ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Multiple Fragment Docking and Linking in Primary and Secondary Pockets of Dopamine Receptors

View Author Information
Gedeon Richter Plc, Gyömrői út 19-21, H-1103 Budapest, Hungary
Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
*(G.M.K.) Tel: +36-1- 382-6900. Fax: +36-1- 382-6297. E-mail: [email protected]
Cite this: ACS Med. Chem. Lett. 2014, 5, 9, 1010–1014
Publication Date (Web):July 10, 2014
https://doi.org/10.1021/ml500201u
Copyright © 2014 American Chemical Society

    Article Views

    1076

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A sequential docking methodology was applied to computationally predict starting points for fragment linking using the human dopamine D3 receptor crystal structure and a human dopamine D2 receptor homology model. Two focused fragment libraries were docked in the primary and secondary binding sites, and best fragment combinations were enumerated. Similar top scoring fragments were found for the primary site, while secondary site fragments were predicted to convey selectivity. Three linked compounds were synthesized that had 9-, 39-, and 55-fold selectivity in favor of D3 and the subtype selectivity of the compounds was assessed on a structural basis.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    General formulas of the focused fragment libraries; synthetic and experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 29 publications.

    1. Birgit I. Gaiser, Mia Danielsen, Emil Marcher-Rørsted, Kira Røpke Jørgensen, Tomasz M. Wróbel, Mikael Frykman, Henrik Johansson, Hans Bräuner-Osborne, David E. Gloriam, Jesper Mosolff Mathiesen, Daniel Sejer Pedersen. Probing the Existence of a Metastable Binding Site at the β2-Adrenergic Receptor with Homobivalent Bitopic Ligands. Journal of Medicinal Chemistry 2019, 62 (17) , 7806-7839. https://doi.org/10.1021/acs.jmedchem.9b00595
    2. Márton Vass, Sabina Podlewska, Iwan J. P. de Esch, Andrzej J. Bojarski, Rob Leurs, Albert J. Kooistra, Chris de Graaf. Aminergic GPCR–Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. Journal of Medicinal Chemistry 2019, 62 (8) , 3784-3839. https://doi.org/10.1021/acs.jmedchem.8b00836
    3. Barbara Männel, Mariama Jaiteh, Alexey Zeifman, Alena Randakova, Dorothee Möller, Harald Hübner, Peter Gmeiner, and Jens Carlsson . Structure-Guided Screening for Functionally Selective D2 Dopamine Receptor Ligands from a Virtual Chemical Library. ACS Chemical Biology 2017, 12 (10) , 2652-2661. https://doi.org/10.1021/acschembio.7b00493
    4. Axel Rudling, Robert Gustafsson, Ingrid Almlöf, Evert Homan, Martin Scobie, Ulrika Warpman Berglund, Thomas Helleday, Pål Stenmark, and Jens Carlsson . Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. Journal of Medicinal Chemistry 2017, 60 (19) , 8160-8169. https://doi.org/10.1021/acs.jmedchem.7b01006
    5. Marta Arimont, Shan-Liang Sun, Rob Leurs, Martine Smit, Iwan J. P. de Esch, and Chris de Graaf . Structural Analysis of Chemokine Receptor–Ligand Interactions. Journal of Medicinal Chemistry 2017, 60 (12) , 4735-4779. https://doi.org/10.1021/acs.jmedchem.6b01309
    6. Philipp Fronik, Birgit I. Gaiser, and Daniel Sejer Pedersen . Bitopic Ligands and Metastable Binding Sites: Opportunities for G Protein-Coupled Receptor (GPCR) Medicinal Chemistry. Journal of Medicinal Chemistry 2017, 60 (10) , 4126-4134. https://doi.org/10.1021/acs.jmedchem.6b01601
    7. György M. Keserű, Daniel A. Erlanson, György G. Ferenczy, Michael M. Hann, Christopher W. Murray, and Stephen D. Pickett . Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia. Journal of Medicinal Chemistry 2016, 59 (18) , 8189-8206. https://doi.org/10.1021/acs.jmedchem.6b00197
    8. Fabrizio Micheli, Alessia Bacchi, Simone Braggio, Laura Castelletti, Palmina Cavallini, Paolo Cavanni, Susanna Cremonesi, Michele Dal Cin, Aldo Feriani, Sylvie Gehanne, Mahmud Kajbaf, Luciano Marchió, Selena Nola, Beatrice Oliosi, Annalisa Pellacani, Elisabetta Perdonà, Anna Sava, Teresa Semeraro, Luca Tarsi, Silvia Tomelleri, Andrea Wong, Filippo Visentini, Laura Zonzini, and Christian Heidbreder . 1,2,4-Triazolyl 5-Azaspiro[2.4]heptanes: Lead Identification and Early Lead Optimization of a New Series of Potent and Selective Dopamine D3 Receptor Antagonists. Journal of Medicinal Chemistry 2016, 59 (18) , 8549-8576. https://doi.org/10.1021/acs.jmedchem.6b00972
    9. Anna Ohtera, Yusaku Miyamae, Kotaro Yoshida, Kazuhiro Maejima, Toru Akita, Akira Kakizuka, Kazuhiro Irie, Seiji Masuda, Taiho Kambe, and Masaya Nagao . Identification of a New Type of Covalent PPARγ Agonist using a Ligand-Linking Strategy. ACS Chemical Biology 2015, 10 (12) , 2794-2804. https://doi.org/10.1021/acschembio.5b00628
    10. Attila Egyed, Dóra Judit Kiss, György M. Keserű. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.847788
