghavaiah Pallepogu, Louise Male, Vickie Mckee. Syntheses, characterization, and crystal structures of two zinc(II) carboxylates containing pyridine. Journal of Coordination Chemistry 2011, 64 (7) , 1165-1176. https://doi.org/10.1080/00958972.2011.564278
    21. Yusheng Qin, Xianhong Wang. Carbon dioxide‐based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnology Journal 2010, 5 (11) , 1164-1180. https://doi.org/10.1002/biot.201000134
    22. Danielle Ballivet‐Tkatchenko, Angela Dibenedetto. Synthesis of Linear and Cyclic Carbonates. 2010, 169-212. https://doi.org/10.1002/9783527629916.ch7
    23. Konstantis F. Konidaris, Michalis Kaplanis, Catherine P. Raptopoulou, Spyros P. Perlepes, Evy Manessi-Zoupa, Eugenia Katsoulakou. Dinuclear versus trinuclear complex formation in zinc(II) benzoate/pyridyl oxime chemistry depending on the position of the oxime group. Polyhedron 2009, 28 (15) , 3243-3250. https://doi.org/10.1016/j.poly.2009.05.076
    24. Alberto Roldan, Daniel Torres, Josep M. Ricart, Francesc Illas. On the effectiveness of partial oxidation of propylene by gold: A density functional theory study. Journal of Molecular Catalysis A: Chemical 2009, 306 (1-2) , 6-10. https://doi.org/10.1016/j.molcata.2009.02.013
    25. Anirban Karmakar, Jubaraj B. Baruah. Synthesis and characterization of zinc benzoate complexes through combined solid and solution phase reactions. Polyhedron 2008, 27 (17) , 3409-3416. https://doi.org/10.1016/j.poly.2008.07.036
    26. Hiroshi Sugimoto, Ayaka Ogawa. Alternating copolymerization of carbon dioxide and epoxide by dinuclear zinc Schiff base complex. Reactive and Functional Polymers 2007, 67 (11) , 1277-1283. https://doi.org/10.1016/j.reactfunctpolym.2007.07.008
    27. Michele Aresta, Angela Dibenedetto. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions 2007, 17 (28) , 2975. https://doi.org/10.1039/b700658f
    28. Angela Dibenedetto, Michele Aresta, Francesco Nocito, Carlo Pastore, Anna M. Venezia, Ekaterina Chirykalova, Vladimir I. Kononenko, Vladimir G. Shevchenko, Irina A. Chupova. Synthesis of cyclic carbonates from epoxides: Use of reticular oxygen of Al2O3 or Al2O3-supported CeOx for the selective epoxidation of propene. Catalysis Today 2006, 115 (1-4) , 117-123. https://doi.org/10.1016/j.cattod.2006.02.062
    29. J. T. Wang, D. Shu, M. Xiao, Y. Z. Meng. Copolymerization of carbon dioxide and propylene oxide using zinc adipate as catalyst. Journal of Applied Polymer Science 2006, 99 (1) , 200-206. https://doi.org/10.1002/app.22229
    30. Gerrit A. Luinstra, Gerhard R. Haas, Ferenc Molnar, Volker Bernhart, Robert Eberhardt, Bernhard Rieger. On the Formation of Aliphatic Polycarbonates from Epoxides with Chromium(III) and Aluminum(III) Metal-Salen Complexes. Chemistry - A European Journal 2005, 11 (21) , 6298-6314. https://doi.org/10.1002/chem.200500356
    31. Geoffrey W. Coates, David R. Moore. Diskrete Metallkatalysatoren zur Copolymerisation von CO2 mit Epoxiden: Entdeckung, Reaktivität, Optimierung, Mechanismus. Angewandte Chemie 2004, 116 (48) , 6784-6806. https://doi.org/10.1002/ange.200460442
    32. Geoffrey W. Coates, David R. Moore. Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides: Discovery, Reactivity, Optimization, and Mechanism. Angewandte Chemie International Edition 2004, 43 (48) , 6618-6639. https://doi.org/10.1002/anie.200460442
    33. Malcolm H. Chisholm, Zhiping Zhou. Concerning the Mechanism of the Ring Opening of Propylene Oxide in the Copolymerization of Propylene Oxide and Carbon Dioxide To Give Poly(propylene carbonate). Journal of the American Chemical Society 2004, 126 (35) , 11030-11039. https://doi.org/10.1021/ja0394232
    34. J.-S. Kim, M. Ree, S.W. Lee, W. Oh, S. Baek, B. Lee, T.J. Shin, K.J. Kim, B. Kim, J. Lüning. NEXAFS spectroscopy study of the surface properties of zinc glutarate and its reactivity with carbon dioxide and propylene oxide. Journal of Catalysis 2003, 218 (2) , 386-395. https://doi.org/10.1016/S0021-9517(03)00122-2
    35. Q Zhu, YZ Meng, SC Tjong, YM Zhang, W Wan. Catalytic synthesis and characterization of an alternating copolymer from carbon dioxide and propylene oxide using zinc pimelate. Polymer International 2003, 52 (5) , 799-804. https://doi.org/10.1002/pi.1157
    36. Min Zhang, Liban Chen, Gang Qin, Baohua Liu, Zhairong Yan, Zhuomei Li. Copolymerization of CO2 and cyclohexene oxide using a novel polymeric diimide catalyst. Journal of Applied Polymer Science 2003, 87 (7) , 1123-1128. https://doi.org/10.1002/app.11564
    37. Michele Aresta, Angela Dibenedetto. Carbon Dioxide Fixation into Organic Compounds. 2003, 211-260. https://doi.org/10.1007/978-94-017-0245-4_9
    38. V.C. Gibson, E.L. Marshall. Metal Complexes as Catalysts for Polymerization Reactions. 2003, 1-74. https://doi.org/10.1016/B0-08-043748-6/09010-1
    39. Y. Z. Meng, L. C. Du, S. C. Tiong, Q. Zhu, Allan S. Hay. Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (21) , 3579-3591. https://doi.org/10.1002/pola.10452
    40. Richard H. Heyn. Carbon Dioxide Conversion. 2002https://doi.org/10.1002/0471227617.eoc038
    41. Ming Cheng, David R. Moore, Joseph J. Reczek, Bradley M. Chamberlain, Emil B. Lobkovsky, Geoffrey W. Coates. Single-Site β-Diiminate Zinc Catalysts for the Alternating Copolymerization of CO 2 and Epoxides:  Catalyst Synthesis and Unprecedented Polymerization Activity. Journal of the American Chemical Society 2001, 123 (36) , 8738-8749. https://doi.org/10.1021/ja003850n
    42. Tsung-Ju Hsu, Chung-Sung Tan. Synthesis of polyethercarbonate from carbon dioxide and cyclohexene oxide by yttrium–metal coordination catalyst. Polymer 2001, 42 (12) , 5143-5150. https://doi.org/10.1016/S0032-3861(01)00006-4
    43. Walter Leitner. Reactions in Supercritical Carbon Dioxide (scCO2). 1999, 107-132. https://doi.org/10.1007/3-540-48664-X_5

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect