ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Hydration Site Thermodynamics Explain SARs for Triazolylpurines Analogues Binding to the A2A Receptor

View Author Information
Schrödinger, Inc., 120 West 45th Street, 17th Floor, New York, New York 10036
*To whom correspondences should be addressed. Tel: +1 646-366-9555. Fax: +1 646-366-9550. E-mail: [email protected]
Cite this: ACS Med. Chem. Lett. 2010, 1, 4, 160–164
Publication Date (Web):May 10, 2010
https://doi.org/10.1021/ml100008s
Copyright © 2010 American Chemical Society

    Article Views

    1448

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A series of triazolylpurine analogues show interesting and unintuitive structure−activity relationships against the A2A adenosine receptor. As the 2-substituted aliphatic group is initially increased to methyl and isopropyl, there is a decrease in potency; however, extending the substituent to n-butyl and n-pentyl results in a significant gain in potency. This trend cannot be readily explained by ligand−receptor interactions, steric effects, or differences in ligand desolvation. Here, we show that a novel method for characterizing solvent thermodynamics in protein binding sites correctly predicts the trend in binding affinity for this series based on the differential water displacement patterns. In brief, small unfavorable substituents occupy a region in the A2A adenosine receptor binding site predicted to contain stable waters, while the longer favorable substituents extend to a region that contains several unstable waters. The predicted binding energies associated with displacing water within these hydration sites correlate well with the experimental activities.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Predicted relative binding free energy (ΔΔG), entropy (−TΔΔS), and enthalpy (ΔΔH) for WaterMap calculations on the series of triazolylpurine A2A adenosine receptor antagonists is available in the supporting information along with additional details about the docking and WaterMap scoring calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Jinfeng Zhang, Dandan Feng, Jianjun Cheng, Kurt Wüthrich. Adenosine A2A Receptor (A2AAR) Ligand Screening Using the 19F-NMR Probe FPPA. Journal of the American Chemical Society 2023, 145 (28) , 15061-15064. https://doi.org/10.1021/jacs.3c04218
    2. Benedict W. J. Irwin, Sinisa Vukovic, Michael C. Payne, David J. Huggins. Large-Scale Study of Hydration Environments through Hydration Sites. The Journal of Physical Chemistry B 2019, 123 (19) , 4220-4229. https://doi.org/10.1021/acs.jpcb.9b02490
    3. Hamed S. Hayatshahi, Kuiying Xu, Suzy A. Griffin, Michelle Taylor, Robert H. Mach, Jin Liu, Robert R. Luedtke. Analogues of Arylamide Phenylpiperazine Ligands To Investigate the Factors Influencing D3 Dopamine Receptor Bitropic Binding and Receptor Subtype Selectivity. ACS Chemical Neuroscience 2018, 9 (12) , 2972-2983. https://doi.org/10.1021/acschemneuro.8b00142
    4. Denis Bucher, Pieter Stouten, Nicolas Triballeau. Shedding Light on Important Waters for Drug Design: Simulations versus Grid-Based Methods. Journal of Chemical Information and Modeling 2018, 58 (3) , 692-699. https://doi.org/10.1021/acs.jcim.7b00642