    11. Flavio Ballante, Albert J Kooistra, Stefanie Kampen, Chris de Graaf, Jens Carlsson, . Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews 2021, 73 (4) , 1698-1736. https://doi.org/10.1124/pharmrev.120.000246
    12. Attila Egyed, Ádám A. Kelemen, Márton Vass, András Visegrády, Stephanie A. Thee, Zhiyong Wang, Chris de Graaf, Jose Brea, Maria Isabel Loza, Rob Leurs, György M. Keserű. Controlling the selectivity of aminergic GPCR ligands from the extracellular vestibule. Bioorganic Chemistry 2021, 111 , 104832. https://doi.org/10.1016/j.bioorg.2021.104832
    13. Jon Kapla, Ismael Rodríguez-Espigares, Flavio Ballante, Jana Selent, Jens Carlsson, . Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models?. PLOS Computational Biology 2021, 17 (5) , e1008936. https://doi.org/10.1371/journal.pcbi.1008936
    14. Miles Congreve, John A. Christopher, Chris de Graaf. Structure‐Based Drug Design for G Protein‐Coupled Receptors. 2021, 1-59. https://doi.org/10.1002/0471266949.bmc269
    15. Miles Congreve, Chris de Graaf, Nigel A. Swain, Christopher G. Tate. Impact of GPCR Structures on Drug Discovery. Cell 2020, 181 (1) , 81-91. https://doi.org/10.1016/j.cell.2020.03.003
    16. . The Dopaminergic System. 2019, 1-39. https://doi.org/10.1002/9783527813421.ch1
    17. Lucas Defelipe, Juan Arcon, Carlos Modenutti, Marcelo Marti, Adrián Turjanski, Xavier Barril. Solvents to Fragments to Drugs: MD Applications in Drug Design. Molecules 2018, 23 (12) , 3269. https://doi.org/10.3390/molecules23123269
    18. Márton Vass, Albert J. Kooistra, Dehua Yang, Raymond C. Stevens, Ming-Wei Wang, Chris de Graaf. Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends in Pharmacological Sciences 2018, 39 (5) , 494-512. https://doi.org/10.1016/j.tips.2018.02.004
    19. Krzysztof Rataj, Ádám Kelemen, José Brea, María Loza, Andrzej Bojarski, György Keserű. Fingerprint-Based Machine Learning Approach to Identify Potent and Selective 5-HT2BR Ligands. Molecules 2018, 23 (5) , 1137. https://doi.org/10.3390/molecules23051137
    20. Shaherin Basith, Minghua Cui, Stephani J. Y. Macalino, Jongmi Park, Nina A. B. Clavio, Soosung Kang, Sun Choi. Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design. Frontiers in Pharmacology 2018, 9 https://doi.org/10.3389/fphar.2018.00128
    21. Martina Bigatti, Alberto Dal Corso, Sara Vanetti, Samuele Cazzamalli, Ulrike Rieder, Jörg Scheuermann, Dario Neri, Filippo Sladojevich. Impact of a Central Scaffold on the Binding Affinity of Fragment Pairs Isolated from DNA‐Encoded Self‐Assembling Chemical Libraries. ChemMedChem 2017, 12 (21) , 1748-1752. https://doi.org/10.1002/cmdc.201700569
    22. György M Keserű , Michael M Hann. What is the future for fragment-based drug discovery?. Future Medicinal Chemistry 2017, 9 (13) , 1457-1460. https://doi.org/10.4155/fmc-2017-0106
    23. Anirudh Ranganathan, David Rodríguez, Jens Carlsson. Structure-Based Discovery of GPCR Ligands from Crystal Structures and Homology Models. 2017, 65-99. https://doi.org/10.1007/7355_2016_25
    24. Xiaomeng Xu, Shifan Ma, Zhiwei Feng, Guanxing Hu, Lirong Wang, Xiang-Qun Xie. Chemogenomics knowledgebase and systems pharmacology for hallucinogen target identification—Salvinorin A as a case study. Journal of Molecular Graphics and Modelling 2016, 70 , 284-295. https://doi.org/10.1016/j.jmgm.2016.08.001
    25. Fabrizio Micheli, Andrea Bernardelli, Federica Bianchi, Simone Braggio, Laura Castelletti, Palmina Cavallini, Paolo Cavanni, Susanna Cremonesi, Michele Dal Cin, Aldo Feriani, Beatrice Oliosi, Teresa Semeraro, Luca Tarsi, Silvia Tomelleri, Andrea Wong, Filippo Visentini, Laura Zonzini, Christian Heidbreder. 1,2,4-Triazolyl octahydropyrrolo[2,3-b]pyrroles: A new series of potent and selective dopamine D3 receptor antagonists. Bioorganic & Medicinal Chemistry 2016, 24 (8) , 1619-1636. https://doi.org/10.1016/j.bmc.2016.02.031
    26. Miles Congreve, John A. Christopher. Fragment Screening in Complex Systems. 2016, 267-292. https://doi.org/10.1002/9783527683604.ch12
    27. Francesca Spyrakis, Claudio N. Cavasotto. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Archives of Biochemistry and Biophysics 2015, 583 , 105-119. https://doi.org/10.1016/j.abb.2015.08.002
    28. Michael J. Wasko, Kendy A. Pellegrene, Jeffry D. Madura, Christopher K. Surratt. A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets. Frontiers in Neurology 2015, 6 https://doi.org/10.3389/fneur.2015.00197
    29. Chayne L. Piscitelli, James Kean, Chris de Graaf, Xavier Deupi. A Molecular Pharmacologist’s Guide to G Protein–Coupled Receptor Crystallography. Molecular Pharmacology 2015, 88 (3) , 536-551. https://doi.org/10.1124/mol.115.099663

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect