ACS Publications. Most Trusted. Most Cited. Most Read
Flexible Filaments for in Vivo Imaging and Delivery: Persistent Circulation of Filomicelles Opens the Dosage Window for Sustained Tumor Shrinkage
My Activity

Figure 1Loading Img
    Article

    Flexible Filaments for in Vivo Imaging and Delivery: Persistent Circulation of Filomicelles Opens the Dosage Window for Sustained Tumor Shrinkage
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
    * Corresponding author. Mailing address: University of Pennsylvania, CBE, 129 Towne Bldg, 220 S 33rd St, Philadelphia, PA 19104. E-mail: [email protected]. Phone: 215 898-4809. Fax: 215-573-2093.
    †University of Pennsylvania.
    ‡Rutgers, The State University of New Jersey.
    §These authors contributed equally to this work.
    Other Access OptionsSupporting Information (1)

    Molecular Pharmaceutics

    Cite this: Mol. Pharmaceutics 2009, 6, 5, 1343–1352
    Click to copy citationCitation copied!
    https://doi.org/10.1021/mp900022m
    Published February 27, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Shape effects of synthetic carriers are largely unexplored in vivo, although recent findings suggest that flexible filaments can persist in the circulation even if microns in length. Here, to better assess biodistribution, a near-infrared fluorophore (NIRF) was incorporated into such block copolymer “filomicelles”, and both in vivo and ex vivo imaging show that the majority of these wormlike micelles remain in the circulation for at least a day after intravenous injection. NIRF imaging further suggests that filomicelles convect into a tumor and some fragments can penetrate into the tumor stroma. To assess a functional effect, the hydrophobic drug paclitaxel (tax) was loaded into both filomicelles and sonication-generated spherical micelles of the same copolymer. Intravenous injection of tax-loaded filomicelles nearly doubles the maximum tolerated dose of tax in normal mice compared to tax-loaded spherical micelles. In tumor-bearing mice, the higher dose of tax produces greater and more sustained tumor shrinkage and tumor cell apoptosis. These results thus begin to address mechanisms for how nonspherical carriers deliver both imaging agents and anticancer therapeutics to solid tumors.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Figures S1−S3 depicting safety examination of empty OCL3 micelles in nude mice, release of TAX from OCL3 micelles, and the calibration of fluorescence intensity for filomicelle length. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 262 publications.

    1. Valentin A. Bobrin, Surya E. Sharma-Brymer, Michael J. Monteiro. Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures. ACS Nano 2025, Article ASAP.
    2. Yuta Yamamoto, Yoshifumi Yamagata, Taisuke Sato, Koshiro Nakamura, Ren Sato, Mitsuru Naito, Ung-il Chung, Takuya Katashima. Elucidating Nonlinear Stress Relaxation in Transient Networks through Two-Dimensional Rheo-Optics. ACS Macro Letters 2024, 13 (9) , 1171-1178. https://doi.org/10.1021/acsmacrolett.4c00338
    3. Ziyan Song, Peng Chen, Lisong Teng, Weibin Wang, Weipu Zhu. Copper Nanodrugs with Controlled Morphologies through Aqueous Atom Transfer Radical Polymerization. Biomacromolecules 2024, 25 (7) , 4545-4556. https://doi.org/10.1021/acs.biomac.4c00552
    4. Yusuke Sakamoto, Shota Fujii, Shin Takano, Jokichi Fukushima, Mitsuru Ando, Noriyuki Kodera, Tomoki Nishimura. Manipulation of Macrophage Uptake by Controlling the Aspect Ratio of Graft Copolymer Micelles. Nano Letters 2024, 24 (19) , 5838-5846. https://doi.org/10.1021/acs.nanolett.4c01054
    5. Maximilian A. Beach, Umeka Nayanathara, Yanting Gao, Changhe Zhang, Yijun Xiong, Yufu Wang, Georgina K. Such. Polymeric Nanoparticles for Drug Delivery. Chemical Reviews 2024, 124 (9) , 5505-5616. https://doi.org/10.1021/acs.chemrev.3c00705
    6. Zhefei Yang, Deborah Snyder, James Nicolas Pagaduan, Abraham Waldman, Alfred J. Crosby, Todd Emrick. Mesoscale Polymer Surfactants: Photolithographic Production and Localization at Droplet Interfaces. Journal of the American Chemical Society 2022, 144 (48) , 22059-22066. https://doi.org/10.1021/jacs.2c09346
    7. Megan G. Roberts, Valerie J. Facca, Rachel Keunen, Qing Yu, Raymond M. Reilly, Mitchell A. Winnik. Changing Surface Polyethylene Glycol Architecture Affects Elongated Nanoparticle Penetration into Multicellular Tumor Spheroids. Biomacromolecules 2022, 23 (8) , 3296-3307. https://doi.org/10.1021/acs.biomac.2c00386
    8. Kazuki Fukushima, Kodai Matsuzaki, Masashi Oji, Yuji Higuchi, Go Watanabe, Yuki Suzuki, Moriya Kikuchi, Nozomi Fujimura, Naofumi Shimokawa, Hiroaki Ito, Takashi Kato, Seigou Kawaguchi, Masaru Tanaka. Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses. Macromolecules 2022, 55 (1) , 15-25. https://doi.org/10.1021/acs.macromol.1c01894
    9. Bilal Hussain, Vivek Kasinath, Joren C. Madsen, Jonathan Bromberg, Stefan G. Tullius, Reza Abdi. Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS Nano 2021, 15 (11) , 17124-17136. https://doi.org/10.1021/acsnano.1c04707
    10. William M. MacCuaig, Benjamin L. Fouts, Molly W McNally, William E. Grizzle, Phillip Chuong, Abhilash Samykutty, Priyabrata Mukherjee, Min Li, Jacek B. Jasinski, Bahareh Behkam, Lacey R. McNally. Active Targeting Significantly Outperforms Nanoparticle Size in Facilitating Tumor-Specific Uptake in Orthotopic Pancreatic Cancer. ACS Applied Materials & Interfaces 2021, 13 (42) , 49614-49630. https://doi.org/10.1021/acsami.1c09379
    11. Johanna K. Elter, Sabina Quader, Jonas Eichhorn, Michael Gottschaldt, Kazunori Kataoka, Felix H. Schacher. Core-Crosslinked Fluorescent Worm-Like Micelles for Glucose-Mediated Drug Delivery. Biomacromolecules 2021, 22 (4) , 1458-1471. https://doi.org/10.1021/acs.biomac.0c01661
    12. Megan G. Roberts, Qing Yu, Rachel Keunen, Jieyi Liu, Edmond Chi Ngae Wong, Chandresh Kumar Rastogi, Raymond M. Reilly, Christine Allen, Mitchell A. Winnik. Functionalization of Cellulose Nanocrystals with POEGMA Copolymers via Copper-Catalyzed Azide–Alkyne Cycloaddition for Potential Drug-Delivery Applications. Biomacromolecules 2020, 21 (6) , 2014-2023. https://doi.org/10.1021/acs.biomac.9b01713
    13. Shivshankar R. Mane, Ashlin Sathyan, Raja Shunmugam. Biomedical Applications of pH-Responsive Amphiphilic Polymer Nanoassemblies. ACS Applied Nano Materials 2020, 3 (3) , 2104-2117. https://doi.org/10.1021/acsanm.0c00410
    14. Juliane N.B.D. Pelin, Charlotte J. C. Edwards-Gayle, Valeria Castelletto, Andrea M. Aguilar, Wendel A. Alves, Jani Seitsonen, Janne Ruokolainen, Ian W. Hamley. Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide. ACS Applied Materials & Interfaces 2020, 12 (12) , 13671-13679. https://doi.org/10.1021/acsami.0c00686
    15. Yuanfang Chen, Xue-Hao Zhang, Dong-Bing Cheng, Yongjie Zhang, Yong Liu, Lei Ji, Ruochen Guo, Hao Chen, Xiang-Kui Ren, Zhijian Chen, Zeng-Ying Qiao, Hao Wang. Near-Infrared Laser-Triggered In Situ Dimorphic Transformation of BF2-Azadipyrromethene Nanoaggregates for Enhanced Solid Tumor Penetration. ACS Nano 2020, 14 (3) , 3640-3650. https://doi.org/10.1021/acsnano.0c00118
    16. Victorio Saez Talens, Gabriela Arias-Alpizar, D. M. M. Makurat, Joyal Davis, Jeroen Bussmann, Alexander Kros, Roxanne E. Kieltyka. Stab2-Mediated Clearance of Supramolecular Polymer Nanoparticles in Zebrafish Embryos. Biomacromolecules 2020, 21 (3) , 1060-1068. https://doi.org/10.1021/acs.biomac.9b01318
    17. Anastasis Karatzas, Johannes S. Haataja, Dimitrios Skoulas, Panayiotis Bilalis, Spyridon Varlas, Panagiota Apostolidi, Sosanna Sofianopoulou, Efstratios Stratikos, Nikolay Houbenov, Olli Ikkala, Hermis Iatrou. Marcromolecular Architecture and Encapsulation of the Anticancer Drug Everolimus Control the Self-Assembly of Amphiphilic Polypeptide-Containing Hybrids. Biomacromolecules 2019, 20 (12) , 4546-4562. https://doi.org/10.1021/acs.biomac.9b01331