    5. Sarah E. Graham, Richard D. Smith, and Heather A. Carlson . Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics. Journal of Chemical Information and Modeling 2018, 58 (2) , 305-314. https://doi.org/10.1021/acs.jcim.7b00268
    6. Francesca Spyrakis, Mostafa H. Ahmed, Alexander S. Bayden, Pietro Cozzini, Andrea Mozzarelli, and Glen E. Kellogg . The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. Journal of Medicinal Chemistry 2017, 60 (16) , 6781-6827. https://doi.org/10.1021/acs.jmedchem.7b00057
    7. Ronald M. Levy, Di Cui, Bin W. Zhang, and Nobuyuki Matubayasi . Relationship between Solvation Thermodynamics from IST and DFT Perspectives. The Journal of Physical Chemistry B 2017, 121 (15) , 3825-3841. https://doi.org/10.1021/acs.jpcb.6b12889
    8. Dong Guo, Laura H. Heitman, and Adriaan P. IJzerman . Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chemical Reviews 2017, 117 (1) , 38-66. https://doi.org/10.1021/acs.chemrev.6b00025
    9. Ali Jazayeri, Stephen P. Andrews, and Fiona H. Marshall . Structurally Enabled Discovery of Adenosine A2A Receptor Antagonists. Chemical Reviews 2017, 117 (1) , 21-37. https://doi.org/10.1021/acs.chemrev.6b00119
    10. Daniel Cappel, Michelle Lynn Hall, Eelke B. Lenselink, Thijs Beuming, Jun Qi, James Bradner, and Woody Sherman . Relative Binding Free Energy Calculations Applied to Protein Homology Models. Journal of Chemical Information and Modeling 2016, 56 (12) , 2388-2400. https://doi.org/10.1021/acs.jcim.6b00362
    11. Syeda Rehana Zia, Roberto Gaspari, Sergio Decherchi, and Walter Rocchia . Probing Hydration Patterns in Class-A GPCRs via Biased MD: The A2A Receptor. Journal of Chemical Theory and Computation 2016, 12 (12) , 6049-6061. https://doi.org/10.1021/acs.jctc.6b00475
    12. Eelke B. Lenselink, Julien Louvel, Anna F. Forti, Jacobus P. D. van Veldhoven, Henk de Vries, Thea Mulder-Krieger, Fiona M. McRobb, Ana Negri, Joseph Goose, Robert Abel, Herman W. T. van Vlijmen, Lingle Wang, Edward Harder, Woody Sherman, Adriaan P. IJzerman, and Thijs Beuming . Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation. ACS Omega 2016, 1 (2) , 293-304. https://doi.org/10.1021/acsomega.6b00086
    13. Daniel Robinson, Thomas Bertrand, Jean-Christophe Carry, Frank Halley, Andreas Karlsson, Magali Mathieu, Hervé Minoux, Marc-Antoine Perrin, Benoit Robert, Laurent Schio, and Woody Sherman . Differential Water Thermodynamics Determine PI3K-Beta/Delta Selectivity for Solvent-Exposed Ligand Modifications. Journal of Chemical Information and Modeling 2016, 56 (5) , 886-894. https://doi.org/10.1021/acs.jcim.5b00641
    14. Dahlia R. Weiss, Andrea Bortolato, Benjamin Tehan, and Jonathan S. Mason . GPCR-Bench: A Benchmarking Set and Practitioners’ Guide for G Protein-Coupled Receptor Docking. Journal of Chemical Information and Modeling 2016, 56 (4) , 642-651. https://doi.org/10.1021/acs.jcim.5b00660
    15. Xianqiang Sun, Hans Ågren, and Yaoquan Tu . Functional Water Molecules in Rhodopsin Activation. The Journal of Physical Chemistry B 2014, 118 (37) , 10863-10873. https://doi.org/10.1021/jp505180t
    16. Guanglei Cui, Jason M. Swails, and Eric S. Manas . SPAM: A Simple Approach for Profiling Bound Water Molecules. Journal of Chemical Theory and Computation 2013, 9 (12) , 5539-5549. https://doi.org/10.1021/ct400711g
    17. Dan Chen, Anirudh Ranganathan, Adriaan P. IJzerman, Gregg Siegal, and Jens Carlsson . Complementarity between in Silico and Biophysical Screening Approaches in Fragment-Based Lead Discovery against the A2A Adenosine Receptor. Journal of Chemical Information and Modeling 2013, 53 (10) , 2701-2714. https://doi.org/10.1021/ci4003156
    18. Kamran Haider and David J. Huggins . Combining Solvent Thermodynamic Profiles with Functionality Maps of the Hsp90 Binding Site to Predict the Displacement of Water Molecules. Journal of Chemical Information and Modeling 2013, 53 (10) , 2571-2586. https://doi.org/10.1021/ci4003409
    19. Ashutosh Kumar and Kam Y. J. Zhang . Investigation on the Effect of Key Water Molecules on Docking Performance in CSARdock Exercise. Journal of Chemical Information and Modeling 2013, 53 (8) , 1880-1892. https://doi.org/10.1021/ci400052w
    20. Andrea Bortolato, Ben G. Tehan, Michael S. Bodnarchuk, Jonathan W. Essex, and Jonathan S. Mason . Water Network Perturbation in Ligand Binding: Adenosine A2A Antagonists as a Case Study. Journal of Chemical Information and Modeling 2013, 53 (7) , 1700-1713. https://doi.org/10.1021/ci4001458
    21. Vassilios Myrianthopoulos, Marina Kritsanida, Nicolas Gaboriaud-Kolar, Prokopios Magiatis, Yoan Ferandin, Emilie Durieu, Olivier Lozach, Daniel Cappel, Meera Soundararajan, Panagis Filippakopoulos, Woody Sherman, Stefan Knapp, Laurent Meijer, Emmanuel Mikros, and Alexios-Leandros Skaltsounis . Novel Inverse Binding Mode of Indirubin Derivatives Yields Improved Selectivity for DYRK Kinases. ACS Medicinal Chemistry Letters 2013, 4 (1) , 22-26. https://doi.org/10.1021/ml300207a
    22. Thijs Beuming and Woody Sherman . Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines. Journal of Chemical Information and Modeling 2012, 52 (12) , 3263-3277. https://doi.org/10.1021/ci300411b
    23. Amy Hauck Newman, Thijs Beuming, Ashwini K. Banala, Prashant Donthamsetti, Katherine Pongetti, Alex LaBounty, Benjamin Levy, Jianjing Cao, Mayako Michino, Robert R. Luedtke, Jonathan A. Javitch, and Lei Shi . Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. Journal of Medicinal Chemistry 2012, 55 (15) , 6689-6699. https://doi.org/10.1021/jm300482h
    24. Falgun Shah, Jiri Gut, Jennifer Legac, Devleena Shivakumar, Woody Sherman, Philip J. Rosenthal, and Mitchell A. Avery . Computer-Aided Drug Design of Falcipain Inhibitors: Virtual Screening, Structure–Activity Relationships, Hydration Site Thermodynamics, and Reactivity Analysis. Journal of Chemical Information and Modeling 2012, 52 (3) , 696-710. https://doi.org/10.1021/ci2005516
    25. Miles Congreve, Stephen P. Andrews, Andrew S. Doré, Kaspar Hollenstein, Edward Hurrell, Christopher J. Langmead, Jonathan S. Mason, Irene W. Ng, Benjamin Tehan, Andrei Zhukov, Malcolm Weir, and Fiona H. Marshall . Discovery of 1,2,4-Triazine Derivatives as Adenosine A2A Antagonists using Structure Based Drug Design. Journal of Medicinal Chemistry 2012, 55 (5) , 1898-1903. https://doi.org/10.1021/jm201376w
    26. Christopher J. Langmead, Stephen P. Andrews, Miles Congreve, James C. Errey, Edward Hurrell, Fiona H. Marshall, Jonathan S. Mason, Christine M. Richardson, Nathan Robertson, Andrei Zhukov, and Malcolm Weir . Identification of Novel Adenosine A2A Receptor Antagonists by Virtual Screening. Journal of Medicinal Chemistry 2012, 55 (5) , 1904-1909. https://doi.org/10.1021/jm201455y
    27. Anna Kohlmann, Xiaotian Zhu, and David Dalgarno . Application of MM-GB/SA and WaterMap to SRC Kinase Inhibitor Potency Prediction. ACS Medicinal Chemistry Letters 2012, 3 (2) , 94-99. https://doi.org/10.1021/ml200222u
    28. Markus A. Lill . Efficient Incorporation of Protein Flexibility and Dynamics into Molecular Docking Simulations. Biochemistry 2011, 50 (28) , 6157-6169. https://doi.org/10.1021/bi2004558
    29. Miles Congreve, Christopher J. Langmead, Jonathan S. Mason, and Fiona H. Marshall . Progress in Structure Based Drug Design for G Protein-Coupled Receptors. Journal of Medicinal Chemistry 2011, 54 (13) , 4283-4311. https://doi.org/10.1021/jm200371q
    30. Anette G. Sams, Gitte K. Mikkelsen, Mogens Larsen, Morten Langgård, Mark E. Howells, Tenna J. Schrøder, Lise T. Brennum, Lars Torup, Erling B. Jørgensen, Christoffer Bundgaard, Mads Kreilgård, and Benny Bang-Andersen . Discovery of Phosphoric Acid Mono-{2-[(E/Z)-4-(3,3-dimethyl-butyrylamino)-3,5-difluoro-benzoylimino]-thiazol-3-ylmethyl} Ester (Lu AA47070): A Phosphonooxymethylene Prodrug of a Potent and Selective hA2A Receptor Antagonist. Journal of Medicinal Chemistry 2011, 54 (3) , 751-764. https://doi.org/10.1021/jm1008659
    31. Aleksandar Lazaric, Viren Pattni, Kaprao Fuegner, Arieh Ben‐Naim, Matthias Heyden. Solvation free energy arithmetic for small organic molecules. Journal of Computational Chemistry 2023, 44 (13) , 1263-1277. https://doi.org/10.1002/jcc.27081
    32. Kenneth A. Jacobson, Zhan‐Guo Gao, Pierre Matricon, Matthew T. Eddy, Jens Carlsson. Adenosine A 2A receptor antagonists: from caffeine to selective non‐xanthines. British Journal of Pharmacology 2022, 179 (14) , 3496-3511. https://doi.org/10.1111/bph.15103
    33. Maria Kontoyianni. Structure-Based Virtual Screening: Theory, Challenges and Guidelines. 2022, 539-552. https://doi.org/10.1016/B978-0-12-820472-6.00042-6
    34. Flavio Ballante, Albert J Kooistra, Stefanie Kampen, Chris de Graaf, Jens Carlsson, . Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews 2021, 73 (4) , 1698-1736. https://doi.org/10.1124/pharmrev.120.000246
    35. Giuseppe Deganutti, Silvia Atanasio, Roxana-Maria Rujan, Patrick M. Sexton, Denise Wootten, Christopher A. Reynolds. Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.720561
    36. Patrick Appiah‐Kubi, Fisayo Andrew Olotu, Mahmoud E. S. Soliman. Exploring the structural basis and atomistic binding mechanistic of the selective antagonist blockade at D 3 dopamine receptor over D 2 dopamine receptor. Journal of Molecular Recognition 2021, 34 (5) https://doi.org/10.1002/jmr.2885
    37. Manasa B, Suman Manandhar, Gangadhar Hari, Keerthi Priya, Harish Kumar B, K. Sreedhara Ranganath Pai. Virtual structure-based docking, WaterMap, and molecular dynamics guided identification of the potential natural compounds as inhibitors of protein-tyrosine phosphatase 1B. Journal of Molecular Structure 2021, 1226 , 129396. https://doi.org/10.1016/j.molstruc.2020.129396
    38. Ahmadreza Ghanbarpour, Amr H. Mahmoud, Markus A. Lill. Instantaneous generation of protein hydration properties from static structures. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-00435-5
    39. Amr H. Mahmoud, Matthew R. Masters, Ying Yang, Markus A. Lill. Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-0261-x
    40. Binita Shah, Dan Sindhikara, Ken Borrelli, Abba E. Leffler. Water Thermodynamics of Peptide Toxin Binding Sites on Ion Channels. Toxins 2020, 12 (10) , 652. https://doi.org/10.3390/toxins12100652
    41. Christopher R. M. Asquith, Graham J. Tizzard, James M. Bennett, Carrow I. Wells, Jonathan M. Elkins, Timothy M. Willson, Antti Poso, Tuomo Laitinen. Targeting the Water Network in Cyclin G‐Associated Kinase (GAK) with 4‐Anilino‐quin(az)oline Inhibitors. ChemMedChem 2020, 15 (13) , 1200-1215. https://doi.org/10.1002/cmdc.202000150
    42. Veronica Salmaso, Kenneth A. Jacobson. In Silico Drug Design for Purinergic GPCRs: Overview on Molecular Dynamics Applied to Adenosine and P2Y Receptors. Biomolecules 2020, 10 (6) , 812. https://doi.org/10.3390/biom10060812
    43. Tanuj Sharma, Munesh Kumar Harioudh, Jitendra Kuldeep, Sushil Kumar, Dibyendu Banerjee, Jimut Kanti Ghosh, Mohammad Imran Siddiqi. Identification of Potential Inhibitors of Cathepsin‐B using Shape & Pharmacophore‐based Virtual Screening, Molecular Docking and Explicit Water Thermodynamics. Molecular Informatics 2020, 39 (4) https://doi.org/10.1002/minf.201900023
    44. Xiao Hu, Irene Maffucci, Alessandro Contini. Advances in the Treatment of Explicit Water Molecules in Docking and Binding Free Energy Calculations. Current Medicinal Chemistry 2020, 26 (42) , 7598-7622. https://doi.org/10.2174/0929867325666180514110824
    45. Jayashree Biswal, Prajisha Jayaprakash, Rayala Suresh Kumar, Ganesh Venkatraman, Saritha Poopandi, Raghu Rangasamy, Jeyakanthan Jeyaraman. Identification of Pak1 inhibitors using water thermodynamic analysis. Journal of Biomolecular Structure and Dynamics 2020, 38 (1) , 13-31. https://doi.org/10.1080/07391102.2019.1567393
    46. Giuseppe Deganutti, Stefano Moro, Christopher A Reynolds. Peeking at G-protein-coupled receptors through the molecular dynamics keyhole. Future Medicinal Chemistry 2019, 11 (6) , 599-615. https://doi.org/10.4155/fmc-2018-0393
    47. Andrea Bortolato, Francesca Deflorian, Giuseppe Deganutti, Davide Sabbadin, Stefano Moro, Jonathan S. Mason. Molecular Dynamics Applications to GPCR Ligand Design. 2018, 225-246. https://doi.org/10.1002/9783527806836.ch9
    48. Miles Congreve, Giles A. Brown, Alexandra Borodovsky, Michelle L. Lamb. Targeting adenosine A 2A receptor antagonism for treatment of cancer. Expert Opinion on Drug Discovery 2018, 13 (11) , 997-1003. https://doi.org/10.1080/17460441.2018.1534825
    49. Hans Matter, Stefan Güssregen. Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands. Bioorganic & Medicinal Chemistry Letters 2018, 28 (14) , 2343-2352. https://doi.org/10.1016/j.bmcl.2018.05.061
    50. Mingyue Zheng, Jihui Zhao, Chen Cui, Zunyun Fu, Xutong Li, Xiaohong Liu, Xiaoyu Ding, Xiaoqin Tan, Fei Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Medicinal Research Reviews 2018, 38 (3) , 914-950. https://doi.org/10.1002/med.21483
