Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Water-Soluble Semiconducting Nanoparticles for Imaging

View Author Information
Department of Chemistry, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee 37235, United States
Cite this: ACS Macro Lett. 2013, 2, 8, 710–714
Publication Date (Web):July 24, 2013
https://doi.org/10.1021/mz400370f
Copyright © 2013 American Chemical Society

    Article Views

    974

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Water-soluble semiconducting nanoparticles are prepared from individually collapsed and cross-linked ABA triblock copolymers and are further modified to carry imaging units and allyl functionalities for postmodification. Ethylene oxide modified polyfluorene forms the center block (B) and is transformed into a telechelic macroinitiator. In a nitroxide-mediated living free radical polymerization, polyacrylate blocks (A) are grown to give the ABA triblock copolymer. Low-temperature benzocyclobutene cross-linking groups are attached to collapse and site-isolate the center block (A). The nanoparticles were further modified by pegylation to enhance the solubility and by catechol groups to provide complexing sites for magnetic resonance imaging (MRI) reagents such as gadolinium. The reported materials are water-soluble and encompassing fluorescence and MRI to become biocompatible “organic quantum dots” with the possibility to interact actively with biological entities.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Synthesis of polymers, nanoparticles, as well as characterization methods are described. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 24 publications.

    1. Tobias Nitsche, Jan Steinkoenig, Kevin De Bruycker, Fabian R. Bloesser, Stephen J. Blanksby, James P. Blinco, Christopher Barner-Kowollik. Mapping the Compaction of Discrete Polymer Chains by Size Exclusion Chromatography Coupled to High-Resolution Mass Spectrometry. Macromolecules 2019, 52 (6) , 2597-2606. https://doi.org/10.1021/acs.macromol.9b00203
    2. Jiangbo Yu, Yu Rong, Chun-Ting Kuo, Xing-Hua Zhou, and Daniel T. Chiu . Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Analytical Chemistry 2017, 89 (1) , 42-56. https://doi.org/10.1021/acs.analchem.6b04672
    3. Ashley M. Hanlon, Christopher K. Lyon, and Erik B. Berda . What Is Next in Single-Chain Nanoparticles?. Macromolecules 2016, 49 (1) , 2-14. https://doi.org/10.1021/acs.macromol.5b01456
    4. Paul M. Dietrich, Andreas Hennig, Markus Holzweber, Thomas Thiele, Heike Borcherding, Andreas Lippitz, Uwe Schedler, Ute Resch-Genger, and Wolfgang E. S. Unger . Surface Analytical Study of Poly(acrylic acid)-Grafted Microparticles (Beads): Characterization, Chemical Derivatization, and Quantification of Surface Carboxyl Groups. The Journal of Physical Chemistry C 2014, 118 (35) , 20393-20404. https://doi.org/10.1021/jp505519g
    5. Kai Mundsinger, Bryan T. Tuten, Lily Wang, Kira Neubauer, Christian Kropf, Megan L. O'Mara, Christopher Barner‐Kowollik. Visible‐Light‐Reactive Single‐Chain Nanoparticles. Angewandte Chemie International Edition 2023, 62 (23) https://doi.org/10.1002/anie.202302995
    6. Kai Mundsinger, Bryan T. Tuten, Lily Wang, Kira Neubauer, Christian Kropf, Megan L. O'Mara, Christopher Barner‐Kowollik. Einzelkettennanopartikel mit Reaktivität im sichtbaren Lichtspektrum. Angewandte Chemie 2023, 135 (23) https://doi.org/10.1002/ange.202302995
    7. Naomi M. Hamelmann, Jos M.J. Paulusse. Single-chain polymer nanoparticles in biomedical applications. Journal of Controlled Release 2023, 356 , 26-42. https://doi.org/10.1016/j.jconrel.2023.02.019
    8. Xiangyu Li, Shixin Zhang, Xueyan Zhang, Yufei Hou, Xiangxue Meng, Ge Li, Fei Xu, Lesheng Teng, Yanfei Qi, Fengying Sun, Youxin Li. Folate receptor-targeting semiconducting polymer dots hybrid mesoporous silica nanoparticles against rheumatoid arthritis through synergistic photothermal therapy, photodynamic therapy, and chemotherapy. International Journal of Pharmaceutics 2021, 607 , 120947. https://doi.org/10.1016/j.ijpharm.2021.120947
    9. Melissa A. Reith, Sinan Kardas, Chiel Mertens, Mathieu Fossépré, Mathieu Surin, Jan Steinkoenig, Filip E. Du Prez. Using nickel to fold discrete synthetic macromolecules into single-chain nanoparticles. Polymer Chemistry 2021, 12 (34) , 4924-4933. https://doi.org/10.1039/D1PY00229E
    10. Justus F. Hoffmann, Andreas H. Roos, Franz‐Josef Schmitt, Dariush Hinderberger, Wolfgang H. Binder. Fluorescent and Water Dispersible Single‐Chain Nanoparticles: Core–Shell Structured Compartmentation. Angewandte Chemie 2021, 133 (14) , 7899-7906. https://doi.org/10.1002/ange.202015179
    11. Justus F. Hoffmann, Andreas H. Roos, Franz‐Josef Schmitt, Dariush Hinderberger, Wolfgang H. Binder. Fluorescent and Water Dispersible Single‐Chain Nanoparticles: Core–Shell Structured Compartmentation. Angewandte Chemie International Edition 2021, 60 (14) , 7820-7827. https://doi.org/10.1002/anie.202015179
    12. Beatriz Robles-Hernández, Edurne González, José A. Pomposo, Juan Colmenero, Ángel Alegría. Water dynamics and self-assembly of single-chain nanoparticles in concentrated solutions. Soft Matter 2020, 16 (42) , 9738-9745. https://doi.org/10.1039/D0SM01447H
    13. Zhengyu Deng, Shiyong Liu. Emerging trends in solution self-assembly of block copolymers. Polymer 2020, 207 , 122914. https://doi.org/10.1016/j.polymer.2020.122914
    14. Ester Verde-Sesto, Arantxa Arbe, Angel J. Moreno, Daniele Cangialosi, Angel Alegría, Juan Colmenero, José A. Pomposo. Single-chain nanoparticles: opportunities provided by internal and external confinement. Materials Horizons 2020, 7 (9) , 2292-2313. https://doi.org/10.1039/D0MH00846J
    15. Tobias Nitsche, Stephen J. Blanksby, James P. Blinco, Christopher Barner-Kowollik. Pushing the limits of single chain compaction analysis by observing specific size reductions via high resolution mass spectrometry. Polymer Chemistry 2020, 11 (10) , 1696-1701. https://doi.org/10.1039/C9PY01910C
    16. Arantxa Arbe, Jon Rubio, Paula Malo de Molina, Jon Maiz, José A. Pomposo, Peter Fouquet, Sylvain Prevost, Fanni Juranyi, Marina Khaneft, Juan Colmenero. Melts of single-chain nanoparticles: A neutron scattering investigation. Journal of Applied Physics 2020, 127 (4) https://doi.org/10.1063/1.5140705
    17. A. Pia P. Kröger, Jos M.J. Paulusse. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. Journal of Controlled Release 2018, 286 , 326-347. https://doi.org/10.1016/j.jconrel.2018.07.041
    18. Julen De-La-Cuesta, Edurne González, José Pomposo. Advances in Fluorescent Single-Chain Nanoparticles. Molecules 2017, 22 (11) , 1819. https://doi.org/10.3390/molecules22111819
    19. Jon Rubio‐Cervilla, Edurne González, José A. Pomposo. Applications of Single‐Chain Polymer Nanoparticles. 2017, 341-388. https://doi.org/10.1002/9783527806386.ch9
    20. Justin P. Cole, Christopher K. Lyon, Erik B. Berda. Single-chain Nanoparticles. 2016, 107-140. https://doi.org/10.1039/9781782626664-00107
    21. Alejandro Latorre‐Sánchez, José A Pomposo. Recent bioinspired applications of single‐chain nanoparticles. Polymer International 2016, 65 (8) , 855-860. https://doi.org/10.1002/pi.5078
    22. Chao Deng, Jun Ling. Amphiphilic Copolymers of Polyfluorene Methacrylates Exhibiting Tunable Emissions for Ink‐Jet Printing. Macromolecular Rapid Communications 2016, 37 (16) , 1352-1356. https://doi.org/10.1002/marc.201600188
    23. Meng Huo, Niejun Wang, Tommy Fang, Mengzhen Sun, Yen Wei, Jinying Yuan. Single-chain polymer nanoparticles: Mimic the proteins. Polymer 2015, 66 , A11-A21. https://doi.org/10.1016/j.polymer.2015.04.011
    24. Andreas Hennig, Paul M. Dietrich, Felix Hemmann, Thomas Thiele, Heike Borcherding, Angelika Hoffmann, Uwe Schedler, Christian Jäger, Ute Resch-Genger, Wolfgang E. S. Unger. En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy. The Analyst 2015, 140 (6) , 1804-1808. https://doi.org/10.1039/C4AN02248C