    18. Julie Mougin, Semen O. Yesylevskyy, Claudie Bourgaux, David Chapron, Jean-Philippe Michel, Franco Dosio, Barbara Stella, Christophe Ramseyer, Patrick Couvreur. Stacking as a Key Property for Creating Nanoparticles with Tunable Shape: The Case of Squalenoyl-Doxorubicin. ACS Nano 2019, 13 (11) , 12870-12879. https://doi.org/10.1021/acsnano.9b05303
    19. Jiye Son, Daniela Kalafatovic, Mohit Kumar, Barney Yoo, Mike A. Cornejo, María Contel, Rein V. Ulijn. Customizing Morphology, Size, and Response Kinetics of Matrix Metalloproteinase-Responsive Nanostructures by Systematic Peptide Design. ACS Nano 2019, 13 (2) , 1555-1562. https://doi.org/10.1021/acsnano.8b07401
    20. Jeffrey C. Foster, Spyridon Varlas, Benoit Couturaud, Zachary Coe, Rachel K. O’Reilly. Getting into Shape: Reflections on a New Generation of Cylindrical Nanostructures’ Self-Assembly Using Polymer Building Blocks. Journal of the American Chemical Society 2019, 141 (7) , 2742-2753. https://doi.org/10.1021/jacs.8b08648
    21. Na Li, Han Zhang, Yi Xiao, Yushu Huang, Mengda Xu, Donglei You, Wei Lu, Jiahui Yu. Fabrication of Cellulose-Nanocrystal-Based Folate Targeted Nanomedicine via Layer-by-Layer Assembly with Lysosomal pH-Controlled Drug Release into the Nucleus. Biomacromolecules 2019, 20 (2) , 937-948. https://doi.org/10.1021/acs.biomac.8b01556
    22. Duc H. T. Le, Eduardo Méndez-López, Chao Wang, Ulrich Commandeur, Miguel A. Aranda, Nicole F. Steinmetz. Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X. Biomacromolecules 2019, 20 (1) , 469-477. https://doi.org/10.1021/acs.biomac.8b01365
    23. Praful R. Nair, Cory Alvey, Xiaoling Jin, Jerome Irianto, Irena Ivanovska, Dennis E. Discher. Filomicelles Deliver a Chemo-Differentiation Combination of Paclitaxel and Retinoic Acid That Durably Represses Carcinomas in Liver to Prolong Survival. Bioconjugate Chemistry 2018, 29 (4) , 914-927. https://doi.org/10.1021/acs.bioconjchem.7b00816
    24. Zhimin Tao, Mandar Deepak Muzumdar, Alexandre Detappe, Xing Huang, Eric S. Xu, Yingjie Yu, Tarek H. Mouhieddine, Haiqin Song, Tyler Jacks, P. Peter Ghoroghchian. Differences in Nanoparticle Uptake in Transplanted and Autochthonous Models of Pancreatic Cancer. Nano Letters 2018, 18 (4) , 2195-2208. https://doi.org/10.1021/acs.nanolett.7b04043
    25. Sadik Kaga, Nghia P. Truong, Lars Esser, Danielle Senyschyn, Amitav Sanyal, Rana Sanyal, John F. Quinn, Thomas P. Davis, Lisa M. Kaminskas, and Michael R. Whittaker . Influence of Size and Shape on the Biodistribution of Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Biomacromolecules 2017, 18 (12) , 3963-3970. https://doi.org/10.1021/acs.biomac.7b00995
    26. Calum Kinnear, Thomas L. Moore, Laura Rodriguez-Lorenzo, Barbara Rothen-Rutishauser, and Alke Petri-Fink . Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews 2017, 117 (17) , 11476-11521. https://doi.org/10.1021/acs.chemrev.7b00194
    27. Sham Rampersaud, Justin Fang, Zengyan Wei, Kristina Fabijanic, Stefan Silver, Trisha Jaikaran, Yuleisy Ruiz, Murielle Houssou, Zhiwei Yin, Shengping Zheng, Ayako Hashimoto, Ayuko Hoshino, David Lyden, Shahana Mahajan, and Hiroshi Matsui . The Effect of Cage Shape on Nanoparticle-Based Drug Carriers: Anticancer Drug Release and Efficacy via Receptor Blockade Using Dextran-Coated Iron Oxide Nanocages. Nano Letters 2016, 16 (12) , 7357-7363. https://doi.org/10.1021/acs.nanolett.6b02577
    28. Yang Li, Jinyan Lin, Yu Huang, Yanxiu Li, Xiangrui Yang, Hongjie Wu, Shichao Wu, Liya Xie, Lizong Dai, and Zhenqing Hou . Self-Targeted, Shape-Assisted, and Controlled-Release Self-Delivery Nanodrug for Synergistic Targeting/Anticancer Effect of Cytoplasm and Nucleus of Cancer Cells. ACS Applied Materials & Interfaces 2015, 7 (46) , 25553-25559. https://doi.org/10.1021/acsami.5b07348
    29. Alyssa B. Chinen, Chenxia M. Guan, Jennifer R. Ferrer, Stacey N. Barnaby, Timothy J. Merkel, and Chad A. Mirkin . Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chemical Reviews 2015, 115 (19) , 10530-10574. https://doi.org/10.1021/acs.chemrev.5b00321
    30. Jinqiang Wang, Weiwei Mao, Lye Lin Lock, Jianbin Tang, Meihua Sui, Weilin Sun, Honggang Cui, Dong Xu, and Youqing Shen . The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano 2015, 9 (7) , 7195-7206. https://doi.org/10.1021/acsnano.5b02017
    31. Margaret B. Fish, Alex J. Thompson, Catherine A. Fromen, and Omolola Eniola-Adefeso . Emergence and Utility of Nonspherical Particles in Biomedicine. Industrial & Engineering Chemistry Research 2015, 54 (16) , 4043-4059. https://doi.org/10.1021/ie504452j
    32. Fei Cui, Jinyan Lin, Yang Li, Yanxiu Li, Hongjie Wu, Fei Yu, Mengmeng Jia, Xiangrui Yang, Shichao Wu, Liya Xie, Shefang Ye, Fanghong Luo, and Zhenqing Hou . Bacillus-Shape Design of Polymer Based Drug Delivery Systems with Janus-Faced Function for Synergistic Targeted Drug Delivery and More Effective Cancer Therapy. Molecular Pharmaceutics 2015, 12 (4) , 1318-1327. https://doi.org/10.1021/mp500464b
    33. Jing Wang, Wen Zhu, Lixin Liu, Yongming Chen, and Chun Wang . Synthesis and Cellular Internalization of Spindle Hematite/Polymer Hybrid Nanoparticles. ACS Applied Materials & Interfaces 2015, 7 (9) , 5454-5461. https://doi.org/10.1021/am509152h
    34. Markus Müllner, Sarah J. Dodds, Tri-Hung Nguyen, Danielle Senyschyn, Christopher J. H. Porter, Ben J. Boyd, and Frank Caruso . Size and Rigidity of Cylindrical Polymer Brushes Dictate Long Circulating Properties In Vivo. ACS Nano 2015, 9 (2) , 1294-1304. https://doi.org/10.1021/nn505125f
    35. Paul L. Chariou, Karin L. Lee, Amy M. Wen, Neetu M. Gulati, Phoebe L. Stewart, and Nicole F. Steinmetz . Detection and Imaging of Aggressive Cancer Cells Using an Epidermal Growth Factor Receptor (EGFR)-Targeted Filamentous Plant Virus-Based Nanoparticle. Bioconjugate Chemistry 2015, 26 (2) , 262-269. https://doi.org/10.1021/bc500545z
    36. Tyson J. Moyer, Joel A. Finbloom, Feng Chen, Daniel J. Toft, Vincent L. Cryns, and Samuel I. Stupp . pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies. Journal of the American Chemical Society 2014, 136 (42) , 14746-14752. https://doi.org/10.1021/ja5042429
    37. Wenping Zhang, Jin Sun, Yan Liu, Mengying Tao, Xiaoyu Ai, Xiaonan Su, Cuifang Cai, Yilin Tang, Zhi Feng, Xiaodan Yan, Guoliang Chen, and Zhonggui He . PEG-Stabilized Bilayer Nanodisks As Carriers for Doxorubicin Delivery. Molecular Pharmaceutics 2014, 11 (10) , 3279-3290. https://doi.org/10.1021/mp400566a
    38. Yongjun Wang, Dun Wang, Qiang Fu, Dan Liu, Yan Ma, Kelly Racette, Zhonggui He, and Feng Liu . Shape-Controlled Paclitaxel Nanoparticles with Multiple Morphologies: Rod-Shaped, Worm-Like, Spherical, and Fingerprint-Like. Molecular Pharmaceutics 2014, 11 (10) , 3766-3771. https://doi.org/10.1021/mp500436p
    39. Elise Lepeltier, Claudie Bourgaux, Andrey Maksimenko, Florian Meneau, Véronique Rosilio, Eric Sliwinski, Fatima Zouhiri, Didier Desmaële, and Patrick Couvreur . Self-Assembly of Polyisoprenoyl Gemcitabine Conjugates: Influence of Supramolecular Organization on Their Biological Activity. Langmuir 2014, 30 (22) , 6348-6357. https://doi.org/10.1021/la5007132
    40. James D. Robertson, Guy Yealland, Milagros Avila-Olias, Luca Chierico, Oliver Bandmann, Stephen A Renshaw, and Giuseppe Battaglia . pH-Sensitive Tubular Polymersomes: Formation and Applications in Cellular Delivery. ACS Nano 2014, 8 (5) , 4650-4661. https://doi.org/10.1021/nn5004088
    41. Jianfeng Liu, Jinjian Liu, Liping Chu, Yumin Zhang, Hongyan Xu, Deling Kong, Zhimou Yang, Cuihong Yang, and Dan Ding . Self-Assembling Peptide of d-Amino Acids Boosts Selectivity and Antitumor Efficacy of 10-Hydroxycamptothecin. ACS Applied Materials & Interfaces 2014, 6 (8) , 5558-5565. https://doi.org/10.1021/am406007g
    42. Anita Schulz, Sebastian Jaksch, Rene Schubel, Erik Wegener, Zhenyu Di, Yingchao Han, Annette Meister, Jörg Kressler, Alexander V. Kabanov, Robert Luxenhofer, Christine M. Papadakis, and Rainer Jordan . Drug-Induced Morphology Switch in Drug Delivery Systems Based on Poly(2-oxazoline)s. ACS Nano 2014, 8 (3) , 2686-2696. https://doi.org/10.1021/nn406388t
    43. Nicholas J. Warren, Oleksandr O. Mykhaylyk, Daniel Mahmood, Anthony J. Ryan, and Steven P. Armes . RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. Journal of the American Chemical Society 2014, 136 (3) , 1023-1033. https://doi.org/10.1021/ja410593n
    44. Samantha McRae Page, Molly Martorella, Sangram Parelkar, Irem Kosif, and Todd Emrick . Disulfide Cross-Linked Phosphorylcholine Micelles for Triggered Release of Camptothecin. Molecular Pharmaceutics 2013, 10 (7) , 2684-2692. https://doi.org/10.1021/mp400114n
    45. Ashkan Dehsorkhi and Ian W. Hamley , Jani Seitsonen and Janne Ruokolainen . Tuning Self-Assembled Nanostructures Through Enzymatic Degradation of a Peptide Amphiphile. Langmuir 2013, 29 (22) , 6665-6672. https://doi.org/10.1021/la401025r
    46. Hong Tan, Zhigao Wang, Jiehua Li, Zhicheng Pan, Mingming Ding, and Qiang Fu . An Approach for the Sphere-to-Rod Transition of Multiblock Copolymer Micelles. ACS Macro Letters 2013, 2 (2) , 146-151. https://doi.org/10.1021/mz3005583
    47. Satu Strandman, Frantz Le Dévédec, and X. X. Zhu . Self-Assembly of Bile Acid–PEG Conjugates in Aqueous Solutions. The Journal of Physical Chemistry B 2013, 117 (1) , 252-258. https://doi.org/10.1021/jp307989a
    48. Sourabh Shukla, Amber L. Ablack, Amy M. Wen, Karin L. Lee, John D. Lewis, and Nicole F. Steinmetz . Increased Tumor Homing and Tissue Penetration of the Filamentous Plant Viral Nanoparticle Potato virus X. Molecular Pharmaceutics 2013, 10 (1) , 33-42. https://doi.org/10.1021/mp300240m
    49. Daniel J. Toft, Tyson J. Moyer, Stephany M. Standley, Yves Ruff, Andrey Ugolkov, Samuel I. Stupp, and Vincent L. Cryns . Coassembled Cytotoxic and Pegylated Peptide Amphiphiles Form Filamentous Nanostructures with Potent Antitumor Activity in Models of Breast Cancer. ACS Nano 2012, 6 (9) , 7956-7965. https://doi.org/10.1021/nn302503s
    50. Jiandi Wan, Lei Shi, Bryan Benson, Matthew J. Bruzek, John E. Anthony, Patrick J. Sinko, Robert K. Prudhomme, and Howard A. Stone . Microfluidic Generation of Droplets with a High Loading of Nanoparticles. Langmuir 2012, 28 (37) , 13143-13148. https://doi.org/10.1021/la3025952
    51. Farrell R. Kersey, Timothy J. Merkel, Jillian L. Perry, Mary E. Napier, and Joseph M. DeSimone . Effect of Aspect Ratio and Deformability on Nanoparticle Extravasation through Nanopores. Langmuir 2012, 28 (23) , 8773-8781. https://doi.org/10.1021/la301279v
    52. Yongming Chen . Shaped Hairy Polymer Nanoobjects. Macromolecules 2012, 45 (6) , 2619-2631. https://doi.org/10.1021/ma201495m
    53. Xiaobo Zhu, Michael Fryd, Benjamin D. Tran, Marc A. Ilies, and Bradford B. Wayland . Modifying the Hydrophilic–Hydrophobic Interface of PEG-b-PCL To Increase Micelle Stability: Preparation of PEG-b-PBO-b-PCL Triblock Copolymers, Micelle Formation, and Hydrolysis Kinetics. Macromolecules 2012, 45 (2) , 660-665. https://doi.org/10.1021/ma202530v
    54. Núria Sancho Oltra Sharon M. Loverde Takamasa Harada Abdullah Mahmud Karthikan Rajagopal Dennis E. Discher . Degradable Poly(ethylene oxide)-block-polycaprolactone Worm-like Micelles: From Phase Transitions and Molecular Simulation to Persistent Circulation and Shrinking Tumors. 2012, 255-285. https://doi.org/10.1021/bk-2012-1114.ch016
    55. Tae Hee Kim, Christopher W. Mount, Benjamin W. Dulken, Jenelyn Ramos, Caroline J. Fu, Htet A. Khant, Wah Chiu, Wayne R. Gombotz, and Suzie H. Pun . Filamentous, Mixed Micelles of Triblock Copolymers Enhance Tumor Localization of Indocyanine Green in a Murine Xenograft Model. Molecular Pharmaceutics 2012, 9 (1) , 135-143. https://doi.org/10.1021/mp200381c
    56. Jillian L. Perry, Kevin P. Herlihy, Mary E. Napier, and Joseph M. DeSimone . PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics. Accounts of Chemical Research 2011, 44 (10) , 990-998. https://doi.org/10.1021/ar2000315
    57. Andreas M. Nyström and Karen L. Wooley . The Importance of Chemistry in Creating Well-Defined Nanoscopic Embedded Therapeutics: Devices Capable of the Dual Functions of Imaging and Therapy. Accounts of Chemical Research 2011, 44 (10) , 969-978. https://doi.org/10.1021/ar200097k
    58. Elizabeth M. Enlow, J. Christopher Luft, Mary E. Napier, and Joseph M. DeSimone . Potent Engineered PLGA Nanoparticles by Virtue of Exceptionally High Chemotherapeutic Loadings. Nano Letters 2011, 11 (2) , 808-813. https://doi.org/10.1021/nl104117p
    59. Feng Li, Michael Danquah, and Ram I. Mahato. Synthesis and Characterization of Amphiphilic Lipopolymers for Micellar Drug Delivery. Biomacromolecules 2010, 11 (10) , 2610-2620. https://doi.org/10.1021/bm100561v
    60. Andrew S. Mikhail and Christine Allen. Poly(ethylene glycol)-b-poly(ε-caprolactone) Micelles Containing Chemically Conjugated and Physically Entrapped Docetaxel: Synthesis, Characterization, and the Influence of the Drug on Micelle Morphology. Biomacromolecules 2010, 11 (5) , 1273-1280. https://doi.org/10.1021/bm100073s
    61. Elmer Austria, Marcela Bilek, Pegah Varamini, Behnam Akhavan. Breaking biological barriers: Engineering polymeric nanoparticles for cancer therapy. Nano Today 2025, 60 , 102552. https://doi.org/10.1016/j.nantod.2024.102552
    62. Usha Nayak, Praveen Halagali, Khushi N. Panchal, Vamshi Krishna Tippavajhala, Jayesh Mudgal, Raghu Radhakrishnan, Jyothsna Manikkath. Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements. Current Pharmaceutical Design 2025, 31 (6) , 443-460. https://doi.org/10.2174/0113816128328722240828184410
    63. Yekai Feng, Qinglai Tang, Bin Wang, Qian Yang, Yuming Zhang, Lanjie Lei, Shisheng Li. Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. Journal of Nanobiotechnology 2024, 22 (1) https://doi.org/10.1186/s12951-024-03005-2
    64. Maria Inês Teixeira, Carla M. Lopes, Maria Helena Amaral, Paulo C. Costa. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomaterialia 2024, 189 , 25-56. https://doi.org/10.1016/j.actbio.2024.09.027
    65. Siwen Li, Yuxiang Ying, Tongxiao Jiang, Deming Nie. Flow features induced by a rod-shaped microswimmer and its swimming efficiency: a two-dimensional numerical study. Chinese Physics B 2024, https://doi.org/10.1088/1674-1056/ad84c3
    66. Siwen Li, Deming Nie. Study on the effect of geometric shape on microswimmer upstream motion. Physics of Fluids 2024, 36 (10) https://doi.org/10.1063/5.0233257
    67. Giuseppe Longobardi, Thomas Lee Moore, Claudia Conte, Francesca Ungaro, Ronit Satchi‐Fainaro, Fabiana Quaglia. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (5) https://doi.org/10.1002/wnan.1990
    68. Xueqiang Peng, Jianjun Fang, Chuyuan Lou, Liang Yang, Shaobo Shan, Zixian Wang, Yutong Chen, Hangyu Li, Xuexin Li. Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy. Acta Pharmaceutica Sinica B 2024, 14 (8) , 3432-3456. https://doi.org/10.1016/j.apsb.2024.05.010
    69. Roya Ahmadzadeh, Seyed Alireza Taheri, Neda Mohammadi, Ahmed Hjazi, Soumya V. Menon, Wesam R. Kadhum, Abhinav Kumar, Maha Noori Shakir, Farid Karkon Shayan, Nahal Shirinkami. Biologically based strategies for overcoming in vivo barriers with functional nano‐delivery systems. Journal of Biochemical and Molecular Toxicology 2024, 38 (8) https://doi.org/10.1002/jbt.23782
    70. Laksiri Weerasinghe, Imalka Munaweera, Senuri Kumarage. Nanotechnology for Drug Design and Drug Delivery. 2024, 108-147. https://doi.org/10.2174/9789815238815124010005
    71. Teresa De Toni, Teodora Dal Buono, Chris M. Li, Grisell C. Gonzalez, Sung-Ting Chuang, Peter Buchwald, Alice A. Tomei, Diana Velluto. Drug Integrating Amphiphilic Nano-Assemblies: 2. Spatiotemporal Distribution within Inflammation Sites. Pharmaceutics 2024, 16 (5) , 652. https://doi.org/10.3390/pharmaceutics16050652
    72. Elena Gardey, Zoltan Cseresnyes, Fabian H. Sobotta, Juliane Eberhardt, Drilon Haziri, Philip C. Grunert, Maren T. Kuchenbrod, Franka V. Gruschwitz, Stephanie Hoeppener, Michael Schumann, Nikolaus Gaßler, Marc T. Figge, Andreas Stallmach, Johannes C. Brendel. Selective Uptake Into Inflamed Human Intestinal Tissue and Immune Cell Targeting by Wormlike Polymer Micelles. Small 2024, 20 (21) https://doi.org/10.1002/smll.202306482
    73. Valeriya Kudryavtseva, Gleb B. Sukhorukov. Features of Anisotropic Drug Delivery Systems. Advanced Materials 2024, 36 (14) https://doi.org/10.1002/adma.202307675
    74. Michaela B. Cooley, Dana Wegierak, Agata A. Exner. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (2) https://doi.org/10.1002/wnan.1957
    75. Pratik Chakraborty, Chiranjib Bhattacharyya, Ranabir Sahu, Tarun K. Dua, Ramesh Kandimalla, Saikat Dewanjee. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. Journal of Drug Delivery Science and Technology 2024, 91 , 105267. https://doi.org/10.1016/j.jddst.2023.105267
    76. Neha Raina, Meghna Singh, Radha Rani, Ayushi Garg, Ajay Sharma, Pramod Kumar, Madhu Gupta. Polymeric micelles for drug delivery: properties, designs and applications. 2024, 289-326. https://doi.org/10.1016/B978-0-12-819979-4.00006-4
    77. Sibgha Batool, Saba Sohail, Fakhar ud Din, Ali H. Alamri, Ahmad S. Alqahtani, Mohammad A. Alshahrani, Mohammed A. Alshehri, Han Gon Choi. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Delivery 2023, 30 (1) https://doi.org/10.1080/10717544.2023.2183815
    78. Hao-Yang Liu, Xiao Li, Zhi-Gang Wang, Shu-Lin Liu. Virus-mimicking nanosystems: from design to biomedical applications. Chemical Society Reviews 2023, 52 (24) , 8481-8499. https://doi.org/10.1039/D3CS00138E
    79. Xuan Xue, Feifei Wang, Minhao Shi, Faez Iqbal Khan. Synthesis of Thermo-Responsive Monofunctionalized Diblock Copolymer Worms. Polymers 2023, 15 (23) , 4590. https://doi.org/10.3390/polym15234590
    80. Ahmad Alsawaf, Yuya Kanehira, Alain M. Bapolisi, Ilko Bald, Matthias Hartlieb. PLLA‐Based Block Copolymers via Raft Polymerization—Impact of the Synthetic Route and Activation Mechanism. Macromolecular Chemistry and Physics 2023, 224 (24) https://doi.org/10.1002/macp.202300274
    81. Mehdi Azizi, Mehdi Shahgolzari, Sonia Fathi‐Karkan, Maryam Ghasemi, Hadi Samadian. Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. WIREs Nanomedicine and Nanobiotechnology 2023, 15 (6) https://doi.org/10.1002/wnan.1872
    82. Yo Han Song, Ranjit De, Kang Taek Lee. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: An overview. Advances in Colloid and Interface Science 2023, 320 , 103008. https://doi.org/10.1016/j.cis.2023.103008
    83. Mahesh Kumar Joshi, Ziliang Li, Arjun Prasad Tiwari, In Hong Yang. Designing the next-generation serum albumin-based nanoplatform for biomedical applications. Journal of Drug Delivery Science and Technology 2023, 87 , 104755. https://doi.org/10.1016/j.jddst.2023.104755
    84. Seyithan Kansız, Yaşar Murat Elçin. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Advances in Colloid and Interface Science 2023, 317 , 102930. https://doi.org/10.1016/j.cis.2023.102930
    85. Tanja Potrč, Slavko Kralj, Sebastjan Nemec, Petra Kocbek, Mateja Erdani Kreft. The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization. Nanoscale 2023, 15 (19) , 8611-8618. https://doi.org/10.1039/D2NR06965B
    86. Nuphar Veiga, Yael Diesendruck, Dan Peer. Targeted nanomedicine: Lessons learned and future directions. Journal of Controlled Release 2023, 355 , 446-457. https://doi.org/10.1016/j.jconrel.2023.02.010
    87. Chun Wang, Jian Xiao, Xinyue Hu, Qi Liu, Yadan Zheng, Ziyao Kang, Dongsheng Guo, Linqi Shi, Yang Liu. Liquid Core Nanoparticle with High Deformability Enables Efficient Penetration across Biological Barriers. Advanced Healthcare Materials 2023, 12 (5) https://doi.org/10.1002/adhm.202201889
    88. Indhumathi Thirugnanasambandham, Kalaiselvi Aasaithambi, Imrankhan Nizam, Gowthamarajan Kuppusamy. Stability of Polymeric Micelles and Their Regulatory Status. 2023, 277-294. https://doi.org/10.1007/978-981-99-0361-0_15
    89. Prescillia Lagarrigue, Filippo Moncalvo, Francesco Cellesi. Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties. Pharmaceutics 2023, 15 (1) , 32. https://doi.org/10.3390/pharmaceutics15010032
    90. Luke J. Kubiatowicz, Animesh Mohapatra, Nishta Krishnan, Ronnie H. Fang, Liangfang Zhang. mRNA nanomedicine: Design and recent applications. Exploration 2022, 2 (6) https://doi.org/10.1002/EXP.20210217
    91. Ya-Ni Yang, Chen Ge, Jun He, Wei-Gen Lu. Novel Worm-like Micelles for Hydrochloride Doxorubicin Delivery: Preparation, Characterization, and In Vitro Evaluation. Pharmaceutical Fronts 2022, 04 (04) , e284-e294. https://doi.org/10.1055/s-0042-1758191
    92. Ruslan G. Tuguntaev, Abid Hussain, Chenxing Fu, Haoting Chen, Ying Tao, Yan Huang, Lu Liu, Xing-Jie Liang, Weisheng Guo. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01451-4
    93. Manita Das, Apeksha Joshi, Ranjitsinh Devkar, Sriram Seshadri, Sonal Thakore. Tumor homing dextran and curcumin derived amphiphilic functional polymer self-assembling to tubustecan nanoarchitectures: A strategy of adorning the golden spice (curcumin) for taming the red devil (Dox). Journal of Drug Delivery Science and Technology 2022, 76 , 103666. https://doi.org/10.1016/j.jddst.2022.103666
    94. Yifan Cai, Jianping Qi, Yi Lu, Haisheng He, Wei Wu. The in vivo fate of polymeric micelles. Advanced Drug Delivery Reviews 2022, 188 , 114463. https://doi.org/10.1016/j.addr.2022.114463
    95. Sheng-Lin Qiao, Muhetaerjiang Mamuti, Hong-Wei An, Hao Wang. Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Progress in Polymer Science 2022, 131 , 101578. https://doi.org/10.1016/j.progpolymsci.2022.101578
    96. Victor Ejigah, Oluwanifemi Owoseni, Perpetue Bataille-Backer, Omotola D. Ogundipe, Funmilola A. Fisusi, Simeon K. Adesina. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers 2022, 14 (13) , 2601. https://doi.org/10.3390/polym14132601
    97. Chad A. Caraway, Hallie Gaitsch, Elizabeth E. Wicks, Anita Kalluri, Navya Kunadi, Betty M. Tyler. Polymeric Nanoparticles in Brain Cancer Therapy: A Review of Current Approaches. Polymers 2022, 14 (14) , 2963. https://doi.org/10.3390/polym14142963
    98. Parathan Ramamurthi, Zhongchao Zhao, Eamonn Burke, Nicole F. Steinmetz, Markus Müllner. Tuning the Hydrophilic–Hydrophobic Balance of Molecular Polymer Bottlebrushes Enhances their Tumor Homing Properties. Advanced Healthcare Materials 2022, 11 (12) https://doi.org/10.1002/adhm.202200163
    99. Muhammad Usman Munir. Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue. Cancers 2022, 14 (12) , 2904. https://doi.org/10.3390/cancers14122904
    100. Rubiya Khursheed, Keshav R Paudel, Monica Gulati, Sukriti Vishwas, Niraj Kumar Jha, Philip M Hansbro, Brian G Oliver, Kamal Dua, Sachin Kumar Singh. Expanding The Arsenal Against Pulmonary Diseases Using Surface-Functionalized Polymeric Micelles: Breakthroughs and Bottlenecks. Nanomedicine 2022, 17 (12) , 881-911. https://doi.org/10.2217/nnm-2021-0451
    Load more citations

    Molecular Pharmaceutics

    Cite this: Mol. Pharmaceutics 2009, 6, 5, 1343–1352
    Click to copy citationCitation copied!
    https://doi.org/10.1021/mp900022m
    Published February 27, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    2798

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.