Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Oral Availability and Brain Penetration of the B-RAFV600E Inhibitor Vemurafenib Can Be Enhanced by the P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) Inhibitor Elacridar

View Author Information
Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
§ Slotervaart Hospital, Department of Pharmacy & Pharmacology, Louwesweg 6, 1066 EC Amsterdam, The Netherlands
*The Netherlands Cancer Institute, Division of Molecular Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands. E-mail: [email protected]. Phone: +31 20 5122046. Fax: +31 20 669 1383.
Cite this: Mol. Pharmaceutics 2012, 9, 11, 3236–3245
Publication Date (Web):September 28, 2012
https://doi.org/10.1021/mp3003144
Copyright © 2012 American Chemical Society

    Article Views

    1831

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Vemurafenib (PLX4032) is a novel tyrosine kinase inhibitor that has clinical efficacy against metastatic melanoma harboring a BRAFV600E mutation. We aimed to establish whether oral availability and brain penetration of vemurafenib could be restricted by the multidrug efflux transporters P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), as these might limit therapeutic efficacy, especially against brain metastases. In vitro, vemurafenib was efficiently transported by both human ABCB1 and ABCG2, and very efficiently by mouse Abcg2, but not by mouse Abcc2. Upon oral administration of vemurafenib (5 mg/kg), Abcb1a/1b–/– mice had a 1.6-fold increased, Abcg2–/– mice a 2.3-fold increased, and Abcb1a/1b–/–;Abcg2–/– mice a 6.6-fold increased plasma AUC, respectively, compared to wild-type (WT) mice, indicating a marked and additive role of these transporters in limiting vemurafenib oral availability. Brain-to-plasma ratios of vemurafenib (oral, 25 mg/kg) were not increased in Abcg2–/– mice, only 1.7-fold in Abcb1a/1b–/– mice, but 21.4-fold in Abcb1a/1b–/–;Abcg2–/– mice, indicating pronounced overlapping functions of these transporters in reducing vemurafenib brain accumulation. Oral coadministration of the dual ABCB1 and ABCG2 inhibitor elacridar almost completely eliminated the roles of Abcb1 and Abcg2 in restricting oral availability and brain accumulation of vemurafenib. As predicted by previously described pharmacokinetic modeling, halving the amount of active efflux transport at the WT blood–brain barrier by testing heterozygous Abcb1a/1b+/–;Abcg2+/– mice had little impact on vemurafenib brain accumulation. Our data suggest that elacridar coadministration may be considered to improve the therapeutic efficacy of vemurafenib, especially for brain metastases located behind a functional blood–brain barrier.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    In vitro transepithelial transport of vemurafenib (5 μM) in MDCK-II cells transduced with murine Abcc2 cells and in vivo brain concentrations and relative brain accumulations of female WT and Abcb1a/1b–/–;Abcg2–/– mice after oral administration of 25 mg/kg vemurafenib and 100 mg/kg elacridar. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 108 publications.

    1. Ding Huang, Qingwang Liu, Maojie Zhang, Yizhen Guo, Zhiying Cui, Tao Li, Dong Luo, Biao Xu, Chao Huang, Jian Guo, Kin Yip Tam, Min Zhang, Shao-Lin Zhang, Yun He. A Mitochondria-Targeted Phenylbutyric Acid Prodrug Confers Drastically Improved Anticancer Activities. Journal of Medicinal Chemistry 2022, 65 (14) , 9955-9973. https://doi.org/10.1021/acs.jmedchem.2c00640
    2. Aya M. Kelly, Matthew R. Berry, Sarah Z. Tasker, Sydney A. McKee, Timothy M. Fan, Paul J. Hergenrother. Target-Agnostic P-Glycoprotein Assessment Yields Strategies to Evade Efflux, Leading to a BRAF Inhibitor with Intracranial Efficacy. Journal of the American Chemical Society 2022, 144 (27) , 12367-12380. https://doi.org/10.1021/jacs.2c03944
    3. Iris L. K. Wong, Xuezhen Zhu, Kin-Fai Chan, Man Chun Law, Aya M. Y. Lo, Xuesen Hu, Larry M. C. Chow, Tak Hang Chan. Discovery of Novel Flavonoid Dimers To Reverse Multidrug Resistance Protein 1 (MRP1, ABCC1) Mediated Drug Resistance in Cancers Using a High Throughput Platform with “Click Chemistry”. Journal of Medicinal Chemistry 2018, 61 (22) , 9931-9951. https://doi.org/10.1021/acs.jmedchem.8b00834
    4. Stéphanie van Hoppe, Johannes J. M. Rood, Levi Buil, Els Wagenaar, Rolf W. Sparidans, Jos H. Beijnen, Alfred H. Schinkel. P-Glycoprotein (MDR1/ABCB1) Restricts Brain Penetration of the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib, While Cytochrome P450-3A (CYP3A) Limits Its Oral Bioavailability. Molecular Pharmaceutics 2018, 15 (11) , 5124-5134. https://doi.org/10.1021/acs.molpharmaceut.8b00702
    5. Anita Kort, Stéphanie van Hoppe, Rolf W. Sparidans, Els Wagenaar, Jos H. Beijnen, and Alfred H. Schinkel . Brain Accumulation of Ponatinib and Its Active Metabolite, N-Desmethyl Ponatinib, Is Limited by P-Glycoprotein (P-GP/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2). Molecular Pharmaceutics 2017, 14 (10) , 3258-3268. https://doi.org/10.1021/acs.molpharmaceut.7b00257
    6. Edna F. Choo, Justin Ly, Jocelyn Chan, Sheerin K. Shahidi-Latham, Kirsten Messick, Emile Plise, Cristine M. Quiason, and Lulu Yang . Role of P-Glycoprotein on the Brain Penetration and Brain Pharmacodynamic Activity of the MEK Inhibitor Cobimetinib. Molecular Pharmaceutics 2014, 11 (11) , 4199-4207. https://doi.org/10.1021/mp500435s
    7. Ryosuke Watari, Naomi Tamura, Shinpei Yoshida, Yasuto Kido, Takanobu Matsuzaki. Minimal involvement of P-gp and BCRP in oral absorption of ensitrelvir, an oral SARS-CoV-2 3C-like protease inhibitor, in a non-clinical investigation. Journal of Pharmaceutical Sciences 2024, 65 https://doi.org/10.1016/j.xphs.2024.06.009
    8. Jacob L Schillo, Charlotte R Feddersen, Rebekah M Peplinski, Lexy S Powell, Afshin Varzavand, Christopher S Stipp, Jesse D Riordan, Adam J Dupuy. Single-cell genomics analysis reveals complex genetic interactions in an in vivo model of acquired BRAF inhibitor resistance. NAR Cancer 2024, 6 (1) https://doi.org/10.1093/narcan/zcad061
    9. Ping Zhang, Laura Esmee Kuil, Levi Conrad Maria Buil, Stephan Freriks, Jos Hendrik Beijnen, Olaf van Tellingen, Mark Cornelis de Gooijer. Acquired and intrinsic resistance to vemurafenib in BRAF V600E ‐driven melanoma brain metastases. FEBS Open Bio 2024, 14 (1) , 96-111. https://doi.org/10.1002/2211-5463.13730
    10. Şayan BERBER, Meri TAKSİ DEVECİYAN, Hazal Koray ALAY. Digital Literacy Level and Career Satisfaction of Academics. İnsan ve Toplum Bilimleri Araştırmaları Dergisi 2023, 12 (4) , 2363-2387. https://doi.org/10.15869/itobiad.1343893
    11. Eliot Y. Zhu, Jacob L. Schillo, Sarina D. Murray, Jesse D. Riordan, Adam J. Dupuy. Understanding cancer drug resistance with Sleeping Beauty functional genomic screens: Application to MAPK inhibition in cutaneous melanoma. iScience 2023, 26 (10) , 107805. https://doi.org/10.1016/j.isci.2023.107805
    12. Pooja Dhakne, Megha Pillai, Sonam Mishra, Bappaditya Chatterjee, Rakesh K. Tekade, Pinaki Sengupta. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2023, 1878 (4) , 188906. https://doi.org/10.1016/j.bbcan.2023.188906
    13. Julia López de Andrés, Marta Ruiz-Toranzo, Cristina Antich, Carlos Chocarro-Wrona, Elena López-Ruíz, Gema Jiménez, Juan Antonio Marchal. Biofabrication of a tri-layered 3D-bioprinted CSC-based malignant melanoma model for personalized cancer treatment. Biofabrication 2023, 15 (3) , 035016. https://doi.org/10.1088/1758-5090/ac8dc6
    14. József Tóvári, Diána Vári-Mező, Sára Eszter Surguta, Andrea Ladányi, Attila Kigyós, Mihály Cserepes. Evolving Acquired Vemurafenib Resistance in a BRAF V600E Mutant Melanoma PDTX Model to Reveal New Potential Targets. Cells 2023, 12 (14) , 1919. https://doi.org/10.3390/cells12141919
    15. Julian Steininger, Frank Friedrich Gellrich, Kay Engellandt, Matthias Meinhardt, Dana Westphal, Stefan Beissert, Friedegund Meier, Isabella C. Glitza Oliva. Leptomeningeal Metastases in Melanoma Patients: An Update on and Future Perspectives for Diagnosis and Treatment. International Journal of Molecular Sciences 2023, 24 (14) , 11443. https://doi.org/10.3390/ijms241411443
    16. Teresa Żołek, Adam Mazurek, Ireneusz P. Grudzinski. In Silico Studies of Novel Vemurafenib Derivatives as BRAF Kinase Inhibitors. Molecules 2023, 28 (13) , 5273. https://doi.org/10.3390/molecules28135273
    17. Manasi S. Pote, Rajesh N. Gacche. ATP-binding cassette efflux transporters and MDR in cancer. Drug Discovery Today 2023, 28 (5) , 103537. https://doi.org/10.1016/j.drudis.2023.103537
    18. I.A. Stepanov, V.A. Beloborodov, M.A. Shameeva. Overcoming the blood-brain barrier as a factor for increasing the efficiency of drug therapy for glioblastoma. Onkologiya. Zhurnal imeni P.A.Gertsena 2023, 12 (2) , 56. https://doi.org/10.17116/onkolog20231202156
    19. Silvia Pietrobono, Raffaella De Paolo, Domenico Mangiameli, Andrea Marranci, Ilaria Battisti, Cinzia Franchin, Giorgio Arrigoni, Davide Melisi, Laura Poliseno, Barbara Stecca. p38 MAPK-dependent phosphorylation of transcription factor SOX2 promotes an adaptive response to BRAF inhibitors in melanoma cells. Journal of Biological Chemistry 2022, 298 (9) , 102353. https://doi.org/10.1016/j.jbc.2022.102353
    20. Liang Han. Brain metastases: Nanomedicine-boosted diagnosis and treatment. Medicine in Drug Discovery 2022, 13 , 100111. https://doi.org/10.1016/j.medidd.2021.100111
    21. Yaogeng Wang, Rolf W. Sparidans, Jing Wang, Wenlong Li, Maria C. Lebre, Jos H. Beijnen, Alfred H. Schinkel. Rifampin and ritonavir increase oral availability and elacridar enhances overall exposure and brain accumulation of the NTRK inhibitor larotrectinib. European Journal of Pharmaceutics and Biopharmaceutics 2022, 170 , 197-207. https://doi.org/10.1016/j.ejpb.2021.12.007
    22. Ales Sorf, Dimitrios Vagiannis, Fahda Ahmed, Jakub Hofman, Martina Ceckova. Dabrafenib inhibits ABCG2 and cytochrome P450 isoenzymes; potential implications for combination anticancer therapy. Toxicology and Applied Pharmacology 2022, 434 , 115797. https://doi.org/10.1016/j.taap.2021.115797
    23. Francesca Mo, Alessia Pellerino, Riccardo Soffietti, Roberta Rudà. Blood–Brain Barrier in Brain Tumors: Biology and Clinical Relevance. International Journal of Molecular Sciences 2021, 22 (23) , 12654. https://doi.org/10.3390/ijms222312654
    24. Kathryn E Blethen, Tasneem A Arsiwala, Ross A Fladeland, Samuel A Sprowls, Dhruvi M Panchal, Chris E Adkins, Brooke N Kielkowski, Leland E Earp, Morgan J Glass, Trenton A Pritt, Yssabela M Cabuyao, Sonikpreet Aulakh, Paul R Lockman. Modulation of the blood-tumor barrier to enhance drug delivery and efficacy for brain metastases. Neuro-Oncology Advances 2021, 3 (Supplement_5) , v133-v143. https://doi.org/10.1093/noajnl/vdab123
    25. Victoria Bouchè, Giovanni Aldegheri, Carmine Antonio Donofrio, Antonio Fioravanti, Samuel Roberts-Thomson, Stephen B. Fox, Francesco Schettini, Daniele Generali. BRAF Signaling Inhibition in Glioblastoma: Which Clinical Perspectives?. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.772052
    26. Eurydice Angeli, Guilhem Bousquet. Brain Metastasis Treatment: The Place of Tyrosine Kinase Inhibitors and How to Facilitate Their Diffusion across the Blood–Brain Barrier. Pharmaceutics 2021, 13 (9) , 1446. https://doi.org/10.3390/pharmaceutics13091446
    27. Hinda Najem, Mustafa Khasraw, Amy B. Heimberger. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells 2021, 10 (8) , 2032. https://doi.org/10.3390/cells10082032
    28. Muhammad Khan, Tao Zheng, Zhihong Zhao, Sumbal Arooj, Guixiang Liao. Efficacy of BRAF Inhibitors in Combination With Stereotactic Radiosurgery for the Treatment of Melanoma Brain Metastases: A Systematic Review and Meta-Analysis. Frontiers in Oncology 2021, 10 https://doi.org/10.3389/fonc.2020.586029