    51. Christopher Asquith, Paulo Godoi, Rafael Couñago, Tuomo Laitinen, John Scott, Christopher Langendorf, Jonathan Oakhill, David Drewry, William Zuercher, Panayiotis Koutentis, Timothy Willson, Andreas Kalogirou. 1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors. Molecules 2018, 23 (5) , 1221. https://doi.org/10.3390/molecules23051221
    52. Alberto Cuzzolin, Giuseppe Deganutti, Veronica Salmaso, Mattia Sturlese, Stefano Moro. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein–Ligand Association. ChemMedChem 2018, 13 (6) , 522-531. https://doi.org/10.1002/cmdc.201700564
    53. Jason B. Cross. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges. 2018, 233-264. https://doi.org/10.1007/978-1-4939-7465-8_11
    54. Antonella Ciancetta, Kenneth A. Jacobson. Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design. 2018, 45-72. https://doi.org/10.1007/978-1-4939-7465-8_3
    55. Stefania Baraldi, Pier Giovanni Baraldi, Paola Oliva, Kiran S. Toti, Antonella Ciancetta, Kenneth A. Jacobson. A2A Adenosine Receptor: Structures, Modeling, and Medicinal Chemistry. 2018, 91-136. https://doi.org/10.1007/978-3-319-90808-3_5
    56. Pierre Matricon, Anirudh Ranganathan, Eugene Warnick, Zhan-Guo Gao, Axel Rudling, Catia Lambertucci, Gabriella Marucci, Aitakin Ezzati, Mariama Jaiteh, Diego Dal Ben, Kenneth A. Jacobson, Jens Carlsson. Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A 2A adenosine receptor binding site. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-04905-0
    57. Maria Maddalena Cavalluzzi, Giuseppe Felice Mangiatordi, Orazio Nicolotti, Giovanni Lentini. Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Expert Opinion on Drug Discovery 2017, 12 (11) , 1087-1104. https://doi.org/10.1080/17460441.2017.1365056
    58. Giuseppe Deganutti, Stefano Moro. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. Future Medicinal Chemistry 2017, 9 (5) , 507-523. https://doi.org/10.4155/fmc-2016-0224
    59. Antonella Ciancetta, Kenneth Jacobson. Structural Probing and Molecular Modeling of the A3 Adenosine Receptor: A Focus on Agonist Binding. Molecules 2017, 22 (3) , 449. https://doi.org/10.3390/molecules22030449
    60. Aravindhan Ganesan, Michelle L. Coote, Khaled Barakat. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discovery Today 2017, 22 (2) , 249-269. https://doi.org/10.1016/j.drudis.2016.11.001
    61. Damian Bartuzi, Agnieszka Kaczor, Katarzyna Targowska-Duda, Dariusz Matosiuk. Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Molecules 2017, 22 (2) , 340. https://doi.org/10.3390/molecules22020340
    62. Fiona M McRobb, Ana Negri, Thijs Beuming, Woody Sherman. Molecular dynamics techniques for modeling G protein-coupled receptors. Current Opinion in Pharmacology 2016, 30 , 69-75. https://doi.org/10.1016/j.coph.2016.07.001
    63. Woo Dae Jang, Myeong Hwi Lee, Nam Sook Kang. Quantitative assessment of kinase selectivity based the water-ring network in protein binding sites using molecular dynamics simulations. Journal of Molecular Liquids 2016, 221 , 316-322. https://doi.org/10.1016/j.molliq.2016.06.013
    64. Michael S. Bodnarchuk. Water, water, everywhere… It's time to stop and think. Drug Discovery Today 2016, 21 (7) , 1139-1146. https://doi.org/10.1016/j.drudis.2016.05.009
    65. Philip C. Biggin, Matteo Aldeghi, Michael J. Bodkin, Alexander Heifetz. Beyond Membrane Protein Structure: Drug Discovery, Dynamics and Difficulties. 2016, 161-181. https://doi.org/10.1007/978-3-319-35072-1_12
    66. Jhonny Azuaje, Carlos Carbajales, Manuel González-Gómez, Alberto Coelho, Olga Caamaño, Hugo Gutiérrez-de-Terán, Eddy Sotelo. Pyrazin-2(1 H )-ones as a novel class of selective A3 adenosine receptor antagonists. Future Medicinal Chemistry 2015, 7 (11) , 1373-1380. https://doi.org/10.4155/fmc.15.69
    67. C. Modenutti, D. Gauto, L. Radusky, J. Blanco, A. Turjanski, S. Hajos, M. Marti. Using crystallographic water properties for the analysis and prediction of lectin-carbohydrate complex structures. Glycobiology 2015, 25 (2) , 181-196. https://doi.org/10.1093/glycob/cwu102
    68. Gengyang Yuan, Nicholas G Gedeon, Tanner C Jankins, Graham B Jones. Novel approaches for targeting the adenosine A 2A receptor. Expert Opinion on Drug Discovery 2015, 10 (1) , 63-80. https://doi.org/10.1517/17460441.2015.971006
    69. Thijs Beuming, Bart Lenselink, Daniele Pala, Fiona McRobb, Matt Repasky, Woody Sherman. Docking and Virtual Screening Strategies for GPCR Drug Discovery. 2015, 251-276. https://doi.org/10.1007/978-1-4939-2914-6_17
    70. Kenneth A. Jacobson, Zhan-Guo Gao, Silvia Paoletta, Evgeny Kiselev, Saibal Chakraborty, P. Suresh Jayasekara, Ramachandran Balasubramanian, Dilip K. Tosh. John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors. Computational and Structural Biotechnology Journal 2015, 13 , 286-298. https://doi.org/10.1016/j.csbj.2014.10.004
    71. Osamu Ichihara, Yuzo Shimada, Daisuke Yoshidome. The Importance of Hydration Thermodynamics in Fragment‐to‐Lead Optimization. ChemMedChem 2014, 9 (12) , 2708-2717. https://doi.org/10.1002/cmdc.201402207
    72. Henrik Keränen, Hugo Gutiérrez-de-Terán, Johan Åqvist, . Structural and Energetic Effects of A2A Adenosine Receptor Mutations on Agonist and Antagonist Binding. PLoS ONE 2014, 9 (10) , e108492. https://doi.org/10.1371/journal.pone.0108492
    73. Maria João Matos, Santiago Vilar, Sonja Kachler, André Fonseca, Lourdes Santana, Eugenio Uriarte, Fernanda Borges, Nicholas P. Tatonetti, Karl‐Norbert Klotz. Insight into the Interactions between Novel Coumarin Derivatives and Human A 3 Adenosine Receptors. ChemMedChem 2014, 9 (10) , 2245-2253. https://doi.org/10.1002/cmdc.201402205
    74. Bingjie Hu, Markus A. Lill. WATsite: Hydration site prediction program with PyMOL interface. Journal of Computational Chemistry 2014, 35 (16) , 1255-1260. https://doi.org/10.1002/jcc.23616
    75. Phillip W. Snyder, Matthew R. Lockett, Demetri T. Moustakas, George M. Whitesides. Is it the shape of the cavity, or the shape of the water in the cavity?. The European Physical Journal Special Topics 2014, 223 (5) , 853-891. https://doi.org/10.1140/epjst/e2013-01818-y
    76. David J. Weldon, Falgun Shah, Amar G. Chittiboyina, Anjaneyulu Sheri, Raji Reddy Chada, Jiri Gut, Philip J. Rosenthal, Develeena Shivakumar, Woody Sherman, Prashant Desai, Jae-Chul Jung, Mitchell A. Avery. Synthesis, biological evaluation, hydration site thermodynamics, and chemical reactivity analysis of α-keto substituted peptidomimetics for the inhibition of Plasmodium falciparum. Bioorganic & Medicinal Chemistry Letters 2014, 24 (5) , 1274-1279. https://doi.org/10.1016/j.bmcl.2014.01.062
    77. Woo Dae Jang, Jun-Tae Kim, Nam Sook Kang. The analysis of water network for kinase selectivity based on the MD simulations. Journal of Molecular Liquids 2014, 191 , 37-41. https://doi.org/10.1016/j.molliq.2013.11.023
    78. Miles Congreve, João M. Dias, Fiona H. Marshall. Structure-Based Drug Design for G Protein-Coupled Receptors. 2014, 1-63. https://doi.org/10.1016/B978-0-444-63380-4.00001-9
    79. Stephen P. Andrews, Jonathan S. Mason, Edward Hurrell, Miles Congreve. Structure-based drug design of chromone antagonists of the adenosine A 2A receptor. Med. Chem. Commun. 2014, 5 (5) , 571-575. https://doi.org/10.1039/C3MD00338H
    80. Stefano Costanzi. Modeling G protein-coupled receptors and their interactions with ligands. Current Opinion in Structural Biology 2013, 23 (2) , 185-190. https://doi.org/10.1016/j.sbi.2013.01.008
    81. Yue Yang, Felice C Lightstone, Sergio E Wong. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap. Expert Opinion on Drug Discovery 2013, 8 (3) , 277-287. https://doi.org/10.1517/17460441.2013.749853
    82. Que‐Tien Tran, Sarah Williams, Ramy Farid, Gül Erdemli, Robert Pearlstein. The translocation kinetics of antibiotics through porin OmpC: Insights from structure‐based solvation mapping using WaterMap. Proteins: Structure, Function, and Bioinformatics 2013, 81 (2) , 291-299. https://doi.org/10.1002/prot.24185
    83. György G. Ferenczy*, György M. Keserű*. Thermodynamics of Ligand Binding. 2012, 23-79. https://doi.org/10.1039/9781849735377-00023
    84. Matthew P. Repasky, Robert B. Murphy, Jay L. Banks, Jeremy R. Greenwood, Ivan Tubert-Brohman, Sathesh Bhat, Richard A. Friesner. Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. Journal of Computer-Aided Molecular Design 2012, 26 (6) , 787-799. https://doi.org/10.1007/s10822-012-9575-9
    85. Jonathan S. Mason, Andrea Bortolato, Miles Congreve, Fiona H. Marshall. New insights from structural biology into the druggability of G protein-coupled receptors. Trends in Pharmacological Sciences 2012, 33 (5) , 249-260. https://doi.org/10.1016/j.tips.2012.02.005
    86. Thijs Beuming, Ye Che, Robert Abel, Byungchan Kim, Veerabahu Shanmugasundaram, Woody Sherman. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization. Proteins: Structure, Function, and Bioinformatics 2012, 80 (3) , 871-883. https://doi.org/10.1002/prot.23244
    87. Zheng Li, Themis Lazaridis. Computing the Thermodynamic Contributions of Interfacial Water. 2012, 393-404. https://doi.org/10.1007/978-1-61779-465-0_24
    88. Mariola Koszytkowska-Stawińska, Ewa Mironiuk-Puchalska, Tomasz Rowicki. Synthesis of 1,2,3-triazolo-nucleosides via the post-triazole N-alkylation. Tetrahedron 2012, 68 (1) , 214-225. https://doi.org/10.1016/j.tet.2011.10.067
    89. Robert Abel, Noeris K. Salam, John Shelley, Ramy Farid, Richard A. Friesner, Woody Sherman. Contribution of Explicit Solvent Effects to the Binding Affinity of Small‐Molecule Inhibitors in Blood Coagulation Factor Serine Proteases. ChemMedChem 2011, 6 (6) , 1049-1066. https://doi.org/10.1002/cmdc.201000533
    90. J. Robert Lane, Veli-Pekka Jaakola, Adriaan P. IJzerman. The Structure of the Adenosine Receptors. 2011, 1-40. https://doi.org/10.1016/B978-0-12-385526-8.00001-1

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect