ACS Publications. Most Trusted. Most Cited. Most Read
Optimization of Potent Inhibitors of P. falciparum Dihydroorotate Dehydrogenase for the Treatment of Malaria
My Activity

Figure 1Loading Img
    Letter

    Optimization of Potent Inhibitors of P. falciparum Dihydroorotate Dehydrogenase for the Treatment of Malaria
    Click to copy article linkArticle link copied!

    View Author Information
    Genzyme Corporation, 153 Second Avenue, Waltham, Massachusetts 02451, United States
    Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, United States
    § Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland
    University of Basel, Petersplatz 1, CH-4003, Basel, Switzerland
    Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline, c/Severo Ochoa 2, 28760 Tres Cantos, Spain
    Other Access OptionsSupporting Information (1)

    ACS Medicinal Chemistry Letters

    Cite this: ACS Med. Chem. Lett. 2011, 2, 9, 708–713
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ml200143c
    Published July 11, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. We report herein the synthesis and structure–activity relationship of a series of 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamides that are potent inhibitors against PfDHODH but do not inhibit the human enzyme. On the basis of efficacy observed in three mouse models of malaria, acceptable safety pharmacology risk assessment and safety toxicology profile in rodents, lack of potential drug–drug interactions, acceptable ADME/pharmacokinetic profile, and projected human dose, 5-(4-cyano-2-methyl-1H-benzo[d]imidazol-1-yl)-N-cyclopropylthiophene-2-carboxamide 2q was identified as a potential drug development candidate.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures and characterization data for the synthesis for compounds 1bf,i,k,m,o, 2ax, 3cd, and 4a,q. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 39 publications.

    1. Marianne Lucas-Hourani, Hélène Munier-Lehmann, Farah El Mazouni, Nicholas A. Malmquist, Jane Harpon, Eloi P. Coutant, Sandrine Guillou, Olivier Helynck, Anne Noel, Artur Scherf, Margaret A. Phillips, Frédéric Tangy, Pierre-Olivier Vidalain, and Yves L. Janin . Original 2-(3-Alkoxy-1H-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH). Journal of Medicinal Chemistry 2015, 58 (14) , 5579-5598. https://doi.org/10.1021/acs.jmedchem.5b00606
    2. Joseph E. Banning, Jacob Gentillon, Pavel G. Ryabchuk, Anthony R. Prosser, Andrew Rogers, Andrew Edwards, Andrew Holtzen, Ivan A. Babkov, Marina Rubina, and Michael Rubin . Formal Substitution of Bromocyclopropanes with Nitrogen Nucleophiles. The Journal of Organic Chemistry 2013, 78 (15) , 7601-7616. https://doi.org/10.1021/jo4011798
    3. Hélène Munier-Lehmann, Pierre-Olivier Vidalain, Frédéric Tangy, and Yves L. Janin . On Dihydroorotate Dehydrogenases and Their Inhibitors and Uses. Journal of Medicinal Chemistry 2013, 56 (8) , 3148-3167. https://doi.org/10.1021/jm301848w
    4. Pavel Ryabchuk, Marina Rubina, Jack Xu, and Michael Rubin . Formal Nucleophilic Substitution of Bromocyclopropanes with Azoles. Organic Letters 2012, 14 (7) , 1752-1755. https://doi.org/10.1021/ol300352z
    5. Manmohan Sharma, Marco L. Lolli, Vivek K. Vyas. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 2: Non-DSM compounds. Bioorganic Chemistry 2024, 153 , 107754. https://doi.org/10.1016/j.bioorg.2024.107754
    6. Manmohan Sharma, Vinita Pandey, Giulio Poli, Tiziano Tuccinardi, Marco L. Lolli, Vivek K. Vyas. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 1: triazolopyrimidine, isoxazolopyrimidine and pyrrole-based (DSM) compounds. Bioorganic Chemistry 2024, 146 , 107249. https://doi.org/10.1016/j.bioorg.2024.107249
    7. Vivek K Vyas, Tanvi Shukla, Manmohan Sharma. Medicinal Chemistry Approaches for the Discovery of Plasmodium Falciparum Dihydroorotate Dehydrogenase Inhibitors as Antimalarial Agents. Future Medicinal Chemistry 2023, 15 (14) , 1295-1321. https://doi.org/10.4155/fmc-2023-0113
    8. Luka Vah, Tadej Medved, Uroš Grošelj, Marina Klemenčič, Črtomir Podlipnik, Bogdan Štefane, Jernej Wagger, Marko Novinec, Jurij Svete. Regioselective Synthesis of 5- and 3-Hydroxy-N-Aryl-1H-Pyrazole-4-Carboxylates and Their Evaluation as Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Molecules 2022, 27 (15) , 4764. https://doi.org/10.3390/molecules27154764
    9. Cinzia Bordoni, Daniel J. Brough, Gemma Davison, James H. Hunter, J. Daniel Lopez-Fernandez, Kate McAdam, Duncan C. Miller, Pasquale A. Morese, Alexia Papaioannou, Mélanie Uguen, Paul Ratcliffe, Nikolay Sitnikov, Michael J. Waring. Cardiac Ion Channel Inhibition. 2021, 403-492. https://doi.org/10.1039/9781788016414-00403
    10. Tuo Yang, Sabine Ottilie, Eva S. Istvan, Karla P. Godinez-Macias, Amanda K. Lukens, Beatriz Baragaña, Brice Campo, Chris Walpole, Jacquin C. Niles, Kelly Chibale, Koen J. Dechering, Manuel Llinás, Marcus C.S. Lee, Nobutaka Kato, Susan Wyllie, Case W. McNamara, Francisco Javier Gamo, Jeremy Burrows, David A. Fidock, Daniel E. Goldberg, Ian H. Gilbert, Dyann F. Wirth, Elizabeth A. Winzeler. MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology 2021, 10 https://doi.org/10.1016/j.pt.2021.01.009
    11. Hari Madhav, Nasimul Hoda. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. European Journal of Medicinal Chemistry 2021, 210 , 112955. https://doi.org/10.1016/j.ejmech.2020.112955
    12. Petar P. S. Calic, Mahta Mansouri, Peter J. Scammells, Sheena McGowan. Driving antimalarial design through understanding of target mechanism. Biochemical Society Transactions 2020, 48 (5) , 2067-2078. https://doi.org/10.1042/BST20200224
    13. Erica S. Burnell. Drugs targeting mitochondrial functions. 2020, 375-402. https://doi.org/10.1016/B978-0-08-101210-9.00010-X
    14. Laa-iqa Rylands, Athi Welsh, Keletso Maepa, Tameryn Stringer, Dale Taylor, Kelly Chibale, Gregory S. Smith. Structure-activity relationship studies of antiplasmodial cyclometallated ruthenium(II), rhodium(III) and iridium(III) complexes of 2-phenylbenzimidazoles. European Journal of Medicinal Chemistry 2019, 161 , 11-21. https://doi.org/10.1016/j.ejmech.2018.10.019
    15. Lucas VB Hoelz, Felipe A Calil, Maria C Nonato, Luiz CS Pinheiro, Nubia Boechat. Plasmodium Falciparum Dihydroorotate Dehydrogenase: A Drug Target against Malaria. Future Medicinal Chemistry 2018, 10 (15) , 1853-1874. https://doi.org/10.4155/fmc-2017-0250
    16. Alicia Moreno-Sabater, Jean Louis Pérignon, Dominique Mazier, Catherine Lavazec, Valerie Soulard. Humanized mouse models infected with human Plasmodium species for antimalarial drug discovery. Expert Opinion on Drug Discovery 2018, 13 (2) , 131-140. https://doi.org/10.1080/17460441.2018.1410136
    17. Hangjun Ke, Michael W. Mather. +Targeting Mitochondrial Functions as Antimalarial Regime, What Is Next?. Current Clinical Microbiology Reports 2017, 4 (4) , 175-191. https://doi.org/10.1007/s40588-017-0075-5
    18. Khurshed Bozorov, Li Fei Nie, Jiangyu Zhao, Haji A. Aisa. 2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry. European Journal of Medicinal Chemistry 2017, 140 , 465-493. https://doi.org/10.1016/j.ejmech.2017.09.039
    19. Stéphanie Arnould, Geneviève Rodier, Gisèle Matar, Charles Vincent, Nelly Pirot, Yoann Delorme, Charlène Berthet, Yoan Buscail, Jean Yohan Noël, Simon Lachambre, Marta Jarlier, Florence Bernex, Hélène Delpech, Pierre Olivier Vidalain, Yves L. Janin, Charles Theillet, Claude Sardet. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition. Oncotarget 2017, 8 (56) , 95206-95222. https://doi.org/10.18632/oncotarget.19199
    20. Fan-Zhi Bu, Xue-Jie Tan, Dian-Xiang Xing, Chao Wang. Design, synthesis, crystal structure and in vitro cytotoxic properties of a novel Schiff base derived from indole and biphenyl. Acta Crystallographica Section C Structural Chemistry 2017, 73 (7) , 546-555. https://doi.org/10.1107/S2053229617009044
    21. Diana Vargas‐Oviedo, Andrés Charris‐Molina, Jaime Portilla. Efficient Access to o ‐Phenylendiamines and Their Use in the Synthesis of a 1,2‐Dialkyl‐5‐trifluoromethylbenzimidazoles Library Under Microwave Conditions. ChemistrySelect 2017, 2 (13) , 3896-3901. https://doi.org/10.1002/slct.201700623
    22. Anju Singh, Mudasir Maqbool, Mohammad Mobashir, Nasimul Hoda. Dihydroorotate dehydrogenase: A drug target for the development of antimalarials. European Journal of Medicinal Chemistry 2017, 125 , 640-651. https://doi.org/10.1016/j.ejmech.2016.09.085
    23. Jeremy N. Burrows, Timothy N. C. Wells. Development of medicines for the control and elimination of malaria. 2016, 353-382. https://doi.org/10.1002/9781118493816.ch13
    24. V. K. Vyas, G. Qureshi, M. Ghate, H. Patel, S. Dalai. Identification of novel Pf DHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity. SAR and QSAR in Environmental Research 2016, 27 (6) , 427-440. https://doi.org/10.1080/1062936X.2016.1189959
    25. X. Hou, X. Chen, M. Zhang, A. Yan. QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase ( Pf DHODH) inhibitors. SAR and QSAR in Environmental Research 2016, 27 (2) , 101-124. https://doi.org/10.1080/1062936X.2015.1134652
    26. Babita Aneja, Bhumika Kumar, Mohamad Aman Jairajpuri, Mohammad Abid. A structure guided drug-discovery approach towards identification of Plasmodium inhibitors. RSC Advances 2016, 6 (22) , 18364-18406. https://doi.org/10.1039/C5RA19673F
    27. Komal Rizwan, Idris Karakaya, Drew Heitz, Muhammad Zubair, Nasir Rasool, Gary A. Molander. Copper-mediated N-arylation of methyl 2-aminothiophene-3-carboxylate with organoboron reagents. Tetrahedron Letters 2015, 56 (49) , 6839-6842. https://doi.org/10.1016/j.tetlet.2015.10.080
    28. Rangappa S. Keri, Asha Hiremathad, Srinivasa Budagumpi, Bhari Mallanna Nagaraja. Comprehensive Review in Current Developments of Benzimidazole‐Based Medicinal Chemistry. Chemical Biology & Drug Design 2015, 86 (1) , 19-65. https://doi.org/10.1111/cbdd.12462
    29. Amanda K. Lukens, Leila Saxby Ross, Richard Heidebrecht, Francisco Javier Gamo, Maria J. Lafuente-Monasterio, Michael L. Booker, Daniel L. Hartl, Roger C. Wiegand, Dyann F. Wirth. Harnessing evolutionary fitness in Plasmodium falciparum for drug discovery and suppressing resistance. Proceedings of the National Academy of Sciences 2014, 111 (2) , 799-804. https://doi.org/10.1073/pnas.1320886110
    30. Nicholas Fisher, Thomas Antoine, Stephen A. Ward, Giancarlo A. Biagini. Mitochondrial Electron Transport Chain of Plasmodium falciparum. 2014, 1-14. https://doi.org/10.1007/978-1-4614-8757-9_12-1
    31. MARÍA BELÉN JIMÉNEZ-DÍAZ, SARA VIERA, ELENA FERNÁNDEZ-ALVARO, IÑIGO ANGULO-BARTUREN. Animal models of efficacy to accelerate drug discovery in malaria. Parasitology 2014, 141 (1) , 93-103. https://doi.org/10.1017/S0031182013000991
    32. Gemma L. Nixon, Stephen A. Ward, Paul M. O’Neill, Giancarlo A. Biagini. Inhibitors of the Plasmodium Mitochondrial Respiratory Chain. 2014, 1-18. https://doi.org/10.1007/978-1-4614-8757-9_15-1
    33. Gemma L Nixon, Chandrakala Pidathala, Alison E Shone, Thomas Antoine, Nicholas Fisher, Paul M O‘Neill, Stephen A Ward, Giancarlo A Biagini. Targeting the Mitochondrial Electron Transport Chain of Plasmodium Falciparum: New Strategies Towards the Development of Improved Antimalarials for the Elimination Era. Future Medicinal Chemistry 2013, 5 (13) , 1573-1591. https://doi.org/10.4155/fmc.13.121
    34. Vivek K. Vyas, Harshang Parikh, Manjunath Ghate. 3D QSAR studies on 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamide derivatives as P. falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Medicinal Chemistry Research 2013, 22 (5) , 2235-2243. https://doi.org/10.1007/s00044-012-0216-6
    35. Marco A. Biamonte, Jutta Wanner, Karine G. Le Roch. Recent advances in malaria drug discovery. Bioorganic & Medicinal Chemistry Letters 2013, 23 (10) , 2829-2843. https://doi.org/10.1016/j.bmcl.2013.03.067
    36. Michelle S. Miller, Jo-Anne Pinson, Zhaohua Zheng, Ian G. Jennings, Philip E. Thompson. Regioselective synthesis of 5- and 6-methoxybenzimidazole-1,3,5-triazines as inhibitors of phosphoinositide 3-kinase. Bioorganic & Medicinal Chemistry Letters 2013, 23 (3) , 802-805. https://doi.org/10.1016/j.bmcl.2012.11.076
    37. Félix Calderón, David M. Wilson, Francisco-Javier Gamo. Antimalarial Drug Discovery. 2013, 97-151. https://doi.org/10.1016/B978-0-444-62652-3.00003-X
    38. Melinda P Anthony, Jeremy N Burrows, Stephan Duparc, Joerg JMoehrle, Timothy NC Wells. The global pipeline of new medicines for the control and elimination of malaria. Malaria Journal 2012, 11 (1) https://doi.org/10.1186/1475-2875-11-316
    39. Yong-Kang Zhang, Min Ge, Jacob J. Plattner. Recent Progress in the Synthesis of Antimalarial Agents. Organic Preparations and Procedures International 2012, 44 (4) , 340-374. https://doi.org/10.1080/00304948.2012.697708

    ACS Medicinal Chemistry Letters

    Cite this: ACS Med. Chem. Lett. 2011, 2, 9, 708–713
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ml200143c
    Published July 11, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1736

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.