Copolymerization and Terpolymerization of CO2 and Epoxides Using a Soluble Zinc Crotonate Catalyst Precursor
Abstract
A soluble catalyst precursor derived from the reaction of zinc bis(trimethylsilyl)amide, Zn[N(SiMe3)2]2, and crotonic acid has been found to be extremely active toward the copolymerization of cyclohexene oxide and carbon dioxide with turnover frequencies approaching 35 g/g of Zn/h at 80 °C. This catalyst precursor was also demonstrated to be an efficient terpolymerization catalyst when propylene oxide or styrene oxide was added to the cyclohexene oxide/CO2 feed. Extensive characterization of the metal complex proved difficult, but 31P NMR studies have shown that only 10% of the anticipated epoxide binding sites were available for catalysis. This suggests that the complex has several structures at its disposal, only one of which is conducive to copolymerization.
*
In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.
Cited By
This article is cited by 43 publications.
- Stephan Enthaler . Rise of the Zinc Age in Homogeneous Catalysis?. ACS Catalysis 2013, 3 (2) , 150-158. https://doi.org/10.1021/cs300685q
- Kiyoshi Nishioka, Hidetoshi Goto, and Hiroshi Sugimoto . Dual Catalyst System for Asymmetric Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Chiral Aluminum Complexes: Lewis Base as Catalyst Activator and Lewis Acid as Monomer Activator. Macromolecules 2012, 45 (20) , 8172-8192. https://doi.org/10.1021/ma301696d
- Donald J. Darensbourg,, Jacob R. Wildeson, and, Jason C. Yarbrough. Solid-State Structures of Zinc(II) Benzoate Complexes. Catalyst Precursors for the Coupling of Carbon Dioxide and Epoxides. Inorganic Chemistry 2002, 41 (4) , 973-980. https://doi.org/10.1021/ic0107983
- Donald J. Darensbourg,, Jacob R. Wildeson,, Jason C. Yarbrough, and, Joseph H. Reibenspies. Bis 2,6-difluorophenoxide Dimeric Complexes of Zinc and Cadmium and Their Phosphine Adducts: Lessons Learned Relative to Carbon Dioxide/Cyclohexene Oxide Alternating Copolymerization Processes Catalyzed by Zinc Phenoxides. Journal of the American Chemical Society 2000, 122 (50) , 12487-12496. https://doi.org/10.1021/ja002855h
- David K. Tran, Ahmed Z. Rashad, Donald J. Darensbourg, Karen L. Wooley. Sustainable synthesis of CO 2 -derived polycarbonates from d -xylose. Polymer Chemistry 2021, 12 (37) , 5271-5278. https://doi.org/10.1039/D1PY00784J
- Z. N. Nysenko, E. E. Said-Galiev, M. I. Buzin, G. G. Nikiforova, M. M. Il’in, V. V. Rusak, A. M. Sakharov. Synthesis, structures, and thermal properties of terpolymers of propylene oxide, carbon dioxide, and cyclohexene oxide. Russian Chemical Bulletin 2019, 68 (11) , 2119-2125. https://doi.org/10.1007/s11172-019-2676-z
- Richard M. Gauld, Alan R. Kennedy, Ross McLellan, Jim Barker, Jacqueline Reid, Robert E. Mulvey. Diverse outcomes of CO 2 fixation using alkali metal amides including formation of a heterobimetallic lithium–sodium carbamato-anhydride via lithium–sodium bis-hexamethyldisilazide. Chemical Communications 2019, 55 (10) , 1478-1481. https://doi.org/10.1039/C8CC08308H
- Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2019, 323-347. https://doi.org/10.1007/978-1-4939-9060-3_1013
- Yusheng Qin, Xianhong Wang. Conversion of CO2 into Polymers. 2018, 1-25. https://doi.org/10.1007/978-1-4939-2493-6_1013-1
- Abbas Jawad, Fateme Rezaei, Ali A. Rownaghi. Porous polymeric hollow fibers as bifunctional catalysts for CO2 conversion to cyclic carbonates. Journal of CO2 Utilization 2017, 21 , 589-596. https://doi.org/10.1016/j.jcou.2017.09.007
- Hongye Zhang, Binyuan Liu, Huining Ding, Junwu Chen, Zhongyu Duan. Polycarbonates derived from propylene oxide, CO2, and 4-vinyl cyclohexene oxides terpolymerization catalyzed by bifunctional salcyCoIIINO3 complex and its post-polymerization modification. Polymer 2017, 129 , 5-11. https://doi.org/10.1016/j.polymer.2017.09.033
- Angela Dibenedetto, Antonella Angelini, Paolo Stufano. Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. Journal of Chemical Technology & Biotechnology 2014, 89 (3) , 334-353. https://doi.org/10.1002/jctb.4229
- Angela Dibenedetto, Antonella Angelini. Synthesis of Organic Carbonates. 2014, 25-81. https://doi.org/10.1016/B978-0-12-420221-4.00002-0
- Yonghang Xu, Min Xiao, Shuanjin Wang, Mei Pan, Yuezhong Meng. Activities comparison of Schiff base zinc and tri-zinc complexes for alternating copolymerization of CO2 and epoxides. Polymer Chemistry 2014, 5 (12) , 3838. https://doi.org/10.1039/c4py00008k
- Dipankar Dey, Subhadip Roy, R.N. Dutta Purkayastha, Raghavaiah Pallepogu, Patrick McArdle. Zinc carboxylates containing diimine: Synthesis, characterization, crystal structure, and luminescence. Journal of Molecular Structure 2013, 1053 , 127-133. https://doi.org/10.1016/j.molstruc.2013.09.009
- Eugenia Katsoulakou, Despina Dermitzaki, Konstantis F. Konidaris, Eleni E. Moushi, Catherine P. Raptopoulou, Vassilis Psycharis, Anastasios J. Tasiopoulos, Vlasoula Bekiari, Evy Manessi-Zoupa, Spyros P. Perlepes, Theocharis C. Stamatatos. Hexanuclear zinc(II) carboxylate complexes from the use of pyridine-2,6-dimethanol: Synthetic, structural and photoluminescence studies. Polyhedron 2013, 52 , 467-475. https://doi.org/10.1016/j.poly.2012.08.049
- Rafal Kruszynski, Tomasz Sieranski, Bartlomiej Lewinski, Agata Trzesowska-Kruszynska, Ewelina Czubacka. The Novel Polymorphic Form of Bis(3,5,7-triaza-1-azoniatricyclo[ 3 .3 .1 .1 3,7 ]decane) bis( μ 4 -oxo)-tris( μ 3 -oxo)-nonakis( μ 2 -oxo)-nonaaqua-decaoxo-hepta-molybdenum-di-zinc(II) dihydrate, Synthesis, and Properties. International Journal of Inorganic Chemistry 2012, 2012 , 1-7. https://doi.org/10.1155/2012/516832
- Maximilian W. Lehenmeier, Christian Bruckmeier, Stephan Klaus, Joachim E. Dengler, Peter Deglmann, Anna-Katharina Ott, Bernhard Rieger. Differences in Reactivity of Epoxides in the Copolymerisation with Carbon Dioxide by Zinc-Based Catalysts: Propylene Oxide versus Cyclohexene Oxide. Chemistry - A European Journal 2011, 17 (32) , 8858-8869. https://doi.org/10.1002/chem.201100578
- W. Marjit Singh, Bigyan R. Jali, Babulal Das, Jubaraj B. Baruah. Synthesis, characterization, and reactivity of zinc carboxylate complexes of 2,3-pyridine dicarboxylic acid and (3-oxo-2,3-dihydro-benzo[1,4]oxazin-4-yl)acetic acid. Inorganica Chimica Acta 2011, 372 (1) , 37-41. https://doi.org/10.1016/j.ica.2010.08.045
- Dipankar Dey, Subhadip Roy, R.N. Dutta Purkayastha, Raghavaiah Pallepogu, Louise Male, Vickie Mckee. Syntheses, characterization, and crystal structures of two zinc(II) carboxylates containing pyridine. Journal of Coordination Chemistry 2011, 64 (7) , 1165-1176. https://doi.org/10.1080/00958972.2011.564278
- Yusheng Qin, Xianhong Wang. Carbon dioxide‐based copolymers: Environmental benefits of PPC, an industrially viable catalyst. Biotechnology Journal 2010, 5 (11) , 1164-1180. https://doi.org/10.1002/biot.201000134
- Danielle Ballivet‐Tkatchenko, Angela Dibenedetto. Synthesis of Linear and Cyclic Carbonates. 2010, 169-212. https://doi.org/10.1002/9783527629916.ch7
- Konstantis F. Konidaris, Michalis Kaplanis, Catherine P. Raptopoulou, Spyros P. Perlepes, Evy Manessi-Zoupa, Eugenia Katsoulakou. Dinuclear versus trinuclear complex formation in zinc(II) benzoate/pyridyl oxime chemistry depending on the position of the oxime group. Polyhedron 2009, 28 (15) , 3243-3250. https://doi.org/10.1016/j.poly.2009.05.076
- Alberto Roldan, Daniel Torres, Josep M. Ricart, Francesc Illas. On the effectiveness of partial oxidation of propylene by gold: A density functional theory study. Journal of Molecular Catalysis A: Chemical 2009, 306 (1-2) , 6-10. https://doi.org/10.1016/j.molcata.2009.02.013
- Anirban Karmakar, Jubaraj B. Baruah. Synthesis and characterization of zinc benzoate complexes through combined solid and solution phase reactions. Polyhedron 2008, 27 (17) , 3409-3416. https://doi.org/10.1016/j.poly.2008.07.036
- Hiroshi Sugimoto, Ayaka Ogawa. Alternating copolymerization of carbon dioxide and epoxide by dinuclear zinc Schiff base complex. Reactive and Functional Polymers 2007, 67 (11) , 1277-1283. https://doi.org/10.1016/j.reactfunctpolym.2007.07.008
- Michele Aresta, Angela Dibenedetto. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Transactions 2007, 17 (28) , 2975. https://doi.org/10.1039/b700658f
- Angela Dibenedetto, Michele Aresta, Francesco Nocito, Carlo Pastore, Anna M. Venezia, Ekaterina Chirykalova, Vladimir I. Kononenko, Vladimir G. Shevchenko, Irina A. Chupova. Synthesis of cyclic carbonates from epoxides: Use of reticular oxygen of Al2O3 or Al2O3-supported CeOx for the selective epoxidation of propene. Catalysis Today 2006, 115 (1-4) , 117-123. https://doi.org/10.1016/j.cattod.2006.02.062
- J. T. Wang, D. Shu, M. Xiao, Y. Z. Meng. Copolymerization of carbon dioxide and propylene oxide using zinc adipate as catalyst. Journal of Applied Polymer Science 2006, 99 (1) , 200-206. https://doi.org/10.1002/app.22229
- Gerrit A. Luinstra, Gerhard R. Haas, Ferenc Molnar, Volker Bernhart, Robert Eberhardt, Bernhard Rieger. On the Formation of Aliphatic Polycarbonates from Epoxides with Chromium(III) and Aluminum(III) Metal-Salen Complexes. Chemistry - A European Journal 2005, 11 (21) , 6298-6314. https://doi.org/10.1002/chem.200500356
- Geoffrey W. Coates, David R. Moore. Diskrete Metallkatalysatoren zur Copolymerisation von CO2 mit Epoxiden: Entdeckung, Reaktivität, Optimierung, Mechanismus. Angewandte Chemie 2004, 116 (48) , 6784-6806. https://doi.org/10.1002/ange.200460442
- Geoffrey W. Coates, David R. Moore. Discrete Metal-Based Catalysts for the Copolymerization of CO2 and Epoxides: Discovery, Reactivity, Optimization, and Mechanism. Angewandte Chemie International Edition 2004, 43 (48) , 6618-6639. https://doi.org/10.1002/anie.200460442
- Malcolm H. Chisholm, Zhiping Zhou. Concerning the Mechanism of the Ring Opening of Propylene Oxide in the Copolymerization of Propylene Oxide and Carbon Dioxide To Give Poly(propylene carbonate). Journal of the American Chemical Society 2004, 126 (35) , 11030-11039. https://doi.org/10.1021/ja0394232
- J.-S. Kim, M. Ree, S.W. Lee, W. Oh, S. Baek, B. Lee, T.J. Shin, K.J. Kim, B. Kim, J. Lüning. NEXAFS spectroscopy study of the surface properties of zinc glutarate and its reactivity with carbon dioxide and propylene oxide. Journal of Catalysis 2003, 218 (2) , 386-395. https://doi.org/10.1016/S0021-9517(03)00122-2
- Q Zhu, YZ Meng, SC Tjong, YM Zhang, W Wan. Catalytic synthesis and characterization of an alternating copolymer from carbon dioxide and propylene oxide using zinc pimelate. Polymer International 2003, 52 (5) , 799-804. https://doi.org/10.1002/pi.1157
- Min Zhang, Liban Chen, Gang Qin, Baohua Liu, Zhairong Yan, Zhuomei Li. Copolymerization of CO2 and cyclohexene oxide using a novel polymeric diimide catalyst. Journal of Applied Polymer Science 2003, 87 (7) , 1123-1128. https://doi.org/10.1002/app.11564
- Michele Aresta, Angela Dibenedetto. Carbon Dioxide Fixation into Organic Compounds. 2003, 211-260. https://doi.org/10.1007/978-94-017-0245-4_9
- V.C. Gibson, E.L. Marshall. Metal Complexes as Catalysts for Polymerization Reactions. 2003, 1-74. https://doi.org/10.1016/B0-08-043748-6/09010-1
- Y. Z. Meng, L. C. Du, S. C. Tiong, Q. Zhu, Allan S. Hay. Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (21) , 3579-3591. https://doi.org/10.1002/pola.10452
- Richard H. Heyn. Carbon Dioxide Conversion. 2002https://doi.org/10.1002/0471227617.eoc038
- Ming Cheng, David R. Moore, Joseph J. Reczek, Bradley M. Chamberlain, Emil B. Lobkovsky, Geoffrey W. Coates. Single-Site β-Diiminate Zinc Catalysts for the Alternating Copolymerization of CO 2 and Epoxides: Catalyst Synthesis and Unprecedented Polymerization Activity. Journal of the American Chemical Society 2001, 123 (36) , 8738-8749. https://doi.org/10.1021/ja003850n
- Tsung-Ju Hsu, Chung-Sung Tan. Synthesis of polyethercarbonate from carbon dioxide and cyclohexene oxide by yttrium–metal coordination catalyst. Polymer 2001, 42 (12) , 5143-5150. https://doi.org/10.1016/S0032-3861(01)00006-4
- Walter Leitner. Reactions in Supercritical Carbon Dioxide (scCO2). 1999, 107-132. https://doi.org/10.1007/3-540-48664-X_5