Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Porphyrin−Apidaecin Conjugate as a New Broad Spectrum Antibacterial Agent

  • Ryan Dosselli
    Ryan Dosselli
    Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
    Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
  • Marina Gobbo
    Marina Gobbo
    Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
    Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
    More by Marina Gobbo
  • Erika Bolognini
    Erika Bolognini
    Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
    Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
  • Sandro Campestrini
    Sandro Campestrini
    Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
    Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
  • , and 
  • Elena Reddi*
    Elena Reddi
    Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
    Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
    *Corresponding author. Phone: +39 049 8276335. Fax: +39 049 8276300. E-mail: [email protected]
    More by Elena Reddi
Cite this: ACS Med. Chem. Lett. 2010, 1, 1, 35–38
Publication Date (Web):February 1, 2010
https://doi.org/10.1021/ml900021y
Copyright © 2010 American Chemical Society

    Article Views

    2534

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The conjugation of the cationic antimicrobial peptide, apidaecin Ib, to the anionic photosensitizer, 5(4′-carboxyphenyl)-10,15,20-triphenylporphyrin (cTPP), afforded a new antibacterial agent effective, under light activation, against both Gram-positive and Gram-negative bacteria. At low concentrations (1.5−15 μM) the conjugate was able to reduce the survival of Escherichia coli cells by 3−4 log10, and most notably, it resulted photoactive also against hard-to-treat Pseudomonas aeruginosa, although at higher concentration (60 μM). Under similar conditions, the photosensitizer alone was only photoactive against Staphylococcus aureus while the unconjugated peptide was inactive against all the bacterial strains tested. This study shows the possibility of obtaining new broad-spectrum apidaecin−photosensitizer conjugates with potent antibacterial activity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Detailed experimental procedures on peptides and conjugate synthesis and protocols of bacterial treatments. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 50 publications.

    1. Kornelia J. Skowron, Chetana Baliga, Tatum Johnson, Kyle M. Kremiller, Alexandra Castroverde, Trevor T. Dean, A’Lester C. Allen, Ana M. Lopez-Hernandez, Elena V. Aleksandrova, Dorota Klepacki, Alexander S. Mankin, Yury S. Polikanov, Terry W. Moore. Structure–Activity Relationships of the Antimicrobial Peptide Natural Product Apidaecin. Journal of Medicinal Chemistry 2023, 66 (17) , 11831-11842. https://doi.org/10.1021/acs.jmedchem.3c00406
    2. Kelly A. McCarthy, Michael A. Kelly, Kaicheng Li, Samantha Cambray, Azade S. Hosseini, Tim van Opijnen, Jianmin Gao. Phage Display of Dynamic Covalent Binding Motifs Enables Facile Development of Targeted Antibiotics. Journal of the American Chemical Society 2018, 140 (19) , 6137-6145. https://doi.org/10.1021/jacs.8b02461
    3. Seema Kirar, Neeraj S. Thakur, Joydev K. Laha, Jayeeta Bhaumik, and Uttam C. Banerjee . Development of Gelatin Nanoparticle-Based Biodegradable Phototheranostic Agents: Advanced System to Treat Infectious Diseases. ACS Biomaterials Science & Engineering 2018, 4 (2) , 473-482. https://doi.org/10.1021/acsbiomaterials.7b00751
    4. Ting-Yi Wang, M. Daben J. Libardo, Alfredo M. Angeles-Boza, and Jean-Philippe Pellois . Membrane Oxidation in Cell Delivery and Cell Killing Applications. ACS Chemical Biology 2017, 12 (5) , 1170-1182. https://doi.org/10.1021/acschembio.7b00237
    5. Ryan Dosselli, Rubén Ruiz-González, Francesca Moret, Valentina Agnolon, Chiara Compagnin, Maddalena Mognato, Valentina Sella, Montserrat Agut, Santi Nonell, Marina Gobbo, and Elena Reddi . Synthesis, Spectroscopic, and Photophysical Characterization and Photosensitizing Activity toward Prokaryotic and Eukaryotic Cells of Porphyrin-Magainin and -Buforin Conjugates. Journal of Medicinal Chemistry 2014, 57 (4) , 1403-1415. https://doi.org/10.1021/jm401653r
    6. Ryan Dosselli, Cristiano Tampieri, Rubén Ruiz-González, Sonia De Munari, Xavier Ragàs, David Sánchez-García, Montserrat Agut, Santi Nonell, Elena Reddi, and Marina Gobbo . Synthesis, Characterization, and Photoinduced Antibacterial Activity of Porphyrin-Type Photosensitizers Conjugated to the Antimicrobial Peptide Apidaecin 1b. Journal of Medicinal Chemistry 2013, 56 (3) , 1052-1063. https://doi.org/10.1021/jm301509n
    7. Daniel O. Frimannsson, Marco Grossi, Julie Murtagh, Francesca Paradisi, and Donal F. O’Shea. Light Induced Antimicrobial Properties of a Brominated Boron Difluoride (BF2) Chelated Tetraarylazadipyrromethene Photosensitizer. Journal of Medicinal Chemistry 2010, 53 (20) , 7337-7343. https://doi.org/10.1021/jm100585j
    8. Marc Sautour, Thibaut Théry, Gaëlle Divoux, Sébastien Dupont, Laurent Beney, Claude P. Gros, Nicolas Desbois. Synthesis and characterization of new acid-functionalized porphyrins displaying antimicrobial activity against gram positive bacteria, yeasts and filamentous fungi with or without ultra-high irradiance. Bioorganic & Medicinal Chemistry 2024, 109 , 117810. https://doi.org/10.1016/j.bmc.2024.117810
    9. Sébastien Clément, Jean-Yves Winum. Photodynamic therapy alone or in combination to counteract bacterial infections. Expert Opinion on Therapeutic Patents 2024, 39 , 1-14. https://doi.org/10.1080/13543776.2024.2327308
    10. Inga O. Savelyeva, Kseniya A. Zhdanova, Margarita A. Gradova, Oleg V. Gradov, Natal’ya A. Bragina. Cationic Porphyrins as Antimicrobial and Antiviral Agents in Photodynamic Therapy. Current Issues in Molecular Biology 2023, 45 (12) , 9793-9822. https://doi.org/10.3390/cimb45120612
    11. Sanjay Prasad Selvaraj, Jyh-Yih Chen. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. European Journal of Medicinal Chemistry 2023, 259 , 115680. https://doi.org/10.1016/j.ejmech.2023.115680
    12. Michael Grimmeisen, Claudia Jessen‐Trefzer. Increasing the Selectivity of Light‐Active Antimicrobial Agents – Or How To Get a Photosensitizer to the Desired Target. ChemBioChem 2023, 24 (18) https://doi.org/10.1002/cbic.202300177
    13. Marketa Kolarikova, Barbora Hosikova, Hanna Dilenko, Katerina Barton‐Tomankova, Lucie Valkova, Robert Bajgar, Lukas Malina, Hana Kolarova. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Medicinal Research Reviews 2023, 43 (4) , 717-774. https://doi.org/10.1002/med.21935
    14. Rafael T. Aroso, Giusi Piccirillo, Lucas D. Dias, Sara M. A. Pinto, Luís G. Arnaut, Mariette M. Pereira. Synthesis of Photosensitizers Based on Tetrapyrrolic Macrocycles for Combination with Antibiotics: Dual Inactivation of Bacteria. ChemPlusChem 2022, 87 (11) https://doi.org/10.1002/cplu.202200228
    15. Yanfang Feng, Caroline Coradi Tonon, Tayyaba Hasan. Dramatic destruction of methicillin-resistant Staphylococcus aureus infections with a simple combination of amoxicillin and light-activated methylene blue. Journal of Photochemistry and Photobiology B: Biology 2022, 235 , 112563. https://doi.org/10.1016/j.jphotobiol.2022.112563
    16. Pietro Delcanale, Stefania Abbruzzetti, Cristiano Viappiani. Photodynamic treatment of pathogens. La Rivista del Nuovo Cimento 2022, 45 (6) , 407-459. https://doi.org/10.1007/s40766-022-00031-4
    17. Jiaqi Zhang, Jin Zhang, Yitong Wang, Xin Zhang, Ting Nie, Yanan Liu. Strategies to Improve the Activity and Biocompatibility: Modification of Peptide Antibiotics. Foodborne Pathogens and Disease 2022, 19 (6) , 376-385. https://doi.org/10.1089/fpd.2021.0112
    18. Gul Rukh, Azeem Ullah, Rozina Khattak, Perveen Fazil, Abid Ali, Muhammad Raza Shah, Muhammad Sufaid Khan, Abdullah Saad Alsubaie, Khaled H. Mahmoud, Muhammad Ateeq. Conjugation of Antimicrobial Peptide to Zinc Phthalocyanine for an Efficient Photodynamic Antimicrobial Chemotherapy. Coatings 2022, 12 (2) , 200. https://doi.org/10.3390/coatings12020200
    19. Dorien Aerssens, Enrico Cadoni, Laure Tack, Annemieke Madder. A Photosensitized Singlet Oxygen (1O2) Toolbox for Bio-Organic Applications: Tailoring 1O2 Generation for DNA and Protein Labelling, Targeting and Biosensing. Molecules 2022, 27 (3) , 778. https://doi.org/10.3390/molecules27030778
    20. Abdulaziz Anas, Jeladhara Sobhanan, K.M. Sulfiya, C. Jasmin, P.K. Sreelakshmi, Vasudevanpillai Biju. Advances in photodynamic antimicrobial chemotherapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021, 49 , 100452. https://doi.org/10.1016/j.jphotochemrev.2021.100452
    21. Yanfang Feng, Caroline Coradi Tonon, Shoaib Ashraf, Tayyaba Hasan. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Advanced Drug Delivery Reviews 2021, 177 , 113941. https://doi.org/10.1016/j.addr.2021.113941
    22. James Oyim, Calvin A. Omolo, Edith K. Amuhaya. Photodynamic Antimicrobial Chemotherapy: Advancements in Porphyrin-Based Photosensitize Development. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.635344
    23. Jacky C. H. Chu, Miu Ling Chin, Clarence T. T. Wong, Mamie Hui, Pui‐Chi Lo, Dennis K. P. Ng. One‐Pot Synthesis of a Cyclic Antimicrobial Peptide‐Conjugated Phthalocyanine for Synergistic Chemo‐Photodynamic Killing of Multidrug‐Resistant Bacteria. Advanced Therapeutics 2021, 4 (3) https://doi.org/10.1002/adtp.202000204
    24. Carla Arnau del Valle, Vanesa Pérez-Laguna, Ignacio Muñoz Resta, Raquel Gavara, Carles Felip-León, Juan F. Miravet, Antonio Rezusta, Francisco Galindo. A cost-effective combination of Rose Bengal and off-the-shelf cationic polystyrene for the photodynamic inactivation of Pseudomonas aeruginosa. Materials Science and Engineering: C 2020, 117 , 111302. https://doi.org/10.1016/j.msec.2020.111302
    25. Maxime Klausen, Muhammed Ucuncu, Mark Bradley. Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy. Molecules 2020, 25 (22) , 5239. https://doi.org/10.3390/molecules25225239
    26. Brandy J. Johnson, Anthony P. Malanoski, Jeffrey S. Erickson. Development of a Colorimetric Sensor for Autonomous, Networked, Real-Time Application. Sensors 2020, 20 (20) , 5857. https://doi.org/10.3390/s20205857
    27. Monika Kossakowska-Zwierucho, Grzegorz Szewczyk, Tadeusz Sarna, Joanna Nakonieczna. Farnesol potentiates photodynamic inactivation of Staphylococcus aureus with the use of red light-activated porphyrin TMPyP. Journal of Photochemistry and Photobiology B: Biology 2020, 206 , 111863. https://doi.org/10.1016/j.jphotobiol.2020.111863
    28. Rita Cimino, Elisa Grelloni, Gabriele Magna, Donato Monti, Manuela Stefanelli, Emanuela Gatto, Ernesto Placidi, Francesca Biscaglia, Marina Gobbo, Mariano Venanzi. Tuning the morphology of mesoscopic structures of porphyrin macrocycles functionalized by an antimicrobial peptide. Journal of Porphyrins and Phthalocyanines 2020, 24 (05n07) , 920-928. https://doi.org/10.1142/S1088424619502006
    29. Ingrid Nieves, Cormac Hally, Cristiano Viappiani, Montserrat Agut, Santi Nonell. A porphycene-gentamicin conjugate for enhanced photodynamic inactivation of bacteria. Bioorganic Chemistry 2020, 97 , 103661. https://doi.org/10.1016/j.bioorg.2020.103661
    30. Muhammed Ucuncu, Bethany Mills, Sheelagh Duncan, Matteo Staderini, Kevin Dhaliwal, Mark Bradley. Polymyxin-based photosensitizer for the potent and selective killing of Gram-negative bacteria. Chemical Communications 2020, 56 (26) , 3757-3760. https://doi.org/10.1039/D0CC00155D
    31. Ai-Nv Zhang, Wei Wu, Chi Zhang, Qiu-Yang Wang, Ze-Nan Zhuang, Han Cheng, Xian-Zheng Zhang. A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity. Journal of Materials Chemistry B 2019, 7 (7) , 1087-1095. https://doi.org/10.1039/C8TB03094D
    32. B. Habermeyer, R. Guilard. Some activities of PorphyChem illustrated by the applications of porphyrinoids in PDT, PIT and PDI. Photochemical & Photobiological Sciences 2018, 17 (11) , 1675-1690. https://doi.org/10.1039/c8pp00222c
    33. Francesca Biscaglia, Marina Gobbo. Porphyrin–peptide conjugates in biomedical applications. Peptide Science 2018, 110 (5) https://doi.org/10.1002/pep2.24038
    34. Daniel A. Heredia, Andrés M. Durantini, Ariel M. Sarotti, Natalia S. Gsponer, Darío D. Ferreyra, Sonia G. Bertolotti, María E. Milanesio, Edgardo N. Durantini. Proton‐Dependent Switching of a Novel Amino Chlorin Derivative as a Fluorescent Probe and Photosensitizer for Acidic Media. Chemistry – A European Journal 2018, 24 (22) , 5950-5961. https://doi.org/10.1002/chem.201800060
    35. Estéfani L. Belinello-Souza, Letícia H. Alvarenga, Cintia Lima-Leal, Patrícia Almeida, Carolina Guimarães Leite, Tairine R. Lima, Bianca Godoy-Miranda, Jhosepher Previati-Oliveira, Lucas de Pretto, Anderson Zanardi de Freitas, Adjaci U. Fernandes, Rodrigo Labat Marcos, Renato A. Prates. Antimicrobial photodynamic therapy combined to periodontal treatment: Experimental model. Photodiagnosis and Photodynamic Therapy 2017, 18 , 275-278. https://doi.org/10.1016/j.pdpdt.2017.03.008
    36. Florent Le Guern, Tan-Sothea Ouk, Karine Grenier, Nicolas Joly, Vincent Lequart, Vincent Sol. Enhancement of photobactericidal activity of chlorin-e6-cellulose nanocrystals by covalent attachment of polymyxin B. Journal of Materials Chemistry B 2017, 5 (33) , 6953-6962. https://doi.org/10.1039/C7TB01274H
    37. Lu Jiang, Ching Ruey Raymond Gan, Jian Gao, Xian Jun Loh. A Perspective on the Trends and Challenges Facing Porphyrin‐Based Anti‐Microbial Materials. Small 2016, 12 (27) , 3609-3644. https://doi.org/10.1002/smll.201600327
    38. Brandy J. Johnson, Chris R. Taitt, Apre Gleaves, Stella H. North, Anthony P. Malanoski, Iwona A. Leska, Edikan Archibong, Stormie M. Monk. Porphyrin-modified antimicrobial peptide indicators for detection of bacteria. Sensing and Bio-Sensing Research 2016, 8 , 1-7. https://doi.org/10.1016/j.sbsr.2016.02.005
    39. Andre Reinhardt, Ines Neundorf. Design and Application of Antimicrobial Peptide Conjugates. International Journal of Molecular Sciences 2016, 17 (5) , 701. https://doi.org/10.3390/ijms17050701
    40. Francesca Biscaglia, Elisa Frezza, Enrico Zurlo, Marina Gobbo. Linker dependent chirality of solvent induced self-assembled structures of porphyrin–α-helical peptide conjugates. Organic & Biomolecular Chemistry 2016, 14 (40) , 9568-9577. https://doi.org/10.1039/C6OB01633B
    41. M. Daben J. Libardo, Thomas J. Paul, Rajeev Prabhakar, Alfredo M. Angeles-Boza. Hybrid peptide ATCUN-sh-Buforin: Influence of the ATCUN charge and stereochemistry on antimicrobial activity. Biochimie 2015, 113 , 143-155. https://doi.org/10.1016/j.biochi.2015.04.008
    42. Shuai Meng, Zengping Xu, Ge Hong, Lihui Zhao, Zhanjuan Zhao, Jianghong Guo, Haiying Ji, Tianjun Liu. Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid–porphyrin conjugates. European Journal of Medicinal Chemistry 2015, 92 , 35-48. https://doi.org/10.1016/j.ejmech.2014.12.029
    43. M. Daben Libardo, Jorge L. Cervantes, Juan C. Salazar, Alfredo M. Angeles‐Boza. Improved Bioactivity of Antimicrobial Peptides by Addition of Amino‐Terminal Copper and Nickel (ATCUN) Binding Motifs. ChemMedChem 2014, 9 (8) , 1892-1901. https://doi.org/10.1002/cmdc.201402033
    44. Smriti Sharma, Mohammad Saquib, Saroj Verma, Nripendra N. Mishra, Praveen K. Shukla, Ranjana Srivastava, Yenamandra S. Prabhakar, Arun K. Shaw. Synthesis of 2,3,6-trideoxy sugar triazole hybrids as potential new broad spectrum antimicrobial agents. European Journal of Medicinal Chemistry 2014, 83 , 474-489. https://doi.org/10.1016/j.ejmech.2014.06.048
    45. Diana Samaroo, Evelyn Perez, Amit Aggarwal, Andrew Wills, Naphtali O'Connor. Strategies for Delivering Porphyrinoid-Based Photosensitizers in Therapeutic Applications. Therapeutic Delivery 2014, 5 (7) , 859-872. https://doi.org/10.4155/tde.14.46
    46. Guoyu Jiang, Wanhua Lei, Yuanjun Hou, Xuesong Wang. Photodynamic inactivation of Escherichia coli by porphyrin cytochrome c. New Journal of Chemistry 2012, 36 (11) , 2180. https://doi.org/10.1039/c2nj40615b
    47. Samuel G. Awuah, Youngjae You. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Advances 2012, 2 (30) , 11169. https://doi.org/10.1039/c2ra21404k
    48. Adam Pepperney, Michael L. Chikindas. Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics and Antimicrobial Proteins 2011, 3 (2) , 68-96. https://doi.org/10.1007/s12602-011-9076-5
    49. Francesca Giuntini, Cristina M. A. Alonso, Ross W. Boyle. Synthetic approaches for the conjugation of porphyrins and related macrocycles to peptides and proteins. Photochemical & Photobiological Sciences 2011, 10 (5) , 759-791. https://doi.org/10.1039/c0pp00366b
    50. Derrick Kok Sing Tay, Gobinath Rajagopalan, Xiang Li, Yu Chen, Linda H.L. Lua, Susanna Su Jan Leong. A new bioproduction route for a novel antimicrobial peptide. Biotechnology and Bioengineering 2011, 108 (3) , 572-581. https://doi.org/10.1002/bit.22970