    29. Justine Paris, Eurydice Angeli, Guilhem Bousquet. The Pharmacology of Xenobiotics after Intracerebro Spinal Fluid Administration: Implications for the Treatment of Brain Tumors. International Journal of Molecular Sciences 2021, 22 (3) , 1281. https://doi.org/10.3390/ijms22031281
    30. Hanlu Gao, Wei Wang, Jie Dong, Zhuyifan Ye, Defang Ouyang. An integrated computational methodology with data-driven machine learning, molecular modeling and PBPK modeling to accelerate solid dispersion formulation design. European Journal of Pharmaceutics and Biopharmaceutics 2021, 158 , 336-346. https://doi.org/10.1016/j.ejpb.2020.12.001
    31. Muhammad Khan, Zhihong Zhao, Sumbal Arooj, Tao Zheng, Guixiang Liao. Lapatinib Plus Local Radiation Therapy for Brain Metastases From HER-2 Positive Breast Cancer Patients and Role of Trastuzumab: A Systematic Review and Meta-Analysis. Frontiers in Oncology 2020, 10 https://doi.org/10.3389/fonc.2020.576926
    32. Komal Srinivasa, Kevin A. Cross, Sonika Dahiya. BRAF Alteration in Central and Peripheral Nervous System Tumors. Frontiers in Oncology 2020, 10 https://doi.org/10.3389/fonc.2020.574974
    33. Mehrdad Azarmi, Hadi Maleki, Nader Nikkam, Hassan Malekinejad. Transcellular brain drug delivery: A review on recent advancements. International Journal of Pharmaceutics 2020, 586 , 119582. https://doi.org/10.1016/j.ijpharm.2020.119582
    34. Jing Wang, Maaike A.C. Bruin, Changpei Gan, Maria C. Lebre, Hilde Rosing, Jos H. Beijnen, Alfred H. Schinkel. Brain accumulation of tivozanib is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein) in mice. International Journal of Pharmaceutics 2020, 581 , 119277. https://doi.org/10.1016/j.ijpharm.2020.119277
    35. Jonathan D. Strope, Cody J. Peer, Tristan M. Sissung, O. Morgan Hall, Phoebe A. Huang, Emily M. Harris, Kirk R. Gustafson, Curtis J. Henrich, Dina M. Sigano, Gary T. Pauly, Joel P. Schneider, Susan E. Bates, William D. Figg. Botryllamide G is an ABCG2 inhibitor that improves lapatinib delivery in mouse brain. Cancer Biology & Therapy 2020, 21 (3) , 223-230. https://doi.org/10.1080/15384047.2019.1683324
    36. Ludwik Gorczyca, Lauren M. Aleksunes. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: a review across tissues and species. Expert Opinion on Drug Metabolism & Toxicology 2020, 16 (3) , 239-253. https://doi.org/10.1080/17425255.2020.1732348
    37. Ines Böhme, Roland Schönherr, Jürgen Eberle, Anja Katrin Bosserhoff. Membrane Transporters and Channels in Melanoma. 2020, 269-374. https://doi.org/10.1007/112_2020_17
    38. Sheng-Kai Wu, Chia-Lin Tsai, Kullervo Hynynen. Novel Treatment Approaches for Brain Tumour from a Blood–Brain Barrier Perspective. 2020, 351-364. https://doi.org/10.1007/164_2020_408
    39. Costas D. Arvanitis, Gino B. Ferraro, Rakesh K. Jain. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nature Reviews Cancer 2020, 20 (1) , 26-41. https://doi.org/10.1038/s41568-019-0205-x
    40. Sabrina Lusvarghi, Robert W. Robey, Michael M. Gottesman, Suresh V. Ambudkar. Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Research 2020, 9 , 17. https://doi.org/10.12688/f1000research.21295.1
    41. Donglu Zhang, Cornelis E.C.A. Hop, Gabriela Patilea-Vrana, Gautham Gampa, Herana Kamal Seneviratne, Jashvant D. Unadkat, Jane R. Kenny, Karthik Nagapudi, Li Di, Lian Zhou, Mark Zak, Matthew R. Wright, Namandjé N. Bumpus, Richard Zang, Xingrong Liu, Yurong Lai, S. Cyrus Khojasteh. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule–Related Therapeutic Modalities. Drug Metabolism and Disposition 2019, 47 (10) , 1122-1135. https://doi.org/10.1124/dmd.119.086744
    42. Stéphanie van Hoppe, Amer Jamalpoor, Johannes J.M. Rood, Els Wagenaar, Rolf W. Sparidans, Jos H. Beijnen, Alfred H. Schinkel. Brain accumulation of osimertinib and its active metabolite AZ5104 is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Pharmacological Research 2019, 146 , 104297. https://doi.org/10.1016/j.phrs.2019.104297
    43. Andrea N. Robinson, Bethelihem G. Tebase, Sonia C. Francone, Lyn M. Huff, Hanna Kozlowski, Dominique Cossari, Jung-Min Lee, Dominic Esposito, Robert W. Robey, Michael M. Gottesman. Coexpression of ABCB1 and ABCG2 in a Cell Line Model Reveals Both Independent and Additive Transporter Function. Drug Metabolism and Disposition 2019, 47 (7) , 715-723. https://doi.org/10.1124/dmd.118.086181
    44. Preethi Ravindranathan, Divya Pasham, Ajay Goel. Oligomeric proanthocyanidins (OPCs) from grape seed extract suppress the activity of ABC transporters in overcoming chemoresistance in colorectal cancer cells. Carcinogenesis 2019, 40 (3) , 412-421. https://doi.org/10.1093/carcin/bgy184
    45. Anne-Laure Clairet, Marie Boiteux-Jurain, Elsa Curtit, Marie Jeannin, Blandine Gérard, Virginie Nerich, Samuel Limat. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Medical Oncology 2019, 36 (5) https://doi.org/10.1007/s12032-019-1267-z
    46. John T Szilagyi, Ludwik Gorczyca, Anita Brinker, Brian Buckley, Jeffrey D Laskin, Lauren M Aleksunes. Placental BCRP/ ABCG2 Transporter Prevents Fetal Exposure to the Estrogenic Mycotoxin Zearalenone. Toxicological Sciences 2019, 168 (2) , 394-404. https://doi.org/10.1093/toxsci/kfy303
    47. Jing Wang, Changpei Gan, Irene A. Retmana, Rolf W. Sparidans, Wenlong Li, Maria C. Lebre, Jos H. Beijnen, Alfred H. Schinkel. P-glycoprotein (MDR1/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2) limit brain accumulation of the FLT3 inhibitor quizartinib in mice. International Journal of Pharmaceutics 2019, 556 , 172-180. https://doi.org/10.1016/j.ijpharm.2018.12.014
    48. Chung-Pu Wu, Sheng-Chieh Hsu. Small Molecule Chemosensitizing Agents: Polo-Like Kinase 1 (Plk1), BRAF and Janus Kinase (JAK) Inhibitors. 2019, 169-185. https://doi.org/10.1016/B978-0-12-816435-8.00011-0
    49. Da Wang, Chao Wang, Liang Wang, Yue Chen. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Delivery 2019, 26 (1) , 551-565. https://doi.org/10.1080/10717544.2019.1616235
    50. Minjee Kim, Sani H. Kizilbash, Janice K. Laramy, Gautham Gampa, Karen E. Parrish, Jann N. Sarkaria, William F. Elmquist. Barriers to Effective Drug Treatment for Brain Metastases: A Multifactorial Problem in the Delivery of Precision Medicine. Pharmaceutical Research 2018, 35 (9) https://doi.org/10.1007/s11095-018-2455-9
    51. Daniel Dantzic, Pawan Noel, Fabrice Merien, Dong-Xu Liu, Jun Lu, Haiyong Han, Mark J. McKeage, Yan Li. The Effects of Synthetically Modified Natural Compounds on ABC Transporters. Pharmaceutics 2018, 10 (3) , 127. https://doi.org/10.3390/pharmaceutics10030127
    52. Robert W. Robey, Kristen M. Pluchino, Matthew D. Hall, Antonio T. Fojo, Susan E. Bates, Michael M. Gottesman. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews Cancer 2018, 18 (7) , 452-464. https://doi.org/10.1038/s41568-018-0005-8
    53. Samit Ganguly, John C. Panetta, Jessica K. Roberts, Erin G. Schuetz. Ketamine Pharmacokinetics and Pharmacodynamics Are Altered by P-Glycoprotein and Breast Cancer Resistance Protein Efflux Transporters in Mice. Drug Metabolism and Disposition 2018, 46 (7) , 1014-1022. https://doi.org/10.1124/dmd.117.078360
    54. Jing Wang, Changpei Gan, Rolf W. Sparidans, Els Wagenaar, Stéphanie van Hoppe, Jos H. Beijnen, Alfred H. Schinkel. P-glycoprotein (MDR1/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2) affect brain accumulation and intestinal disposition of encorafenib in mice. Pharmacological Research 2018, 129 , 414-423. https://doi.org/10.1016/j.phrs.2017.11.006
    55. Daiki Hira, Tomohiro Terada. BCRP/ABCG2 and high-alert medications: Biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochemical Pharmacology 2018, 147 , 201-210. https://doi.org/10.1016/j.bcp.2017.10.004
    56. Ranjeet Prasad Dash, R. Jayachandra Babu, Nuggehally R. Srinivas. Therapeutic Potential and Utility of Elacridar with Respect to P-glycoprotein Inhibition: An Insight from the Published In Vitro, Preclinical and Clinical Studies. European Journal of Drug Metabolism and Pharmacokinetics 2017, 42 (6) , 915-933. https://doi.org/10.1007/s13318-017-0411-4
    57. Diana Peña‐Solórzano, Simone Alexandra Stark, Burkhard König, Cesar Augusto Sierra, Cristian Ochoa‐Puentes. ABCG2/BCRP: Specific and Nonspecific Modulators. Medicinal Research Reviews 2017, 37 (5) , 987-1050. https://doi.org/10.1002/med.21428
    58. Stéphanie van Hoppe, Alfred H. Schinkel. What next? Preferably development of drugs that are no longer transported by the ABCB1 and ABCG2 efflux transporters. Pharmacological Research 2017, 123 , 144. https://doi.org/10.1016/j.phrs.2017.05.015
    59. Gautham Gampa, Shruthi Vaidhyanathan, Jann N. Sarkaria, William F. Elmquist. Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities?. Pharmacological Research 2017, 123 , 10-25. https://doi.org/10.1016/j.phrs.2017.06.008
    60. Anton Ivanyuk, Françoise Livio, Jérôme Biollaz, Thierry Buclin. Renal Drug Transporters and Drug Interactions. Clinical Pharmacokinetics 2017, 56 (8) , 825-892. https://doi.org/10.1007/s40262-017-0506-8
    61. Paul Slobbe, Albert D. Windhorst, Kevin Adamzek, Marije Bolijn, Robert C. Schuit, Daniëlle A.M. Heideman, Guus A.M.S. van Dongen, Alex J. Poot. Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts. Oncotarget 2017, 8 (24) , 38337-38350. https://doi.org/10.18632/oncotarget.16321
    62. Stéphanie van Hoppe, Rolf W. Sparidans, Els Wagenaar, Jos H. Beijnen, Alfred H. Schinkel. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-gp/ABCB1) transport afatinib and restrict its oral availability and brain accumulation. Pharmacological Research 2017, 120 , 43-50. https://doi.org/10.1016/j.phrs.2017.01.035
    63. E. Sawicki, J. H. M. Schellens, J. H. Beijnen, B. Nuijen. Pharmaceutical development of an amorphous solid dispersion formulation of elacridar hydrochloride for proof-of-concept clinical studies. Drug Development and Industrial Pharmacy 2017, 43 (4) , 584-594. https://doi.org/10.1080/03639045.2016.1274901
    64. Marc C. Chamberlain, Christina S. Baik, Vijayakrishna K. Gadi, Shailender Bhatia, Laura Q.M. Chow. Systemic therapy of brain metastases: non–small cell lung cancer, breast cancer, and melanoma. Neuro-Oncology 2017, 19 (1) , i1-i24. https://doi.org/10.1093/neuonc/now197
    65. Masataka OHTA, Shinji FUKUSHIRO, Rie SHIRATSUKI, Eishin MORITA. A Case of Non-pigmented Malignant Melanoma Developing Cancer Meningitis and Brain Metastasis during Vemurafenib Administration. Nishi Nihon Hifuka 2017, 79 (6) , 578-581. https://doi.org/10.2336/nishinihonhifu.79.578
    66. Patricia S. Steeg, Alexandra Zimmer, Brunilde Gril. Therapeutics for Brain Metastases, v3. Clinical Cancer Research 2016, 22 (24) , 5953-5955. https://doi.org/10.1158/1078-0432.CCR-16-2035
    67. Gautham Gampa, Shruthi Vaidhyanathan, Brynna Wilken-Resman, Karen E. Parrish, Svetomir N. Markovic, Jann N. Sarkaria, William F. Elmquist. Challenges in the Delivery of Therapies to Melanoma Brain Metastases. Current Pharmacology Reports 2016, 2 (6) , 309-325. https://doi.org/10.1007/s40495-016-0072-z
    68. Johannes J.M. Rood, Jan H.M. Schellens, Jos H. Beijnen, Rolf W. Sparidans. Recent developments in the chromatographic bioanalysis of approved kinase inhibitor drugs in oncology. Journal of Pharmaceutical and Biomedical Analysis 2016, 130 , 244-263. https://doi.org/10.1016/j.jpba.2016.06.037
    69. Emilia Sawicki, Michel J. Hillebrand, Hilde Rosing, Jan H.M. Schellens, Bastiaan Nuijen, Jos H. Beijnen. Validation of a liquid chromatographic method for the pharmaceutical quality control of products containing elacridar. Journal of Pharmaceutical Analysis 2016, 6 (4) , 268-275. https://doi.org/10.1016/j.jpha.2016.04.005
    70. Jan-Paul Bohn, Georg Pall, Guenther Stockhammer, Michael Steurer. Targeted Therapies for the Treatment of Brain Metastases in Solid Tumors. Targeted Oncology 2016, 11 (3) , 263-275. https://doi.org/10.1007/s11523-015-0414-5
    71. Maryam Hosseini Hasanabady, Fatemeh Kalalinia. ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer. Journal of Biosciences 2016, 41 (2) , 313-324. https://doi.org/10.1007/s12038-016-9601-5
    72. Ngoc H. On, Vinith Yathindranath, Zhizhi Sun, Donald W. Miller. Pathways for Drug Delivery to the Central Nervous System. 2016, 353-382. https://doi.org/10.1002/9781118833322.ch16
    73. Suneet Shukla, Atish Patel, Suresh V. Ambudkar. Mechanistic and Pharmacological Insights into Modulation of ABC Drug Transporters by Tyrosine Kinase Inhibitors. 2016, 227-272. https://doi.org/10.1007/978-3-319-23476-2_10
    74. M.A. Hayat. Introduction. 2016, 3-20. https://doi.org/10.1016/B978-0-12-803508-5.00001-9
    75. Anita Kort, Rolf W. Sparidans, Els Wagenaar, Jos H. Beijnen, Alfred H. Schinkel. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2). Pharmacological Research 2015, 102 , 200-207. https://doi.org/10.1016/j.phrs.2015.09.003
    76. Sheng-Yun Cai, Tian Yang, Yu Chen, Jing-Wen Wang, Li Li, Ming-Juan Xu. Gene expression profiling of ovarian carcinomas and prognostic analysis of outcome. Journal of Ovarian Research 2015, 8 (1) https://doi.org/10.1186/s13048-015-0176-9
    77. Yo-Ting Tsai, Gerard Lozanski, Amy Lehman, Ellen J. Sass, Erin Hertlein, Santosh B. Salunke, Ching-Shih Chen, Michael R. Grever, John C. Byrd, David M. Lucas. BRAFV600E induces ABCB1/P-glycoprotein expression and drug resistance in B-cells via AP-1 activation. Leukemia Research 2015, 39 (11) , 1270-1277. https://doi.org/10.1016/j.leukres.2015.08.017
    78. Maria L.H. Vlaming, Tilman Läppchen, Harm T. Jansen, Suzanne Kivits, Andy van Driel, Evita van de Steeg, José W. van der Hoorn, Charles F. Sio, Oliver C. Steinbach, Jeroen DeGroot. PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug–drug interactions at the murine blood–brain barrier. Nuclear Medicine and Biology 2015, 42 (11) , 833-841. https://doi.org/10.1016/j.nucmedbio.2015.07.004
    79. A. Kenneth MacLeod, Lesley A. McLaughlin, Colin J. Henderson, C. Roland Wolf. Activation Status of the Pregnane X Receptor Influences Vemurafenib Availability in Humanized Mouse Models. Cancer Research 2015, 75 (21) , 4573-4581. https://doi.org/10.1158/0008-5472.CAN-15-1454
    80. Ping Zhang, Mark C. de Gooijer, Levi C.M. Buil, Jos H. Beijnen, Gang Li, Olaf van Tellingen. ABCB 1 and ABCG 2 restrict the brain penetration of a panel of novel EZH 2‐Inhibitors. International Journal of Cancer 2015, 137 (8) , 2007-2018. https://doi.org/10.1002/ijc.29566
    81. Lilia Sakji-Dupré, Emilie Le Rhun, Carole Templier, Eve Desmedt, Benoit Blanchet, Laurent Mortier. Cerebrospinal fluid concentrations of vemurafenib in patients treated for brain metastatic BRAF-V600 mutated melanoma. Melanoma Research 2015, 25 (4) , 302-305. https://doi.org/10.1097/CMR.0000000000000162
    82. Anita Kort, Selvi Durmus, Rolf W. Sparidans, Els Wagenaar, Jos H. Beijnen, Alfred H. Schinkel. Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharmaceutical Research 2015, 32 (7) , 2205-2216. https://doi.org/10.1007/s11095-014-1609-7
    83. E. Funck-Brentano, J.C. Alvarez, C. Longvert, E. Abe, A. Beauchet, C. Funck-Brentano, P. Saiag. Plasma vemurafenib concentrations in advanced BRAFV600mut melanoma patients: impact on tumour response and tolerance. Annals of Oncology 2015, 26 (7) , 1470-1475. https://doi.org/10.1093/annonc/mdv189
    84. James J. Harding, Federica Catalanotti, Rodrigo R. Munhoz, Donavan T. Cheng, Amin Yaqubie, Nicole Kelly, Gregory C. McDermott, Romona Kersellius, Taha Merghoub, Mario E. Lacouture, Richard D. Carvajal, Katherine S. Panageas, Michael F. Berger, Neal Rosen, David B. Solit, Paul B. Chapman. A Retrospective Evaluation of Vemurafenib as Treatment for BRAF-Mutant Melanoma Brain Metastases. The Oncologist 2015, 20 (7) , 789-797. https://doi.org/10.1634/theoncologist.2014-0012
    85. Maikel Herbrink, Bastiaan Nuijen, Jan H.M. Schellens, Jos H. Beijnen. Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treatment Reviews 2015, 41 (5) , 412-422. https://doi.org/10.1016/j.ctrv.2015.03.005
    86. O. van Tellingen, B. Yetkin-Arik, M.C. de Gooijer, P. Wesseling, T. Wurdinger, H.E. de Vries. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates 2015, 19 , 1-12. https://doi.org/10.1016/j.drup.2015.02.002
    87. Aki Morikawa, David M. Peereboom, Helen R. Thorsheim, Ramakrishna Samala, Rajiv Balyan, Conleth G. Murphy, Paul R. Lockman, Ahkeem Simmons, Robert J. Weil, Viviane Tabar, Patricia S. Steeg, Quentin R. Smith, Andrew D. Seidman. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro-Oncology 2015, 17 (2) , 289-295. https://doi.org/10.1093/neuonc/nou141
    88. Tulasi Gummadi, Ben Y. Zhang, Sara Valpione, Chul Kim, Lisa A. Kottschade, Rajendar K. Mittapalli, Vanna Chiarion-Sileni, Jacopo Pigozzo, William F. Elmquist, Arkadiusz Z. Dudek. Impact of BRAF mutation and BRAF inhibition on melanoma brain metastases. Melanoma Research 2015, 25 (1) , 75-79. https://doi.org/10.1097/CMR.0000000000000133
    89. Kevin Bihan, Chloé Sauzay, Lauriane Goldwirt, Fanny Charbonnier-Beaupel, Jean-Sebastien Hulot, Christian Funck-Brentano, Noël Zahr. Development and Validation of a Rapid and Simple LC-MS/MS Method for Quantification of Vemurafenib in Human Plasma. Therapeutic Drug Monitoring 2015, 37 (1) , 132-136. https://doi.org/10.1097/FTD.0000000000000110
    90. Csilla Hegedüs, Tamás Hegedüs, Balázs Sarkadi. The Role of ABC Multidrug Transporters in Resistance to Targeted Anticancer Kinase Inhibitors. 2015, 209-244. https://doi.org/10.1007/978-3-319-09801-2_9
    91. Selvi Durmus, Rolf W. Sparidans, Anita van Esch, Els Wagenaar, Jos H. Beijnen, Alfred H. Schinkel. Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) Restrict Oral Availability and Brain Accumulation of the PARP Inhibitor Rucaparib (AG-014699). Pharmaceutical Research 2015, 32 (1) , 37-46. https://doi.org/10.1007/s11095-014-1442-z
    92. Selvi Durmus, Jeroen J.M.A. Hendrikx, Alfred H. Schinkel. Apical ABC Transporters and Cancer Chemotherapeutic Drug Disposition. 2015, 1-41. https://doi.org/10.1016/bs.acr.2014.10.001
    93. Martin Michaelis, Florian Rothweiler, Thomas Nerreter, Marijke van Rikxoort, Richard Zehner, Wilhelm G Dirks, Michael Wiese, Jindrich Cinatl. Association between acquired resistance to PLX4032 (vemurafenib) and ATP-binding cassette transporter expression. BMC Research Notes 2014, 7 (1) https://doi.org/10.1186/1756-0500-7-710
    94. L. Peuvrel, M. Saint-Jean, G. Quéreux, A. Brocard, A. Khammari, A. C. Knol, B. Dréno. Incidence and characteristics of melanoma brain metastases developing during treatment with vemurafenib. Journal of Neuro-Oncology 2014, 120 (1) , 147-154. https://doi.org/10.1007/s11060-014-1533-z
    95. Jiexin Deng, Jie Shao, John S. Markowitz, Guohua An. ABC Transporters in Multi-Drug Resistance and ADME-Tox of Small Molecule Tyrosine Kinase Inhibitors. Pharmaceutical Research 2014, 31 (9) , 2237-2255. https://doi.org/10.1007/s11095-014-1389-0
    96. Agnes Basseville, Robert W. Robey, Julian C. Bahr, Susan E. Bates. Breast Cancer Resistance Protein (BCRP) or ABCG2. 2014, 187-221. https://doi.org/10.1002/9781118705308.ch11
    97. Serena Marchetti, Jan H. M. Schellens. Clinical Relevance. 2014, 433-471. https://doi.org/10.1002/9781118705308.ch22
    98. Márton Jani, Csilla Ambrus, Rémi Magnan, Katalin Tauberné Jakab, Erzsébet Beéry, Joseph K. Zolnerciks, Péter Krajcsi. Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Archives of Toxicology 2014, 88 (6) , 1205-1248. https://doi.org/10.1007/s00204-014-1224-8
    99. Chung-Pu Wu, Suresh V. Ambudkar. The pharmacological impact of ATP-binding cassette drug transporters on vemurafenib-based therapy. Acta Pharmaceutica Sinica B 2014, 4 (2) , 105-111. https://doi.org/10.1016/j.apsb.2013.12.001
    100. Seng Chuan Tang, Luan N. Nguyen, Rolf W. Sparidans, Els Wagenaar, Jos H. Beijnen, Alfred H. Schinkel. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P‐glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. International Journal of Cancer 2014, 134 (6) , 1484-1494. https://doi.org/10.1002/ijc.28475
    Load all citations