ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Bioengineered 3D Brain Tumor Model To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior Using PEG-Based Hydrogels

View Author Information
Department of Bioengineering, Stanford University, Stanford, California 94305, United States
Department of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
*(F.Y.) Tel: 650-725-7128. Fax: 650-723-9370. E-mail: [email protected]
Cite this: Mol. Pharmaceutics 2014, 11, 7, 2115–2125
Publication Date (Web):April 8, 2014
https://doi.org/10.1021/mp5000828
Copyright © 2014 American Chemical Society

    Article Views

    4836

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)

    Abstract

    Abstract Image

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12–15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix metalloproteinase-1 (MMP-1), while simultaneously downregulating HA synthase 2 and MMP-9. This suggests that varying matrix stiffness can induce differential ECM deposition and remodeling by employing different HA synthases or MMPs. Furthermore, increasing matrix stiffness led to simultaneous upregulation of Hras, RhoA, and ROCK1, suggesting a potential link between the mechanosensing pathways and the observed differential cell responses to changes in matrix stiffness. The bioengineered 3D hydrogel platform reported here may provide a useful 3D in vitro brain tumor model for elucidating the mechanisms underlying GBM progression, as well as for evaluating the efficacy of potential drug candidates for treating GBM.

    Cited By

    This article is cited by 178 publications.

    1. Omar El Hamoui, Tarek Saydé, Isabelle Svahn, Antoine Gudin, Etienne Gontier, Philippe Le Coustumer, Julien Verget, Philippe Barthélémy, Karen Gaudin, Serge Battu, Gaëtane Lespes, Bruno Alies. Nucleoside-Derived Low-Molecular-Weight Gelators as a Synthetic Microenvironment for 3D Cell Culture. ACS Biomaterials Science & Engineering 2022, 8 (8) , 3387-3398. https://doi.org/10.1021/acsbiomaterials.2c00308
    2. Kunyu Zhang, Qian Feng, Zhiwei Fang, Luo Gu, Liming Bian. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews 2021, 121 (18) , 11149-11193. https://doi.org/10.1021/acs.chemrev.1c00071
    3. Hyun Jin Lee, Siwon Mun, Duc M. Pham, Pilnam Kim. Extracellular Matrix-Based Hydrogels to Tailoring Tumor Organoids. ACS Biomaterials Science & Engineering 2021, 7 (9) , 4128-4135. https://doi.org/10.1021/acsbiomaterials.0c01801
    4. Désirée Baruffaldi, Gianluca Palmara, Candido Pirri, Francesca Frascella. 3D Cell Culture: Recent Development in Materials with Tunable Stiffness. ACS Applied Bio Materials 2021, 4 (3) , 2233-2250. https://doi.org/10.1021/acsabm.0c01472
    5. Madison N. Temples, Isaac M. Adjei, Phoebe M. Nimocks, Julie Djeu, Blanka Sharma. Engineered Three-Dimensional Tumor Models to Study Natural Killer Cell Suppression. ACS Biomaterials Science & Engineering 2020, 6 (7) , 4179-4199. https://doi.org/10.1021/acsbiomaterials.0c00259
    6. Christopher Licht, Jonas C. Rose, Abdolrahman Omidinia Anarkoli, Delphine Blondel, Marta Roccio, Tamás Haraszti, David B. Gehlen, Jeffrey A. Hubbell, Matthias P. Lutolf, Laura De Laporte. Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension. Biomacromolecules 2019, 20 (11) , 4075-4087. https://doi.org/10.1021/acs.biomac.9b00891
    7. Raul Sun Han Chang, Johnny Ching-Wei Lee, Sara Pedron, Brendan A. C. Harley, Simon A. Rogers. Rheological Analysis of the Gelation Kinetics of an Enzyme Cross-linked PEG Hydrogel. Biomacromolecules 2019, 20 (6) , 2198-2206. https://doi.org/10.1021/acs.biomac.9b00116
    8. Minchae Kim, Sora Lee, Chang Seok Ki. Cellular Behavior of RAW264.7 Cells in 3D Poly(ethylene glycol) Hydrogel Niches. ACS Biomaterials Science & Engineering 2019, 5 (2) , 922-932. https://doi.org/10.1021/acsbiomaterials.8b01150
    9. Mozhdeh Imaninezhad, Lindsay Hill, Grant Kolar, Kyle Vogt, Silviya Petrova Zustiak. Templated Macroporous Polyethylene Glycol Hydrogels for Spheroid and Aggregate Cell Culture. Bioconjugate Chemistry 2019, 30 (1) , 34-46. https://doi.org/10.1021/acs.bioconjchem.8b00596
    10. Lakshmi Kavitha Sthanam, Neha Saxena, Vijay Krushna Mistari, Tanusri Roy, Sameer Ralph Jadhav, Shamik Sen. Initial Priming on Soft Substrates Enhances Subsequent Topography-Induced Neuronal Differentiation in ESCs but Not in MSCs. ACS Biomaterials Science & Engineering 2019, 5 (1) , 180-192. https://doi.org/10.1021/acsbiomaterials.8b00313
    11. Yangzi Tian, Michael R. Zonca, Jr., Joseph Imbrogno, Andrea M. Unser, Lauren Sfakis, Sally Temple, Georges Belfort, and Yubing Xie . Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomaterials Science & Engineering 2017, 3 (6) , 890-902. https://doi.org/10.1021/acsbiomaterials.6b00757
    12. Ying Hao, Aidan B. Zerdoum, Alexander J. Stuffer, Ayyappan K. Rajasekaran, and Xinqiao Jia . Biomimetic Hydrogels Incorporating Polymeric Cell-Adhesive Peptide To Promote the 3D Assembly of Tumoroids. Biomacromolecules 2016, 17 (11) , 3750-3760. https://doi.org/10.1021/acs.biomac.6b01266
    13. Mohammad Kamalabadi Farahani, Maliheh Gharibshahian, Alireza Rezvani, Ahmad Vaez. Breast cancer brain metastasis: from etiology to state-of-the-art modeling. Journal of Biological Engineering 2023, 17 (1) https://doi.org/10.1186/s13036-023-00352-w
    14. Yuhang Zhang, Zhuofan Wang, Qingqing Sun, Qian Li, Shaohui Li, Xiaomeng Li. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. Materials 2023, 16 (14) , 5161. https://doi.org/10.3390/ma16145161
    15. Tanvir Ahmed. Biomaterial-based in vitro 3D modeling of glioblastoma multiforme. Cancer Pathogenesis and Therapy 2023, 1 (3) , 177-194. https://doi.org/10.1016/j.cpt.2023.01.002
    16. James Johnston, Trevor Stone, Yichun Wang. Biomaterial-enabled 3D cell culture technologies for extracellular vesicle manufacturing. Biomaterials Science 2023, 11 (12) , 4055-4072. https://doi.org/10.1039/D3BM00469D
    17. Joseph Bruns, Terrance Egan, Philippe Mercier, Silviya P Zustiak. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Acta Biomaterialia 2023, 163 , 400-414. https://doi.org/10.1016/j.actbio.2022.05.048
    18. Gevick Safarians, Alireza Sohrabi, Itay Solomon, Weikun Xiao, Soniya Bastola, Bushra W. Rajput, Mary Epperson, Isabella Rosenzweig, Kelly Tamura, Breahna Singer, Joyce Huang, Mollie J. Harrison, Talia Sanazzaro, Michael C. Condro, Harley I. Kornblum, Stephanie K. Seidlits. Glioblastoma Spheroid Invasion through Soft, Brain‐Like Matrices Depends on Hyaluronic Acid–CD44 Interactions. Advanced Healthcare Materials 2023, 12 (14) https://doi.org/10.1002/adhm.202203143
    19. Kenny Zhuoran Wu, Christabella Adine, Aleksandr Mitriashkin, Benjamin Jun Jie Aw, N. Gopalakrishna Iyer, Eliza Li Shan Fong. Making In Vitro Tumor Models Whole Again. Advanced Healthcare Materials 2023, 12 (14) https://doi.org/10.1002/adhm.202202279
    20. Ibrar Muhammad Khan, Safir Ullah Khan, Hari Siva Sai Sala, Munir Ullah Khan, Muhammad Azhar Ud Din, Samiullah Khan, Syed Shams ul Hassan, Nazir Muhammad Khan, Yong Liu. TME-targeted approaches of brain metastases and its clinical therapeutic evidence. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1131874
    21. Rui-Zhi Tang, Xi-Qiu Liu. Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity. Materials Today Bio 2023, 19 , 100607. https://doi.org/10.1016/j.mtbio.2023.100607
    22. Salvatore Marino, Grazia Menna, Rina Di Bonaventura, Lucia Lisi, Pierpaolo Mattogno, Federica Figà, Lal Bilgin, Quintino Giorgio D’Alessandris, Alessandro Olivi, Giuseppe Maria Della Pepa. The Extracellular Matrix in Glioblastomas: A Glance at Its Structural Modifications in Shaping the Tumoral Microenvironment—A Systematic Review. Cancers 2023, 15 (6) , 1879. https://doi.org/10.3390/cancers15061879
    23. Anurag Purushothaman, Mohammad Mohajeri, Tanmay P. Lele. The role of glycans in the mechanobiology of cancer. Journal of Biological Chemistry 2023, 299 (3) , 102935. https://doi.org/10.1016/j.jbc.2023.102935
    24. Tangfang Lu, Bin Xia, Guobao Chen. Advances in polymer‐based cell encapsulation and its applications in tissue repair. Biotechnology Progress 2023, 39 (2) https://doi.org/10.1002/btpr.3325
    25. Alberto Elosegui-Artola, Anupam Gupta, Alexander J. Najibi, Bo Ri Seo, Ryan Garry, Christina M. Tringides, Irene de Lázaro, Max Darnell, Wei Gu, Qiao Zhou, David A. Weitz, L. Mahadevan, David J. Mooney. Matrix viscoelasticity controls spatiotemporal tissue organization. Nature Materials 2023, 22 (1) , 117-127. https://doi.org/10.1038/s41563-022-01400-4
    26. Devika Tripathi, Vikas Shukla, Jagannath Sahoo, Dinesh Kumar Sharma, Tuhin Shukla. Engineered Tissue in Cancer Research: Techniques, Challenges, and Current Status. 2023, 291-324. https://doi.org/10.1007/978-981-19-9786-0_8
    27. Sauradeep Sinha, Manish Ayushman, Xinming Tong, Fan Yang. Dynamically Crosslinked Poly(ethylene‐glycol) Hydrogels Reveal a Critical Role of Viscoelasticity in Modulating Glioblastoma Fates and Drug Responses in 3D. Advanced Healthcare Materials 2023, 12 (1) https://doi.org/10.1002/adhm.202202147
    28. C. T. Mierke. Mimicking Mechanical Features of the Tumor Microenvironment. 2022, 60-96. https://doi.org/10.1039/9781839166013-00060
    29. Allison Clancy, Dayi Chen, Joseph Bruns, Jahnavi Nadella, Samuel Stealey, Yanjia Zhang, Aaron Timperman, Silviya P. Zustiak. Hydrogel-based microfluidic device with multiplexed 3D in vitro cell culture. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-22439-y
    30. Rui Sun, Albert H. Kim. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer and Metastasis Reviews 2022, 41 (4) , 871-898. https://doi.org/10.1007/s10555-022-10051-5
    31. Amel Djoudi, Rodolfo Molina-Peña, Natalia Ferreira, Ilaria Ottonelli, Giovanni Tosi, Emmanuel Garcion, Frank Boury. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. International Journal of Molecular Sciences 2022, 23 (20) , 12174. https://doi.org/10.3390/ijms232012174
    32. E. D. Sitsanidis, P. M. Kasapidou, J. R. Hiscock, V. Gubala, H. Castel, P. I. A. Popoola, A. J. Hall, A. A. Edwards. Probing the self-assembly and anti-glioblastoma efficacy of a cinnamoyl-capped dipeptide hydrogelator. Organic & Biomolecular Chemistry 2022, 20 (37) , 7458-7466. https://doi.org/10.1039/D2OB01339H
    33. Eva C. González Díaz, Alex G. Lee, Leanne C. Sayles, Criselle Feria, E. Alejandro Sweet‐Cordero, Fan Yang. A 3D Osteosarcoma Model with Bone‐Mimicking Cues Reveals a Critical Role of Bone Mineral and Informs Drug Discovery. Advanced Healthcare Materials 2022, 11 (17) https://doi.org/10.1002/adhm.202200768
