ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Application of In Silico, In Vitro and Preclinical Pharmacokinetic Data for the Effective and Efficient Prediction of Human Pharmacokinetics

View Author Information
Respiratory & Inflammation DMPK, AstraZeneca R&D, Mölndal, SE 43183 Mölndal, Sweden
*AstraZeneca, Respiratory & Inflammation DMPK, AstraZeneca R&D Mölndal, SE 43183 Mölndal, Sweden. Tel: +46 (0)317761815. Fax: +46 (0)317762800. E-mail: [email protected]
Cite this: Mol. Pharmaceutics 2013, 10, 4, 1191–1206
Publication Date (Web):December 19, 2012
https://doi.org/10.1021/mp300476z
Copyright © 2012 American Chemical Society

    Article Views

    3227

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    In the present age of pharmaceutical research and development, focused delivery of decision making data is more imperative than ever before. Resulting from several years’ success, failure and consequential learning, this article also proffers advice and guidance on which in vitro and in vivo experiments to perform to facilitate efficient and cost-effective pursuit of candidate drugs with acceptable human pharmacokinetic profiles. Predictive in silico models are important in directing design toward compounds with the highest probability of having suitable DMPK properties rather than in predicting human pharmacokinetics per se, and the value and utility of such approaches are reviewed with the intention of providing direction to DMPK scientists. Relating to absorption, distribution, elimination and effective half-life, strategies are described to provide direction in commonly encountered scenarios.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 62 publications.

    1. Hideaki Mamada, Yukihiro Nomura, Yoshihiro Uesawa. Novel QSAR Approach for a Regression Model of Clearance That Combines DeepSnap-Deep Learning and Conventional Machine Learning. ACS Omega 2022, 7 (20) , 17055-17062. https://doi.org/10.1021/acsomega.2c00261
    2. Xiaoyu Ding, Rongrong Cui, Jie Yu, Tiantian Liu, Tingfei Zhu, Dingyan Wang, Jie Chang, Zisheng Fan, Xiaomeng Liu, Kaixian Chen, Hualiang Jiang, Xutong Li, Xiaomin Luo, Mingyue Zheng. Active Learning for Drug Design: A Case Study on the Plasma Exposure of Orally Administered Drugs. Journal of Medicinal Chemistry 2021, 64 (22) , 16838-16853. https://doi.org/10.1021/acs.jmedchem.1c01683
    3. Frank Narjes, Antonio Llinas, Stefan von Berg, Johan Jirholt, Sarah Lever, Rikard Pehrson, Mia Collins, Anna Malmberg, Petter Svanberg, Yafeng Xue, Roine I. Olsson, Jesper Malmberg, Glyn Hughes, Nafizal Hossain, Hanna Grindebacke, Agnes Leffler, Nina Krutrök, Elisabeth Bäck, Marie Ramnegård, Matti Lepistö, Linda Thunberg, Anna Aagaard, Jane McPheat, Eva L. Hansson, Rongfeng Chen, Yao Xiong, Thomas G. Hansson. AZD0284, a Potent, Selective, and Orally Bioavailable Inverse Agonist of Retinoic Acid Receptor-Related Orphan Receptor C2. Journal of Medicinal Chemistry 2021, 64 (18) , 13807-13829. https://doi.org/10.1021/acs.jmedchem.1c01197
    4. Hideaki Mamada, Yukihiro Nomura, Yoshihiro Uesawa. Prediction Model of Clearance by a Novel Quantitative Structure–Activity Relationship Approach, Combination DeepSnap-Deep Learning and Conventional Machine Learning. ACS Omega 2021, 6 (36) , 23570-23577. https://doi.org/10.1021/acsomega.1c03689
    5. Emile P. Chen, Robert W. Bondi, Paul J. Michalski. Model-based Target Pharmacology Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug Discovery. Journal of Medicinal Chemistry 2021, 64 (6) , 3185-3196. https://doi.org/10.1021/acs.jmedchem.0c02033
    6. Robert J. Young, Paul D. Leeson. Mapping the Efficiency and Physicochemical Trajectories of Successful Optimizations. Journal of Medicinal Chemistry 2018, 61 (15) , 6421-6467. https://doi.org/10.1021/acs.jmedchem.8b00180
    7. Paul D. Leeson. Impact of Physicochemical Properties on Dose and Hepatotoxicity of Oral Drugs. Chemical Research in Toxicology 2018, 31 (6) , 494-505. https://doi.org/10.1021/acs.chemrestox.8b00044
    8. Nicholas Kindon, Glen Andrews, Andrew Baxter, David Cheshire, Paul Hemsley, Timothy Johnson, Yu-Zhen Liu, Dermot McGinnity, Mark McHale, Antonio Mete, James Reuberson, Bryan Roberts, John Steele, Barry Teobald, John Unitt, Deborah Vaughan, Iain Walters, and Michael J. Stocks . Discovery of AZD-2098 and AZD-1678, Two Potent and Bioavailable CCR4 Receptor Antagonists. ACS Medicinal Chemistry Letters 2017, 8 (9) , 981-986. https://doi.org/10.1021/acsmedchemlett.7b00315
    9. Ken M. Page . Validation of Early Human Dose Prediction: A Key Metric for Compound Progression in Drug Discovery. Molecular Pharmaceutics 2016, 13 (2) , 609-620. https://doi.org/10.1021/acs.molpharmaceut.5b00840
    10. Oleg A. Raevsky, Veniamin Yu. Grigor’ev, Daniel E. Polianczyk, Olga E. Raevskaja, and John C. Dearden . Calculation of Aqueous Solubility of Crystalline Un-Ionized Organic Chemicals and Drugs Based on Structural Similarity and Physicochemical Descriptors. Journal of Chemical Information and Modeling 2014, 54 (2) , 683-691. https://doi.org/10.1021/ci400692n
    11. Marwa M. Shaaban, Mohamed Teleb, Hanan M. Ragab, Monica Singh, Bassma H. Elwakil, Lamia A. Heikal, D. Sriram, Mona A. Mahran. The first-in-class pyrazole-based dual InhA-VEGFR inhibitors towards integrated antitubercular host-directed therapy. Bioorganic Chemistry 2024, 145 , 107179. https://doi.org/10.1016/j.bioorg.2024.107179
    12. Mayara dos Santos Maia, Francisco Jaime Bezerra Mendonça-Junior, Gabriela Cristina Soares Rodrigues, Adriano Soares da Silva, Niara Isis Pereira de Oliveira, Pablo Rayff da Silva, Cícero Francisco Bezerra Felipe, Ana Pavla Almeida Diniz Gurgel, Anuraj Nayarisseri, Marcus Tullius Scotti, Luciana Scotti. Virtual Screening of Different Subclasses of Lignans with Anticancer Potential and Based on Genetic Profile. Molecules 2023, 28 (16) , 6011. https://doi.org/10.3390/molecules28166011
    13. Bing Qi, Matthias Gijsen, Tom De Vocht, Neel Deferm, Pieter Van Brantegem, Getahun B. Abza, Nina Nauwelaerts, Joost Wauters, Isabel Spriet, Pieter Annaert. Unravelling the Hepatic Elimination Mechanisms of Colistin. Pharmaceutical Research 2023, 40 (7) , 1723-1734. https://doi.org/10.1007/s11095-023-03536-7
    14. Dermot F. McGinnity, Ken Grime. ADME Optimization in Drug Discovery. 2023, 298-323. https://doi.org/10.1039/9781788018982-00298
    15. Erika M.V. Araujo, Keith R. Hornberger. PROTAC ® Protein Degraders: Bridging the Divide from Chemical Biology Tools to Clinical Candidates. 2023, 337-359. https://doi.org/10.1002/9783527836208.ch13
    16. Timothy J. Carlson. Conquering low oral bioavailability issues in drug discovery and development. 2023, 175-187. https://doi.org/10.1016/B978-0-12-817134-9.00007-6
    17. Raju Subramanian, Jianhong Wang, Bernard Murray, Joseph Custodio, Jia Hao, Scott Lazerwith, Kelly MacLennan Staiger, Judy Mwangi, Hailing Sun, Jennifer Tang, Kelly Wang, Gerry Rhodes, Samantha Wijaya, Heather Zhang, Bill J. Smith. Human pharmacokinetics prediction with an in vitro – in vivo correction factor approach and in vitro drug-drug interaction profile of bictegravir, a potent integrase-strand transfer inhibitor component in approved biktarvy ® for the treatment of HIV-1 infection. Xenobiotica 2022, 52 (12) , 1020-1030. https://doi.org/10.1080/00498254.2023.2169207
    18. Iain Gardner, Mandy Xu, Chunyan Han, Yi Wang, Xingjin Jiao, Masoud Jamei, Hiba Khalidi, Peter Kilford, Sibylle Neuhoff, Roz Southall, David B. Turner, Helen Musther, Barry Jones, Simon Taylor. Non-specific binding of compounds in in vitro metabolism assays: a comparison of microsomal and hepatocyte binding in different species and an assessment of the accuracy of prediction models. Xenobiotica 2022, 52 (8) , 943-956. https://doi.org/10.1080/00498254.2022.2132426
    19. Kristine Langthaler, Christopher R. Jones, Rasmus B. Christensen, Elin Eneberg, Birger Brodin, Christoffer Bundgaard. Characterisation of intravenous pharmacokinetics in Göttingen minipig and clearance prediction using established in vitro to in vivo extrapolation methodologies. Xenobiotica 2022, 52 (6) , 591-607. https://doi.org/10.1080/00498254.2022.2115425
    20. E. Bäckström, T. Erngren, B.-M. Fihn, M.W. Sadiq, W. Lindberg, M. Fridén, K. Grime. Possible Extraction of Drugs from Lung Tissue During Broncho-alveolar Lavage Suggest Uncertainty in the Procedure's Utility for Quantitative Assessment of Airway Drug Exposure. Journal of Pharmaceutical Sciences 2022, 111 (3) , 852-858. https://doi.org/10.1016/j.xphs.2021.12.004
    21. Li Di. An update on the importance of plasma protein binding in drug discovery and development. Expert Opinion on Drug Discovery 2021, 16 (12) , 1453-1465. https://doi.org/10.1080/17460441.2021.1961741
    22. Yaoxing Wu, Zidong Song, John C. Little, Min Zhong, Hongwan Li, Ying Xu. An integrated exposure and pharmacokinetic modeling framework for assessing population-scale risks of phthalates and their substitutes. Environment International 2021, 156 , 106748. https://doi.org/10.1016/j.envint.2021.106748
    23. Abdullah Y. Alzahrani, Marwa M. Shaaban, Bassma H. Elwakil, Moaaz T. Hamed, Nadjet Rezki, Mohamed R. Aouad, Mohamed A. Zakaria, Mohamed Hagar. Anti-COVID-19 activity of some benzofused 1,2,3-triazolesulfonamide hybrids using in silico and in vitro analyses. Chemometrics and Intelligent Laboratory Systems 2021, 217 , 104421. https://doi.org/10.1016/j.chemolab.2021.104421
    24. Imaobong Etti, Chukwuemeka Nwafor, Grace Essien. Small Molecules Inhibit Extranuclear Signaling by Estrogen: A Promising Strategy to Halt Breast Cancer Progression and Metastasis. 2021https://doi.org/10.5772/intechopen.94052
    25. Jaydeep Yadav, Mehdi El Hassani, Jasleen Sodhi, Volker M. Lauschke, Jessica H. Hartman, Laura E. Russell. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metabolism Reviews 2021, 53 (2) , 207-233. https://doi.org/10.1080/03602532.2021.1922435
    26. Beth Williamson, Nicola Colclough, Adrian John Fretland, Barry Christopher Jones, Rhys Dafydd Owen Jones, Dermot Francis McGinnity. Further Considerations Towards an Effective and Efficient Oncology Drug Discovery DMPK Strategy. Current Drug Metabolism 2020, 21 (2) , 145-162. https://doi.org/10.2174/1389200221666200312104837
    27. Michael Davies, Rhys D.O. Jones, Ken Grime, Rasmus Jansson-Löfmark, Adrian J. Fretland, Susanne Winiwarter, Paul Morgan, Dermot F. McGinnity. Improving the Accuracy of Predicted Human Pharmacokinetics: Lessons Learned from the AstraZeneca Drug Pipeline Over Two Decades. Trends in Pharmacological Sciences 2020, 41 (6) , 390-408. https://doi.org/10.1016/j.tips.2020.03.004
    28. Adam J. Lucas, Joanne L. Sproston, Patrick Barton, Robert J. Riley. Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opinion on Drug Discovery 2019, 14 (12) , 1313-1327. https://doi.org/10.1080/17460441.2019.1660642
    29. Saw Simeon, Dino Montanari, Matthew Paul Gleeson. Investigation of Factors Affecting the Performance of in silico Volume Distribution QSAR Models for Human, Rat, Mouse, Dog & Monkey. Molecular Informatics 2019, 38 (10) https://doi.org/10.1002/minf.201900059
    30. Philip Gardiner, Rhona J. Cox, Ken Grime. Plasma Protein Binding as an Optimizable Parameter for Acidic Drugs. Drug Metabolism and Disposition 2019, 47 (8) , 865-873. https://doi.org/10.1124/dmd.119.087163
    31. Fredrik Bergström, Bo Lindmark. Accelerated drug discovery by rapid candidate drug identification. Drug Discovery Today 2019, 24 (6) , 1237-1241. https://doi.org/10.1016/j.drudis.2019.03.026
    32. Paul Lancett, Beth Williamson, Patrick Barton, Robert J. Riley. Development and Characterization of a Human Hepatocyte Low Intrinsic Clearance Assay for Use in Drug Discovery. Drug Metabolism and Disposition 2018, 46 (8) , 1169-1178. https://doi.org/10.1124/dmd.118.081596
    33. Aixia Yan. Prediction of ADME Properties. 2018, 333-357. https://doi.org/10.1002/9783527806539.ch6i
    34. Paul Morgan, Dean G. Brown, Simon Lennard, Mark J. Anderton, J. Carl Barrett, Ulf Eriksson, Mark Fidock, Bengt Hamrén, Anthony Johnson, Ruth E. March, James Matcham, Jerome Mettetal, David J. Nicholls, Stefan Platz, Steve Rees, Michael A. Snowden, Menelas N. Pangalos. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nature Reviews Drug Discovery 2018, 17 (3) , 167-181. https://doi.org/10.1038/nrd.2017.244
    35. Lilia Fisk, Nigel Greene, Russ Naven. Physicochemical Properties and Structural Alerts. 2018, 61-76. https://doi.org/10.1007/978-1-4939-7677-5_4
    36. Barry C. Jones, Abhishek Srivastava, Nicola Colclough, Joanne Wilson, Venkatesh Pilla Reddy, Sara Amberntsson, Danxi Li. An Investigation into the Prediction of In Vivo Clearance for a Range of Flavin-containing Monooxygenase Substrates. Drug Metabolism and Disposition 2017, 45 (10) , 1060-1067. https://doi.org/10.1124/dmd.117.077396
    37. O. A. Raevsky, V. Y. Grigorev, D. E. Polianczyk, O. E. Raevskaja, J. C. Dearden. Six global and local QSPR models of aqueous solubility at pH = 7.4 based on structural similarity and physicochemical descriptors. SAR and QSAR in Environmental Research 2017, 28 (8) , 661-676. https://doi.org/10.1080/1062936X.2017.1368704
    38. Sofia Chen, Luna Prieto Garcia, Fredrik Bergström, Pär Nordell, Ken Grime. Intrinsic Clearance Assay Incubational Binding: A Method Comparison. Drug Metabolism and Disposition 2017, 45 (4) , 342-345. https://doi.org/10.1124/dmd.116.074138
    39. Nicole A. Kratochwil, Christophe Meille, Stephen Fowler, Florian Klammers, Aynur Ekiciler, Birgit Molitor, Sandrine Simon, Isabelle Walter, Claudia McGinnis, Johanna Walther, Brian Leonard, Miriam Triyatni, Hassan Javanbakht, Christoph Funk, Franz Schuler, Thierry Lavé, Neil J. Parrott. Metabolic Profiling of Human Long-Term Liver Models and Hepatic Clearance Predictions from In Vitro Data Using Nonlinear Mixed-Effects Modeling. The AAPS Journal 2017, 19 (2) , 534-550. https://doi.org/10.1208/s12248-016-0019-7
    40. M.P. Gleeson, D. Montanari. Multiobjective Optimization of Biological and Physical Properties in Drug Discovery. 2017, 64-93. https://doi.org/10.1016/B978-0-12-409547-2.12315-7
    41. D.F. McGinnity, K. Grime. ADME Optimization in Drug Discovery. 2017, 34-44. https://doi.org/10.1016/B978-0-12-409547-2.12365-0
    42. P. McGonigle, M. Williams. Preclinical Pharmacology and Toxicology - Contributions to the Translational Interface ☆. 2017https://doi.org/10.1016/B978-0-12-801238-3.05242-9
    43. R.J.A. Goodwin, J. Bunch, D.F. McGinnity. Mass Spectrometry Imaging in Oncology Drug Discovery. 2017, 133-171. https://doi.org/10.1016/bs.acr.2016.11.005
    44. M. C. Wenlock. Designing safer oral drugs. MedChemComm 2017, 8 (3) , 571-577. https://doi.org/10.1039/C6MD00706F
    45. Martin K. Bayliss, James Butler, Paul L. Feldman, Darren V.S. Green, Paul D. Leeson, Michael R. Palovich, Anthony J. Taylor. Quality guidelines for oral drug candidates: dose, solubility and lipophilicity. Drug Discovery Today 2016, 21 (10) , 1719-1727. https://doi.org/10.1016/j.drudis.2016.07.007
    46. Paul D. Leeson. Molecular inflation, attrition and the rule of five. Advanced Drug Delivery Reviews 2016, 101 , 22-33. https://doi.org/10.1016/j.addr.2016.01.018
    47. Christopher R. Jones, Oliver J. D. Hatley, Anna-Lena Ungell, Constanze Hilgendorf, Sheila Annie Peters, Amin Rostami-Hodjegan. Gut Wall Metabolism. Application of Pre-Clinical Models for the Prediction of Human Drug Absorption and First-Pass Elimination. The AAPS Journal 2016, 18 (3) , 589-604. https://doi.org/10.1208/s12248-016-9889-y
    48. Patrick Poulin. The Need for Human Exposure Projection in the Interpretation of Preclinical In Vitro and In Vivo ADME Tox Data. 2016, 67-81. https://doi.org/10.1002/9781119053248.ch6
    49. Hui Zhang, Peng Yu, Ming-Li Xiang, Xi-Bo Li, Wei-Bao Kong, Jun-Yi Ma, Jun-Long Wang, Jin-Ping Zhang, Ji Zhang. Prediction of drug-induced eosinophilia adverse effect by using SVM and naïve Bayesian approaches. Medical & Biological Engineering & Computing 2016, 54 (2-3) , 361-369. https://doi.org/10.1007/s11517-015-1321-8
    50. B. Bonn, P. Svanberg, A. Janefeldt, I. Hultman, K. Grime. Determination of Human Hepatocyte Intrinsic Clearance for Slowly Metabolized Compounds: Comparison of a Primary Hepatocyte/Stromal Cell Co-culture with Plated Primary Hepatocytes and HepaRG. Drug Metabolism and Disposition 2016, 44 (4) , 527-533. https://doi.org/10.1124/dmd.115.067769
    51. Patrick Barton, Robert J. Riley. A new paradigm for navigating compound property related drug attrition. Drug Discovery Today 2016, 21 (1) , 72-81. https://doi.org/10.1016/j.drudis.2015.09.010
    52. M. C. Wenlock. Profiling the estimated plasma concentrations of 215 marketed oral drugs. MedChemComm 2016, 7 (4) , 706-719. https://doi.org/10.1039/C5MD00583C
    53. M. C. Wenlock. Oral drug-likeness criteria in preclinical species. MedChemComm 2016, 7 (10) , 1995-2002. https://doi.org/10.1039/C6MD00362A
    54. Marie Brännström, Pär Nordell, Britta Bonn, Andrew Davis, Anna-Pia Palmgren, Constanze Hilgendorf, Katarina Rubin, Ken Grime. Montelukast Disposition: No Indication of Transporter-Mediated Uptake in OATP2B1 and OATP1B1 Expressing HEK293 Cells. Pharmaceutics 2015, 7 (4) , 554-564. https://doi.org/10.3390/pharmaceutics7040554
    55. Hui Zhang, Peng Yu, Teng-Guo Zhang, Yan-Li Kang, Xiao Zhao, Yuan-Yuan Li, Jia-Hui He, Ji Zhang. In silico prediction of drug-induced myelotoxicity by using Naïve Bayes method. Molecular Diversity 2015, 19 (4) , 945-953. https://doi.org/10.1007/s11030-015-9613-3
    56. Edgar Jacoby. Elements for the Development of Strategies for Compound Library Enhancement. 2015, 11-36. https://doi.org/10.1002/9781118771723.ch1
    57. Oleg A. Raevsky, Daniel E. Polianczyk, Veniamin Yu. Grigorev, Olga E. Raevskaja, John C. Dearden. In silico Prediction of Aqueous Solubility: a Comparative Study of Local and Global Predictive Models. Molecular Informatics 2015, 34 (6-7) , 417-430. https://doi.org/10.1002/minf.201400144
    58. Andreas Reichel, Philip Lienau. Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety. 2015, 235-260. https://doi.org/10.1007/164_2015_26
    59. Paul McGonigle, Bruce Ruggeri. Animal models of human disease: Challenges in enabling translation. Biochemical Pharmacology 2014, 87 (1) , 162-171. https://doi.org/10.1016/j.bcp.2013.08.006
    60. Sally Gittings, Neil Turnbull, Clive J. Roberts, Pavel Gershkovich. Dissolution methodology for taste masked oral dosage forms. Journal of Controlled Release 2014, 173 , 32-42. https://doi.org/10.1016/j.jconrel.2013.10.030
    61. Patrick Poulin, Sami Haddad. Hepatocyte Composition-Based Model as a Mechanistic Tool for Predicting the Cell Suspension: Aqueous Phase Partition Coefficient of Drugs in In Vitro Metabolic Studies. Journal of Pharmaceutical Sciences 2013, 102 (8) , 2806-2818. https://doi.org/10.1002/jps.23602
    62. Sonia Liggi, Georgios Drakakis, Adam E. Hendry, Kimberley M. Hanson, Suzanne C. Brewerton, Grant N. Wheeler, Michael J. Bodkin, David A. Evans, Andreas Bender. . Molecular Informatics 2013, 1009. https://doi.org/10.1002/minf.201300102

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect