ACS Publications. Most Trusted. Most Cited. Most Read
Peptidic Targeting of Phosphatidylserine for the MRI Detection of Apoptosis in Atherosclerotic Plaques
My Activity

Figure 1Loading Img
    Article

    Peptidic Targeting of Phosphatidylserine for the MRI Detection of Apoptosis in Atherosclerotic Plaques
    Click to copy article linkArticle link copied!

    View Author Information
    Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium, and Guerbet, Research Center, 16-24 rue Jean Chaptal, 93600 Aulnay-sous-Bois, France
    * Corresponding author: Professor Robert N. Muller, Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium. Tel/fax: +32-65373520. E-mail: [email protected]
    †University of Mons-Hainaut.
    ‡Guerbet, Research Center.
    Other Access Options

    Molecular Pharmaceutics

    Cite this: Mol. Pharmaceutics 2009, 6, 6, 1903–1919
    Click to copy citationCitation copied!
    https://doi.org/10.1021/mp900106m
    Published September 10, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Molecular and cellular imaging of atherosclerosis has garnered more interest at the beginning of the 21st century, with aims to image in vivo biological properties of plaque lesions. Apoptosis seems an attractive target for the diagnosis of vulnerable atherosclerotic plaques prone to a thrombotic event. The aim of the present work was to screen for apoptosis peptide binders by phage display with the final purpose to detect apoptotic cells in atherosclerotic plaques by magnetic resonance imaging (MRI). A phosphatidylserine-specific peptide identified by phage display was thus used to design an MRI contrast agent (CA), which was evaluated as a potential in vivo reporter of apoptotic cells. A library of linear 6-mer random peptides was screened in vitro against immobilized phosphatidylserine. Phage DNA was isolated and sequenced, and the affinity of peptides for phosphatidylserine was evaluated by enzyme-linked immunosorbent assay. The phosphatidylserine-specific peptide and its scrambled homologue were attached to a linker and conjugated to DTPA-isothiocyanate. The products were purified by dialysis and by column chromatography and complexed with gadolinium chloride. After their evaluation using apoptotic cells and a mouse model of liver apoptosis, the phosphatidylserine-targeted CA was used to image atherosclerotic lesions on ApoE−/− transgenic mice. Apoptotic cells were detected on liver and aorta specimens by the immunostaining of phosphatidylserine and of active caspase-3. Sequencing of the phage genome highlighted nine different peptides. Their alignment with amino acid sequences of relevant proteins revealed a frequent homology with Ca2+ channels, reminiscent of the function of annexins. Alignment with molecules involved in apoptosis provides a direct correlation between peptide selection and utility. The in vivo MRI studies performed at 4.7 T provide proof of concept that apoptosis-related pathologies could be diagnosed by MRI with a low molecular weight paramagnetic agent. The new CA could have real potential in the diagnosis and therapy monitoring of atherosclerotic disease and of other apoptosis-associated pathologies, such as cancer, ischemia, chronic inflammation, autoimmune disorders, transplant rejection, neurodegenerative disorders, and diabetes mellitus. The phage display-derived peptide could also play a potential therapeutic role through anticoagulant activity by mimicking the role of annexin V, the endogenous ligand of phosphatidylserine.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 73 publications.

    1. Dongjian Zhang, Qiaomei Jin, Cuihua Jiang, Meng Gao, Yicheng Ni, Jian Zhang. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjugate Chemistry 2020, 31 (4) , 1025-1051. https://doi.org/10.1021/acs.bioconjchem.0c00119
    2. Amanda Perreault, Susan Richter, Cody Bergman, Melinda Wuest, and Frank Wuest . Targeting Phosphatidylserine with a 64Cu-Labeled Peptide for Molecular Imaging of Apoptosis. Molecular Pharmaceutics 2016, 13 (10) , 3564-3577. https://doi.org/10.1021/acs.molpharmaceut.6b00666
    3. Kasey J. Clear, Kara M. Harmatys, Douglas R. Rice, William R. Wolter, Mark A. Suckow, Yuzhen Wang, Mary Rusckowski, and Bradley D. Smith . Phenoxide-Bridged Zinc(II)-Bis(dipicolylamine) Probes for Molecular Imaging of Cell Death. Bioconjugate Chemistry 2016, 27 (2) , 363-375. https://doi.org/10.1021/acs.bioconjchem.5b00447
    4. Michael A. Bruckman, Kai Jiang, Emily J. Simpson, Lauren N. Randolph, Leonard G. Luyt, Xin Yu, and Nicole F. Steinmetz . Dual-Modal Magnetic Resonance and Fluorescence Imaging of Atherosclerotic Plaques in Vivo Using VCAM-1 Targeted Tobacco Mosaic Virus. Nano Letters 2014, 14 (3) , 1551-1558. https://doi.org/10.1021/nl404816m
    5. Bethany Powell Gray and Kathlynn C. Brown . Combinatorial Peptide Libraries: Mining for Cell-Binding Peptides. Chemical Reviews 2014, 114 (2) , 1020-1081. https://doi.org/10.1021/cr400166n
    6. Bryan A. Smith and Bradley D. Smith . Biomarkers and Molecular Probes for Cell Death Imaging and Targeted Therapeutics. Bioconjugate Chemistry 2012, 23 (10) , 1989-2006. https://doi.org/10.1021/bc3003309
    7. Bryan A. Smith, Bang-Wen Xie, Ermond R. van Beek, Ivo Que, Vicky Blankevoort, Shuzhang Xiao, Erin L. Cole, Mathias Hoehn, Eric L. Kaijzel, Clemens W. G. M. Löwik, and Bradley D. Smith . Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model. ACS Chemical Neuroscience 2012, 3 (7) , 530-537. https://doi.org/10.1021/cn3000197
    8. Hong Zheng, Fang Wang, Qin Wang, and Jianmin Gao . Cofactor-Free Detection of Phosphatidylserine with Cyclic Peptides Mimicking Lactadherin. Journal of the American Chemical Society 2011, 133 (39) , 15280-15283. https://doi.org/10.1021/ja205911n
    9. Bryan A. Smith, Seth T. Gammon, Shuzhang Xiao, Wei Wang, Sarah Chapman, Ryan McDermott, Mark A. Suckow, James R. Johnson, David Piwnica-Worms, George W. Gokel, Bradley D. Smith, and W. Matthew Leevy . In Vivo Optical Imaging of Acute Cell Death Using a Near-Infrared Fluorescent Zinc−Dipicolylamine Probe. Molecular Pharmaceutics 2011, 8 (2) , 583-590. https://doi.org/10.1021/mp100395u
    10. Morteza Mahmoudi, Hossein Hosseinkhani, Mohsen Hosseinkhani, Sebastien Boutry, Abdolreza Simchi, W. Shane Journeay, Karthikeyan Subramani, and Sophie Laurent . Magnetic Resonance Imaging Tracking of Stem Cells in Vivo Using Iron Oxide Nanoparticles as a Tool for the Advancement of Clinical Regenerative Medicine. Chemical Reviews 2011, 111 (2) , 253-280. https://doi.org/10.1021/cr1001832
    11. Geralda A. F. van Tilborg, Esad Vucic, Gustav J. Strijkers, David P. Cormode, Venkatesh Mani, Torjus Skajaa, Chris P. M. Reutelingsperger, Zahi A. Fayad, Willem J. M. Mulder, and Klaas Nicolay . Annexin A5-Functionalized Bimodal Nanoparticles for MRI and Fluorescence Imaging of Atherosclerotic Plaques. Bioconjugate Chemistry 2010, 21 (10) , 1794-1803. https://doi.org/10.1021/bc100091q
    12. S. Boutry, T. Gevart, R.N. Muller, S. Laurent. Produits de contraste en imagerie par résonance magnétique. EMC - Radiologie et imagerie médicale - Principes et techniques - Radioprotection 2024, 33 (1) , 1-22. https://doi.org/10.1016/S1879-8497(24)48004-7
    13. Manisha Lamba, Prasoon Raj Singh, Anupam Bandyopadhyay, Avijit Goswami. Synthetic 18 F labeled biomolecules that are selective and promising for PET imaging: major advances and applications. RSC Medicinal Chemistry 2024, 15 (6) , 1899-1920. https://doi.org/10.1039/D4MD00033A
    14. Shuming Li, Shasha Hao, Yetong Yang, Yuxing He, Chenle Long, Zhiqi Zhang, Jing Zhang. Convenient exosome separation by phosphatidylserine targeting polymer brush materials. Chemical Communications 2023, 59 (5) , 591-594. https://doi.org/10.1039/D2CC05505H
    15. Kaige Yang, Mengqi Jia, Soumia Cheddah, Zhouyi Zhang, Weiwei Wang, Xinyan Li, Yan Wang, Chao Yan. Peptide ligand-SiO2 microspheres with specific affinity for phosphatidylserine as a new strategy to isolate exosomes and application in proteomics to differentiate hepatic cancer. Bioactive Materials 2022, 15 , 343-354. https://doi.org/10.1016/j.bioactmat.2021.12.017
    16. Christophe Van de Wiele, Alex Maes. Gamma camera imaging of apoptosis. 2022, 380-386. https://doi.org/10.1016/B978-0-12-822960-6.00212-X
    17. Yuanjun Zhu, Hu-Hu Han, Lin Zhai, Yi Yan, Xiaoyan Liu, Yinye Wang, Liandi Lei, Jian-Cheng Wang. Engineering a “three-in-one” hirudin prodrug to reduce bleeding risk: A proof-of-concept study. Journal of Controlled Release 2021, 338 , 462-471. https://doi.org/10.1016/j.jconrel.2021.08.058
    18. Shirin Saberianpour, Abbas Karimi, Mohammad Hadi Saeed modaghegh, Mahdi Ahmadi. Different types of cell death in vascular diseases. Molecular Biology Reports 2021, 48 (5) , 4687-4702. https://doi.org/10.1007/s11033-021-06402-0
    19. Christophe Van de Wiele, Sezgin Ustmert, Bart De Spiegeleer, Pieter-Jan De Jonghe, Mike Sathekge, Maes Alex. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. International Journal of Molecular Sciences 2021, 22 (5) , 2753. https://doi.org/10.3390/ijms22052753
    20. Mona Mosayebnia, Maliheh Hajiramezanali, Soraya Shahhosseini. Radiolabeled Peptides for Molecular Imaging of Apoptosis. Current Medicinal Chemistry 2020, 27 (41) , 7064-7089. https://doi.org/10.2174/0929867327666200612152655
    21. Sepideh Khoshbakht, Davood Beiki, Parham Geramifar, Farzad Kobarfard, Omid Sabzevari, Mohsen Amini, Noushin Bolourchian, Danial Shamshirian, Soraya Shahhosseini. Design, Synthesis, Radiolabeling, and Biologic Evaluation of Three 18 F-FDG-Radiolabeled Targeting Peptides for the Imaging of Apoptosis. Cancer Biotherapy and Radiopharmaceuticals 2019, 34 (5) , 271-279. https://doi.org/10.1089/cbr.2018.2709
    22. Melinda Wuest, Amanda Perreault, Susan Richter, James C. Knight, Frank Wuest. Targeting phosphatidylserine for radionuclide-based molecular imaging of apoptosis. Apoptosis 2019, 24 (3-4) , 221-244. https://doi.org/10.1007/s10495-019-01523-1
    23. Sri Murugan Poongkavithai Vadevoo, Smriti Gurung, Fatima Khan, Md. Enamul Haque, Gowri Rangaswamy Gunassekaran, Lianhua Chi, Uttapol Permpoon, Byungheon Lee. Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy. Archives of Pharmacal Research 2019, 42 (2) , 150-158. https://doi.org/10.1007/s12272-019-01125-0
    24. Christopher D. Malone, Isabel G. Newton. Molecular imaging: The convergence of form and function. Applied Radiology 2018, 36 , 14-24. https://doi.org/10.37549/AR2484
    25. Rana Ben Azzouna, Alexandre Guez, Khadija Benali, Faisal Al-Shoukr, Walter Gonzalez, Philippe Karoyan, François Rouzet, Dominique Le Guludec. Synthesis, gallium labelling and characterization of P04087, a functionalized phosphatidylserine-binding peptide. EJNMMI Radiopharmacy and Chemistry 2017, 2 (1) https://doi.org/10.1186/s41181-016-0021-5
    26. Junhwan Kim, Tai Yin, Koichiro Shinozaki, Joshua W. Lampe, Lance B. Becker. Potential of lysophosphatidylinositol as a prognostic indicator of cardiac arrest using a rat model. Biomarkers 2017, 22 (8) , 755-763. https://doi.org/10.1080/1354750X.2016.1265002
    27. S. Laurent, S. Boutry, L. Vander Elst, R.-N. Muller. Produits de contraste en imagerie par résonance magnétique. EMC - Radiologie et imagerie médicale - Principes et techniques - Radioprotection 2017, 26 (1) , 1-19. https://doi.org/10.1016/S1879-8497(16)68816-7
    28. P.A. Erba, R. Boni, M. Sollini. Nuclear Medicine Imaging and Cardiotoxicity. 2017, 183-269. https://doi.org/10.1016/B978-0-12-802509-3.00022-4
    29. Sepideh Khoshbakht, Davood Beiki, Parham Geramifar, Farzad Kobarfard, Omid Sabzevari, Mohsen Amini, Soraya Shahhosseini. 18FDG-labeled LIKKPF: a PET tracer for apoptosis imaging. Journal of Radioanalytical and Nuclear Chemistry 2016, 310 (1) , 413-421. https://doi.org/10.1007/s10967-016-4793-6
    30. Jaspal Singh, Satya Prakash Shukla, Tanvi J. Desai, D. Gomika Udugamasooriya. Identification of the minimum pharmacophore of lipid–phosphatidylserine (PS) binding peptide–peptoid hybrid PPS1D1. Bioorganic & Medicinal Chemistry 2016, 24 (18) , 4470-4477. https://doi.org/10.1016/j.bmc.2016.07.045
    31. Mario Dentamaro, François Lux, Luce Vander Elst, Nicolas Dauguet, Sylvie Montante, Albert Moussaron, Carmen Burtea, Robert N. Muller, Olivier Tillement, Sophie Laurent. Chemical and in vitro characterizations of a promising bimodal AGuIX probe able to target apoptotic cells for applications in MRI and optical imaging. Contrast Media & Molecular Imaging 2016, 11 (5) , 381-395. https://doi.org/10.1002/cmmi.1702
    32. Sara Gargiulo, Matteo Gramanzini, Marcello Mancini. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. International Journal of Molecular Sciences 2016, 17 (9) , 1511. https://doi.org/10.3390/ijms17091511
    33. Aurore Van Koninckxloo, Céline Henoumont, Sophie Laurent, Robert N. Muller, Luce Vander Elst. 1 H‐NMR relaxometric studies of interaction between apoptosis specific MRI paramagnetic contrast agents and micellar models of apoptotic cells. Magnetic Resonance in Chemistry 2016, 54 (7) , 568-574. https://doi.org/10.1002/mrc.4397
    34. Jian Yin, Peng Miao. Apoptosis Evaluation by Electrochemical Techniques. Chemistry – An Asian Journal 2016, 11 (5) , 632-641. https://doi.org/10.1002/asia.201501045
    35. Sepideh Khoshbakht, Farzad Kobarfard, Davood Beiki, Omid Sabzevari, Mohsen Amini, Faramarz Mehrnejad, Kimia Tabib, Soraya Shahhosseini. HYNIC a bifunctional prosthetic group for the labelling of peptides with 99mTc and 18FDG. Journal of Radioanalytical and Nuclear Chemistry 2016, 307 (2) , 1125-1134. https://doi.org/10.1007/s10967-015-4259-2
    36. Alex T. Vesey, Marc R. Dweck, Zahi A. Fayad. Utility of Combining PET and MR Imaging of Carotid Plaque. Neuroimaging Clinics of North America 2016, 26 (1) , 55-68. https://doi.org/10.1016/j.nic.2015.09.005
    37. Peng Miao, Jian Yin. Novel Electrochemical Biosensor for Apoptosis Evaluation. 2016, 179-191. https://doi.org/10.1007/978-1-4939-3588-8_10
    38. Melinda Wuest, Amanda Perreault, Janice Kapty, Susan Richter, Christian Foerster, Cody Bergman, Jenilee Way, John Mercer, Frank Wuest. Radiopharmacological evaluation of 18F-labeled phosphatidylserine-binding peptides for molecular imaging of apoptosis. Nuclear Medicine and Biology 2015, 42 (11) , 864-874. https://doi.org/10.1016/j.nucmedbio.2015.06.011
    39. Carmen Burtea, Sophie Laurent, Deborah Crombez, Sébastien Delcambre, Corine Sermeus, Isabelle Millard, Sandrine Rorive, Daisy Flamez, Marie‐Claire Beckers, Isabelle Salmon, Luce Vander Elst, Decio L. Eizirik, Robert N. Muller. Development of a peptide‐functionalized imaging nanoprobe for the targeting of (FXYD2)γa as a highly specific biomarker of pancreatic beta cells. Contrast Media & Molecular Imaging 2015, 10 (5) , 398-412. https://doi.org/10.1002/cmmi.1641
    40. Rana Ben Azzouna, Faisal Alshoukr, Sébastien Leygnac, Alexandre Guez, Walter Gonzalez, Olivier Rousseaux, Denis Guilloteau, Dominique Le Guludec. A new 68 Ga anionic concentration and purification method for automated synthesis of [ 68 Ga]-DOTA or NODAGA conjugated peptides in high radiochemical purity. Journal of Labelled Compounds and Radiopharmaceuticals 2015, 58 (10) , 403-410. https://doi.org/10.1002/jlcr.3316
    41. Emilie Ansciaux, Carmen Burtea, Sophie Laurent, Deborah Crombez, Denis Nonclercq, Luce Vander Elst, Robert N. Muller. In vitro and in vivo characterization of several functionalized ultrasmall particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the blood–brain barrier: toward earlier diagnosis of Alzheimer's disease by molecular imaging. Contrast Media & Molecular Imaging 2015, 10 (3) , 211-224. https://doi.org/10.1002/cmmi.1626
    42. Soyoun Kim, Sang Mun Bae, Junyoung Seo, Kiweon Cha, Meilan Piao, Sun-Ji Kim, Hye-Nam Son, Rang-Woon Park, Byung-Heon Lee, In-San Kim, . Advantages of the Phosphatidylserine-Recognizing Peptide PSP1 for Molecular Imaging of Tumor Apoptosis Compared with Annexin V. PLOS ONE 2015, 10 (3) , e0121171. https://doi.org/10.1371/journal.pone.0121171
    43. Rik P. M. Moonen, Gustav J. Strijkers, Zahi A. Fayad, Mat J. A. P. Daemen, Klaas Nicolay. Molecular MR Imaging of Atherosclerosis. 2015, 269-296. https://doi.org/10.1007/978-3-319-09268-3_13
    44. Aurore Van Koninckxloo, Céline Henoumont, Sophie Laurent, Robert N. Muller, Luce Vander Elst. NMR chemical shift study of the interaction of selected peptides with liposomal and micellar models of apoptotic cells. JBIC Journal of Biological Inorganic Chemistry 2014, 19 (8) , 1367-1376. https://doi.org/10.1007/s00775-014-1195-5
    45. Peng Miao, Jian Yin, Limin Ning, Xiaoxi Li. Peptide-based electrochemical approach for apoptosis evaluation. Biosensors and Bioelectronics 2014, 62 , 97-101. https://doi.org/10.1016/j.bios.2014.06.035
    46. Gang Zhou, Wei Song, Yongzhao Hou, Qing Li, Xuliang Deng, Yubo Fan. Ultrasound‐assisted fabrication of a biocompatible magnetic hydroxyapatite. Journal of Biomedical Materials Research Part A 2014, 102 (10) , 3704-3712. https://doi.org/10.1002/jbm.a.35043
    47. Ma Teresa Albelda, Enrique Garcia-España, Juan C. Frias. Visualizing the atherosclerotic plaque: a chemical perspective. Chem. Soc. Rev. 2014, 43 (8) , 2858-2876. https://doi.org/10.1039/C3CS60410A
    48. Gustav J. Strijkers. Targeted Nanoparticles for Cardiovascular Molecular Imaging. Current Radiology Reports 2013, 1 (3) , 191-204. https://doi.org/10.1007/s40134-013-0017-9
    49. Jian Gong, Richard Archer, Michael Brown, Seth Fisher, Connie Chang, Matthew Peacock, Christopher Hughes, Bruce Freimark. Measuring Response to Therapy by Near-Infrared Imaging of Tumors Using a Phosphatidylserine-Targeting Antibody Fragment. Molecular Imaging 2013, 12 (4) https://doi.org/10.2310/7290.2012.00039
    50. Jianmin Gao, Hong Zheng. Illuminating the Lipidome to Advance Biomedical Research: Peptide-Based Probes of Membrane Lipids. Future Medicinal Chemistry 2013, 5 (8) , 947-959. https://doi.org/10.4155/fmc.13.66
    51. Coralie Sclavons, Carmen Burtea, Sébastien Boutry, Sophie Laurent, Luce Vander Elst, Robert N. Muller. Phage Display Screening for Tumor Necrosis Factor- α -Binding Peptides: Detection of Inflammation in a Mouse Model of Hepatitis. International Journal of Peptides 2013, 2013 , 1-9. https://doi.org/10.1155/2013/348409
    52. Ming-Wei Wang, Fang Wang, Yu-Jia Zheng, Ying-Jian Zhang, Yong-Ping Zhang, Qing Zhao, Clifton Kwang-Fu Shen, Yue Wang, Shu-Han Sun. An in vivo molecular imaging probe 18F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation. Apoptosis 2013, 18 (2) , 238-247. https://doi.org/10.1007/s10495-012-0788-0
    53. Claudia Calcagno, Sarayu Ramachandran, Antoine Millon, Philip M. Robson, Venkatesh Mani, Zahi Fayad. Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. Current Cardiovascular Imaging Reports 2013, 6 (1) , 11-24. https://doi.org/10.1007/s12410-012-9177-x
    54. Sophie Laurent, Luce Vander Elst, Sebastien Boutry, Robert N. Muller. Lanthanides: Magnetic Resonance Imaging. 2012https://doi.org/10.1002/9781119951438.eibc2085
    55. Janice Kapty, Shanna Banman, Ing Swie Goping, John R. Mercer. Evaluation of Phosphatidylserine-Binding Peptides Targeting Apoptotic Cells. SLAS Discovery 2012, 17 (10) , 1293-1301. https://doi.org/10.1177/1087057112453313
    56. Kelly D. Daughtry, Langdon J. Martin, Ashish Sarraju, Barbara Imperiali, Karen N. Allen. Tailoring Encodable Lanthanide‐Binding Tags as MRI Contrast Agents. ChemBioChem 2012, 13 (17) , 2567-2574. https://doi.org/10.1002/cbic.201200448
    57. Falguni Basuli, Haitao Wu, Zhen-Dan Shi, Bao Teng, Changhui Li, Agnieszka Sulima, Aaron Bate, Philip Young, Mathew McMillan, Gary L. Griffiths. Synthesis of ApoSense compound [18F]2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-(fluoromethyl)butanoic acid ([18F]NST732) by nucleophilic ring opening of an aziridine precursor. Nuclear Medicine and Biology 2012, 39 (5) , 687-696. https://doi.org/10.1016/j.nucmedbio.2011.12.008
    58. Carmen Burtea, Sébastien Ballet, Sophie Laurent, Olivier Rousseaux, Anne Dencausse, Walter Gonzalez, Marc Port, Claire Corot, Luce Vander Elst, Robert N. Muller. Development of a Magnetic Resonance Imaging Protocol for the Characterization of Atherosclerotic Plaque by Using Vascular Cell Adhesion Molecule-1 and Apoptosis-Targeted Ultrasmall Superparamagnetic Iron Oxide Derivatives. Arteriosclerosis, Thrombosis, and Vascular Biology 2012, 32 (6) https://doi.org/10.1161/ATVBAHA.112.245415
    59. Bernard C. te Boekhorst, Geralda A. van Tilborg, Gustav J. Strijkers, Klaas Nicolay. Molecular MRI of Inflammation in Atherosclerosis. Current Cardiovascular Imaging Reports 2012, 5 (1) , 60-68. https://doi.org/10.1007/s12410-011-9114-4
    60. Pedro R. Moreno, Carlos L. Alviar, Javier Sanz, Valentin Fuster. High-Risk Vulnerable Plaques. 2012, 809-841. https://doi.org/10.1016/B978-1-4377-2358-8.00059-0
    61. Anu Autio, Tiina Henttinen, Henri J Sipilä, Sirpa Jalkanen, Anne Roivainen. Mini-PEG spacering of VAP-1-targeting 68Ga-DOTAVAP-P1 peptide improves PET imaging of inflammation. EJNMMI Research 2011, 1 (1) https://doi.org/10.1186/2191-219X-1-10
    62. Janice Kapty, Torsten Kniess, Frank Wuest, John R. Mercer. Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl]maleimide ([18F]FBAM) and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Applied Radiation and Isotopes 2011, 69 (9) , 1218-1225. https://doi.org/10.1016/j.apradiso.2011.05.012
    63. Bryan A. Smith, Shuzhang Xiao, William Wolter, James Wheeler, Mark A. Suckow, Bradley D. Smith. In vivo targeting of cell death using a synthetic fluorescent molecular probe. Apoptosis 2011, 16 (7) , 722-731. https://doi.org/10.1007/s10495-011-0601-5
    64. Carmen Burtea, Sophie Laurent, Isabelle Mahieu, Lionel Larbanoix, Alain Roch, Marc Port, Olivier Rousseaux, Sébastien Ballet, Oltea Murariu, Gérard Toubeau, Claire Corot, Luce Vander Elst, Robert N. Muller. In vitro biomedical applications of functionalized iron oxide nanoparticles, including those not related to magnetic properties. Contrast Media & Molecular Imaging 2011, 6 (4) , 236-250. https://doi.org/10.1002/cmmi.423
    65. Lionel Larbanoix, Carmen Burtea, Emilie Ansciaux, Sophie Laurent, Isabelle Mahieu, Luce Vander Elst, Robert N. Muller. Design and evaluation of a 6-mer amyloid-beta protein derived phage display library for molecular targeting of amyloid plaques in Alzheimer's disease: Comparison with two cyclic heptapeptides derived from a randomized phage display library. Peptides 2011, 32 (6) , 1232-1243. https://doi.org/10.1016/j.peptides.2011.04.026
    66. Victoria EL Young, Andrew J Degnan, Jonathan H Gillard. Advances in contrast media for vascular imaging of atherosclerosis. Imaging in Medicine 2011, 3 (3) , 353-366. https://doi.org/10.2217/iim.11.23
    67. Ratmir Derda, Sindy K.Y. Tang, S. Cory Li, Simon Ng, Wadim Matochko, Mohammad R. Jafari. Diversity of Phage-Displayed Libraries of Peptides during Panning and Amplification. Molecules 2011, 16 (2) , 1776-1803. https://doi.org/10.3390/molecules16021776
    68. Andrew J. Surman, Gavin D. Kenny, D. Krishna Kumar, Jimmy D. Bell, Duncan R. Casey, Ramon Vilar. Targeting of anionic membrane species by lanthanide(iii) complexes: towards improved MRI contrast agents for apoptosis. Chemical Communications 2011, 47 (37) , 10245. https://doi.org/10.1039/c1cc13284a
    69. Patrick Kee, Wouter Driessen. Molecular Imaging of Atherosclerosis. 2011, 723-747. https://doi.org/10.1007/978-1-4419-7222-4_23
    70. Janice Kapty, David Murray, John Mercer. Radiotracers for Noninvasive Molecular Imaging of Tumor Cell Death. Cancer Biotherapy and Radiopharmaceuticals 2010, 25 (6) , 615-628. https://doi.org/10.1089/cbr.2010.0793
    71. Gang Niu, Xiaoyuan Chen. Apoptosis Imaging: Beyond Annexin V. Journal of Nuclear Medicine 2010, 51 (11) , 1659-1662. https://doi.org/10.2967/jnumed.110.078584
    72. Kristof Schutters, Chris Reutelingsperger. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010, 15 (9) , 1072-1082. https://doi.org/10.1007/s10495-010-0503-y
    73. Victoria E. L. Young, Tjun Y. Tang, Umar Sadat, Jonathan H. Gillard. Molecular MRI of Atherosclerosis. Current Cardiovascular Imaging Reports 2010, 3 (1) , 4-11. https://doi.org/10.1007/s12410-010-9006-z

    Molecular Pharmaceutics

    Cite this: Mol. Pharmaceutics 2009, 6, 6, 1903–1919
    Click to copy citationCitation copied!
    https://doi.org/10.1021/mp900106m
    Published September 10, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    2514

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.