    34. Nausika Betriu, Anna Andreeva, Anna Alonso, Carlos E. Semino. Increased Stiffness Downregulates Focal Adhesion Kinase Expression in Pancreatic Cancer Cells Cultured in 3D Self-Assembling Peptide Scaffolds. Biomedicines 2022, 10 (8) , 1835. https://doi.org/10.3390/biomedicines10081835
    35. Ayse Z. Sahan, Murat Baday, Chirag B. Patel. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022, 8 (8) , 496. https://doi.org/10.3390/gels8080496
    36. Min D. Tang-Schomer, Harshpreet Chandok, Wei-Biao Wu, Ching C. Lau, Markus J. Bookland, Joshy George. 3D patient-derived tumor models to recapitulate pediatric brain tumors In Vitro. Translational Oncology 2022, 20 , 101407. https://doi.org/10.1016/j.tranon.2022.101407
    37. Wiam El Kheir, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022, 14 (6) , 1189. https://doi.org/10.3390/pharmaceutics14061189
    38. Hao Tian, Hanhan Shi, Jie Yu, Shengfang Ge, Jing Ruan. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. Global Challenges 2022, 6 (6) , 2100094. https://doi.org/10.1002/gch2.202100094
    39. Shye Wei Leong, Shing Cheng Tan, Mohd Noor Norhayati, Mastura Monif, Si-Yuen Lee. Effectiveness of Bioinks and the Clinical Value of 3D Bioprinted Glioblastoma Models: A Systematic Review. Cancers 2022, 14 (9) , 2149. https://doi.org/10.3390/cancers14092149
    40. Zerin Mahzabin Khan, Emily Wilts, Eli Vlaisavljevich, Timothy E. Long, Scott S. Verbridge. Characterization and structure-property relationships of an injectable thiol-Michael addition hydrogel toward compatibility with glioblastoma therapy. Acta Biomaterialia 2022, 144 , 266-278. https://doi.org/10.1016/j.actbio.2022.03.016
    41. Daniela Nogueira Rocha, Eva Daniela Carvalho, João Bettencourt Relvas, Maria José Oliveira, Ana Paula Pêgo. Mechanotransduction: Exploring New Therapeutic Avenues in Central Nervous System Pathology. Frontiers in Neuroscience 2022, 16 https://doi.org/10.3389/fnins.2022.861613
    42. Swetha J. Sundar, Sajina Shakya, Austin Barnett, Lisa C. Wallace, Hyemin Jeon, Andrew Sloan, Violette Recinos, Christopher G. Hubert. Three-dimensional organoid culture unveils resistance to clinical therapies in adult and pediatric glioblastoma. Translational Oncology 2022, 15 (1) , 101251. https://doi.org/10.1016/j.tranon.2021.101251
    43. J.d.R. Aguilera-Márquez, G.T. de Dios-Figueroa, E.E. Reza-Saldivar, T.A. Camacho-Villegas, A.A. Canales-Aguirre, P.H. Lugo-Fabres. Biomaterials: Emerging systems for study and treatment of glioblastoma. Neurology Perspectives 2022, 2 , S31-S42. https://doi.org/10.1016/j.neurop.2021.12.001
    44. Yuwan Huang, Pavithra B. Jayathilaka, Md Shariful Islam, Carina B. Tanaka, Meredith N. Silberstein, Kristopher A. Kilian, Jamie J. Kruzic. Structural aspects controlling the mechanical and biological properties of tough, double network hydrogels. Acta Biomaterialia 2022, 138 , 301-312. https://doi.org/10.1016/j.actbio.2021.10.044
    45. Roya Samanipour, Hamed Tahmooressi, Hojatollah Rezaei Nejad, Minoru Hirano, Su-Royn Shin, Mina Hoorfar. A review on 3D printing functional brain model. Biomicrofluidics 2022, 16 (1) https://doi.org/10.1063/5.0074631
    46. EunBi Oh, Brian Meckes, Jinyoung Chang, Donghoon Shin, Chad A. Mirkin. Controlled Glioma Cell Migration and Confinement Using Biomimetic‐Patterned Hydrogels. Advanced NanoBiomed Research 2022, 2 (1) https://doi.org/10.1002/anbr.202100131
    47. Nathalie Dusserre, Marie-Laure Stachowicz, Chantal Medina, Baptiste Henri, Jean-Christophe Fricain, François Paris, Hugo Oliveira. Microvalve bioprinting as a biofabrication tool to decipher tumor and endothelial cell crosstalk: Application to a simplified glioblastoma model. Bioprinting 2021, 24 , e00178. https://doi.org/10.1016/j.bprint.2021.e00178
    48. Andrew M. K. Law, Laura Rodriguez de la Fuente, Thomas J. Grundy, Guocheng Fang, Fatima Valdes-Mora, David Gallego-Ortega. Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.782766
    49. Giulia Morello, Alessandra Quarta, Antonio Gaballo, Lorenzo Moroni, Giuseppe Gigli, Alessandro Polini, Francesca Gervaso. A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. Carbohydrate Polymers 2021, 274 , 118633. https://doi.org/10.1016/j.carbpol.2021.118633
    50. Chiara Bastiancich, Alessio Malfanti, Véronique Préat, Ruman Rahman. Rationally designed drug delivery systems for the local treatment of resected glioblastoma. Advanced Drug Delivery Reviews 2021, 177 , 113951. https://doi.org/10.1016/j.addr.2021.113951
    51. Xiaobei Luo, Eliza Li Shan Fong, Chaojun Zhu, Quy Xiao Xuan Lin, Man Xiong, Aimin Li, Tingting Li, Touati Benoukraf, Hanry Yu, Side Liu. Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomaterialia 2021, 132 , 461-472. https://doi.org/10.1016/j.actbio.2020.12.037
    52. Rosalyn R. Hatlen, Padmavathy Rajagopalan. Environmental interplay: Stromal cells and biomaterial composition influence in the glioblastoma microenvironment. Acta Biomaterialia 2021, 132 , 421-436. https://doi.org/10.1016/j.actbio.2020.11.044
    53. Ian M. Tayler, Ryan S. Stowers. Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomaterialia 2021, 132 , 4-22. https://doi.org/10.1016/j.actbio.2021.04.020
    54. L. Hill, J. Bruns, Silviya P. Zustiak. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Acta Biomaterialia 2021, 132 , 437-447. https://doi.org/10.1016/j.actbio.2021.05.005
    55. Ariege Bizanti, Priyanka Chandrashekar, Robert Steward. Culturing astrocytes on substrates that mimic brain tumors promotes enhanced mechanical forces. Experimental Cell Research 2021, 406 (2) , 112751. https://doi.org/10.1016/j.yexcr.2021.112751
    56. Lena Neufeld, Eilam Yeini, Noa Reisman, Yael Shtilerman, Dikla Ben-Shushan, Sabina Pozzi, Asaf Madi, Galia Tiram, Anat Eldar-Boock, Shiran Ferber, Rachel Grossman, Zvi Ram, Ronit Satchi-Fainaro. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Science Advances 2021, 7 (34) https://doi.org/10.1126/sciadv.abi9119
    57. M Scott, K Żychaluk, R N Bearon. A mathematical framework for modelling 3D cell motility: applications to glioblastoma cell migration. Mathematical Medicine and Biology: A Journal of the IMA 2021, 38 (3) , 333-354. https://doi.org/10.1093/imammb/dqab009
    58. Giulia Morello, Alessandro Polini, Francesca Scalera, Riccardo Rizzo, Giuseppe Gigli, Francesca Gervaso. Preparation and Characterization of Salt-Mediated Injectable Thermosensitive Chitosan/Pectin Hydrogels for Cell Embedding and Culturing. Polymers 2021, 13 (16) , 2674. https://doi.org/10.3390/polym13162674
    59. Janko Kajtez, Fredrik Nilsson, Alessandro Fiorenzano, Malin Parmar, Jenny Emnéus. 3D biomaterial models of human brain disease. Neurochemistry International 2021, 147 , 105043. https://doi.org/10.1016/j.neuint.2021.105043
    60. Mai T. Ngo, Brendan A. C. Harley. Progress in mimicking brain microenvironments to understand and treat neurological disorders. APL Bioengineering 2021, 5 (2) https://doi.org/10.1063/5.0043338
    61. Danqing Zhu, Pavin Trinh, Jianfeng Li, Gerry A. Grant, Fan Yang. Gradient hydrogels for screening stiffness effects on patient‐derived glioblastoma xenograft cellfates in 3D. Journal of Biomedical Materials Research Part A 2021, 109 (6) , 1027-1035. https://doi.org/10.1002/jbm.a.37093
    62. Mayra Paolillo, Sergio Comincini, Sergio Schinelli. In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers 2021, 13 (10) , 2449. https://doi.org/10.3390/cancers13102449
    63. Kanishka Fernando, Leng Gek Kwang, Joanne Tze Chin Lim, Eliza Li Shan Fong. Hydrogels to engineer tumor microenvironments in vitro. Biomaterials Science 2021, 9 (7) , 2362-2383. https://doi.org/10.1039/D0BM01943G
    64. Zhiqin Li, Sigrid A. Langhans. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.620831
    65. Min Tang, Shashi Kant Tiwari, Kriti Agrawal, Matthew Tan, Jason Dang, Trevor Tam, Jing Tian, Xueyi Wan, Jacob Schimelman, Shangting You, Qinghui Xia, Tariq M. Rana, Shaochen Chen. Rapid 3D Bioprinting of Glioblastoma Model Mimicking Native Biophysical Heterogeneity. Small 2021, 17 (15) https://doi.org/10.1002/smll.202006050
    66. Jung Soo Kim, Jaeho Choi, Chang Seok Ki, Ki Hoon Lee. 3D Silk Fiber Construct Embedded Dual-Layer PEG Hydrogel for Articular Cartilage Repair – In vitro Assessment. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.653509
    67. Christine Wang, Sauradeep Sinha, Xinyi Jiang, Luke Murphy, Sergio Fitch, Christy Wilson, Gerald Grant, Fan Yang. Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels. Tissue Engineering Part A 2021, 27 (5-6) , 390-401. https://doi.org/10.1089/ten.tea.2020.0110
    68. Tijana Stanković, Teodora Ranđelović, Miodrag Dragoj, Sonja Stojković Burić, Luis Fernández, Ignacio Ochoa, Victor M. Pérez-García, Milica Pešić. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resistance Updates 2021, 55 , 100753. https://doi.org/10.1016/j.drup.2021.100753
    69. Aleksandar S. Mijailovic, Sualyneth Galarza, Shabnam Raayai-Ardakani, Nathan P. Birch, Jessica D. Schiffman, Alfred J. Crosby, Tal Cohen, Shelly R. Peyton, Krystyn J. Van Vliet. Localized characterization of brain tissue mechanical properties by needle induced cavitation rheology and volume controlled cavity expansion. Journal of the Mechanical Behavior of Biomedical Materials 2021, 114 , 104168. https://doi.org/10.1016/j.jmbbm.2020.104168
    70. Min Tang, Jeremy N. Rich, Shaochen Chen. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood–Brain Barrier. Advanced Materials 2021, 33 (5) https://doi.org/10.1002/adma.202004776
    71. Genaro Vázquez-Victorio, Adriana Rodríguez-Hernández, Mariel Cano-Jorge, Ana Ximena Monroy-Romero, Marina Macías-Silva, Mathieu Hautefeuille. Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. 2021, 277-297. https://doi.org/10.1007/978-1-0716-0759-6_18
    72. Pascale Monzo, Michele Crestani, Nils C. Gauthier. In Vitro Mechanobiology of Glioma: Mimicking the Brain Blood Vessels and White Matter Tracts Invasion Paths. 2021, 159-196. https://doi.org/10.1007/978-1-0716-0856-2_8
    73. Remya Komeri, H. P. Syama, G. U. Preethi, B. S. Unnikrishnan, R. Shiji, M. G. Archana, Deepa Mohan, Anuj Tripathi, T. T. Sreelekha. Prospects of Cell Immobilization in Cancer Research and Immunotherapy. 2021, 165-193. https://doi.org/10.1007/978-981-15-7998-1_4
    74. Sanaz Dastghaib, Sima Hajiahmadi, Amir Seyfoori, Meitham Amereh, Mozhdeh Zamani, Zahra Shahsavari, Shahla Shojaei, Mohsen Akbari, Pooneh Mokarram, Saeid Ghavami. Role of apoptosis, autophagy, and the unfolded protein response in glioblastoma chemoresistance. 2021, 201-242. https://doi.org/10.1016/B978-0-12-821567-8.00016-6
    75. Kshama Gupta. The molecular and cellular effects of radiotherapy-induced microenvironment changes on potential chemoresistance in glioblastoma. 2021, 335-364. https://doi.org/10.1016/B978-0-12-821567-8.00035-X
    76. Matías Arturo Pibuel, Daniela Poodts, Mariángeles Díaz, Silvia Elvira Hajos, Silvina Laura Lompardía. The scrambled story between hyaluronan and glioblastoma. Journal of Biological Chemistry 2021, 296 , 100549. https://doi.org/10.1016/j.jbc.2021.100549
    77. Semra Unal, Sema Arslan, Betul Karademir Yilmaz, Faik Nuzhet Oktar, Ahmet Zeki Sengil, Oguzhan Gunduz. Production and characterization of bacterial cellulose scaffold and its modification with hyaluronic acid and gelatin for glioblastoma cell culture. Cellulose 2021, 28 (1) , 117-132. https://doi.org/10.1007/s10570-020-03528-5
    78. Vladimir Kalinin. Cell – extracellular matrix interaction in glioma growth. In silico model. Journal of Integrative Bioinformatics 2020, 17 (4) https://doi.org/10.1515/jib-2020-0027
    79. Rui C. Pereira, Raffaella Santagiuliana, Luca Ceseracciu, Daniela P. Boso, Bernhard A. Schrefler, Paolo Decuzzi. Elucidating the Role of Matrix Porosity and Rigidity in Glioblastoma Type IV Progression. Applied Sciences 2020, 10 (24) , 9076. https://doi.org/10.3390/app10249076
    80. S.R. Choi, Y. Yang, K.Y. Huang, H.J. Kong, M.J. Flick, B. Han. Engineering of biomaterials for tumor modeling. Materials Today Advances 2020, 8 , 100117. https://doi.org/10.1016/j.mtadv.2020.100117
    81. Jyothsna Vasudevan, Chwee Teck Lim, Javier G Fernandez. Cell Migration and Breast Cancer Metastasis in Biomimetic Extracellular Matrices with Independently Tunable Stiffness. Advanced Functional Materials 2020, 30 (49) https://doi.org/10.1002/adfm.202005383
    82. Anna Barkovskaya, Alexander Buffone, Martin Žídek, Valerie M. Weaver. Proteoglycans as Mediators of Cancer Tissue Mechanics. Frontiers in Cell and Developmental Biology 2020, 8 https://doi.org/10.3389/fcell.2020.569377
    83. Advika Kamatar, Gokhan Gunay, Handan Acar. Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. Polymers 2020, 12 (11) , 2506. https://doi.org/10.3390/polym12112506
    84. Hannah M. Micek, Mike R. Visetsouk, Kristyn S. Masters, Pamela K. Kreeger. Engineering the Extracellular Matrix to Model the Evolving Tumor Microenvironment. iScience 2020, 23 (11) , 101742. https://doi.org/10.1016/j.isci.2020.101742
    85. Teruki Nii, Kimiko Makino, Yasuhiko Tabata. Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers 2020, 12 (10) , 2754. https://doi.org/10.3390/cancers12102754
    86. Christine Wang, Sauradeep Sinha, Xinyi Jiang, Sergio Fitch, Christy Wilson, Viola Caretti, Anitha Ponnuswami, Michelle Monje, Gerald Grant, Fan Yang. A comparative study of brain tumor cells from different age and anatomical locations using 3D biomimetic hydrogels. Acta Biomaterialia 2020, 116 , 201-208. https://doi.org/10.1016/j.actbio.2020.09.007
    87. Ezgi Bakirci, Natascha Schaefer, Ouafa Dahri, Andrei Hrynevich, Pamela Strissel, Reiner Strick, Paul D. Dalton, Carmen Villmann. Melt Electrowritten In Vitro Radial Device to Study Cell Growth and Migration. Advanced Biosystems 2020, 4 (10) https://doi.org/10.1002/adbi.202000077
    88. Boning Qiu, Nils Bessler, Kianti Figler, Maj‐Britt Buchholz, Anne C. Rios, Jos Malda, Riccardo Levato, Massimiliano Caiazzo. Bioprinting Neural Systems to Model Central Nervous System Diseases. Advanced Functional Materials 2020, 30 (44) , 1910250. https://doi.org/10.1002/adfm.201910250
    89. Michael L. Lovett, Thomas J. F. Nieland, Yu‐Ting L. Dingle, David L. Kaplan. Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional Materials 2020, 30 (44) , 1909146. https://doi.org/10.1002/adfm.201909146
    90. Alexa R. Anderson, Tatiana Segura. Injectable Biomaterials for Treatment of Glioblastoma. Advanced Materials Interfaces 2020, 7 (20) https://doi.org/10.1002/admi.202001055
    91. Zbigniev Balion, Emilija Sipailaite, Gabija Stasyte, Agne Vailionyte, Airina Mazetyte-Godiene, Ieva Seskeviciute, Rasa Bernotiene, Jaywant Phopase, Aiste Jekabsone. Investigation of Cancer Cell Migration and Proliferation on Synthetic Extracellular Matrix Peptide Hydrogels. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00773
    92. Jai Thakor, Samad Ahadian, Ali Niakan, Ethan Banton, Fatemeh Nasrollahi, Mohammad M. Hasani-Sadrabadi, Ali Khademhosseini. Engineered hydrogels for brain tumor culture and therapy. Bio-Design and Manufacturing 2020, 3 (3) , 203-226. https://doi.org/10.1007/s42242-020-00084-6
    93. Nicolas Rouleau, Nirosha J. Murugan, William Rusk, Cole Koester, David L. Kaplan. Matrix Deformation with Ectopic Cells Induced by Rotational Motion in Bioengineered Neural Tissues. Annals of Biomedical Engineering 2020, 48 (8) , 2192-2203. https://doi.org/10.1007/s10439-020-02561-6
    94. Eric R. Molina, Letitia K. Chim, Sergio Barrios, Joseph A. Ludwig, Antonios G. Mikos. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. Tissue Engineering Part B: Reviews 2020, 26 (3) , 249-271. https://doi.org/10.1089/ten.teb.2019.0302
    95. Semra Unal, Sema Arslan, Betul Karademir Yilmaz, Faik Nuzhet Oktar, Denisa Ficai, Anton Ficai, Oguzhan Gunduz. Polycaprolactone/Gelatin/Hyaluronic Acid Electrospun Scaffolds to Mimic Glioblastoma Extracellular Matrix. Materials 2020, 13 (11) , 2661. https://doi.org/10.3390/ma13112661
    96. Carolina Parra-Cantu, Wanlu Li, Alfredo Quiñones-Hinojosa, Yu Shrike Zhang. 3D bioprinting of glioblastoma models. Journal of 3D Printing in Medicine 2020, 4 (2) , 113-125. https://doi.org/10.2217/3dp-2019-0027
    97. Mathie Najberg, Muhammad Haji Mansor, Théodore Taillé, Céline Bouré, Rodolfo Molina-Peña, Frank Boury, José Luis Cenis, Emmanuel Garcion, Carmen Alvarez-Lorenzo. Aerogel sponges of silk fibroin, hyaluronic acid and heparin for soft tissue engineering: Composition-properties relationship. Carbohydrate Polymers 2020, 237 , 116107. https://doi.org/10.1016/j.carbpol.2020.116107
    98. Sarah Bonnesœur, Sandrine Morin‐Grognet, Olivier Thoumire, Didier Le Cerf, Olivier Boyer, Jean‐Pierre Vannier, Béatrice Labat. Hyaluronan‐based hydrogels as versatile tumor‐like models: Tunable ECM and stiffness with genipin‐crosslinking. Journal of Biomedical Materials Research Part A 2020, 108 (5) , 1256-1268. https://doi.org/10.1002/jbm.a.36899
    99. Laura C. Bahlmann, Laura J. Smith, Molly S. Shoichet. Designer Biomaterials to Model Cancer Cell Invasion In Vitro: Predictive Tools or Just Pretty Pictures?. Advanced Functional Materials 2020, 30 (16) https://doi.org/10.1002/adfm.201909032
    100. Daoxiang Huang, Yu Nakamura, Aya Ogata, Satoru Kidoaki. Characterization of 3D matrix conditions for cancer cell migration with elasticity/porosity-independent tunable microfiber gels. Polymer Journal 2020, 52 (3) , 333-344. https://doi.org/10.1038/s41428-019-0283-3
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect