ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Left-Handed Helical Ribbon Intermediates in the Self-Assembly of a β-Sheet Peptide

View Author Information
Department of Mechanical Engineering, Center for Biomedical Engineering, and Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
Cite this: Nano Letters 2002, 2, 4, 295–299
Publication Date (Web):February 21, 2002
https://doi.org/10.1021/nl015697g
Copyright © 2002 American Chemical Society

    Article Views

    3339

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (880 KB)

    Abstract

    Abstract Image

    We report the observation of intermediate structures in the self-assembly of the peptide KFE8 (FKFEFKFE), designed with alternating polar and nonpolar amino acids. Self-assembly was followed over time using atomic force microscopy (AFM), transmission electron microscopy (TEM), and circular dichroism (CD). Molecular dynamics simulations suggest that these intermediates are left-handed double helical β-sheets. These findings have implications in the study of β-sheet fibril formation, and in the molecular design of materials.

     Department of Mechanical Engineering.

     Center for Biomedical Engineering.

    §

     Division of Bioengineering and Environmental Health.

    *

     To whom correspondence should be addressed. E-mail:  shuguang@ mit.edu, [email protected].

    Cited By

    This article is cited by 278 publications.

    1. Sharareh Jalali, Ruoyao Zhang, Mikko P. Haataja, Cristiano L. Dias. Nucleation and Growth of Amyloid Fibrils. The Journal of Physical Chemistry B 2023, 127 (45) , 9759-9770. https://doi.org/10.1021/acs.jpcb.3c05300
    2. Qinsheng Hu, Fanjun Zhang, Yuan Wei, Jingze Liu, Yong Nie, Jinwei Xie, Li Yang, Rifang Luo, Bin Shen, Yunbing Wang. Drug-Embedded Nanovesicles Assembled from Peptide-Decorated Hyaluronic Acid for Rheumatoid Arthritis Synergistic Therapy. Biomacromolecules 2023, 24 (8) , 3532-3544. https://doi.org/10.1021/acs.biomac.3c00294
    3. Yanxing Yang, Cristiano L. Dias. Peptide–Membrane Binding: Effects of the Amino Acid Sequence. The Journal of Physical Chemistry B 2023, 127 (4) , 912-920. https://doi.org/10.1021/acs.jpcb.2c06404
    4. Yanxing Yang, Hannah Distaffen, Sharareh Jalali, Andrew J. Nieuwkoop, Bradley L. Nilsson, Cristiano L. Dias. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chemical Neuroscience 2022, 13 (18) , 2766-2777. https://doi.org/10.1021/acschemneuro.2c00446
    5. Bihan Wu, Shuang Zhao, Xuejiao Yang, Laicheng Zhou, Yang Ma, Hongyue Zhang, Wenbin Li, Huaimin Wang. Biomimetic Heterodimerization of Tetrapeptides to Generate Liquid Crystalline Hydrogel in A Two-Component System. ACS Nano 2022, 16 (3) , 4126-4138. https://doi.org/10.1021/acsnano.1c09860
    6. Yanxing Yang, Sharareh Jalali, Bradley L. Nilsson, Cristiano L. Dias. Binding Mechanisms of Amyloid-like Peptides to Lipid Bilayers and Effects of Divalent Cations. ACS Chemical Neuroscience 2021, 12 (11) , 2027-2035. https://doi.org/10.1021/acschemneuro.1c00140
    7. Jevgenij A. Raskatov, Joel P. Schneider, Bradley L. Nilsson. Defining the Landscape of the Pauling-Corey Rippled Sheet: An Orphaned Motif Finding New Homes. Accounts of Chemical Research 2021, 54 (10) , 2488-2501. https://doi.org/10.1021/acs.accounts.1c00084
    8. Tara M. Clover, Conor L. O’Neill, Rajagopal Appavu, Giriraj Lokhande, Akhilesh K. Gaharwar, Ammon E. Posey, Mark A. White, Jai S. Rudra. Self-Assembly of Block Heterochiral Peptides into Helical Tapes. Journal of the American Chemical Society 2020, 142 (47) , 19809-19813. https://doi.org/10.1021/jacs.9b09755
    9. Moran Frenkel-Pinter, Mousumi Samanta, Gonen Ashkenasy, Luke J. Leman. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews 2020, 120 (11) , 4707-4765. https://doi.org/10.1021/acs.chemrev.9b00664
    10. Fanjun Zhang, Cheng Hu, Qunshou Kong, Rifang Luo, Yunbing Wang. Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS Applied Materials & Interfaces 2019, 11 (40) , 37147-37155. https://doi.org/10.1021/acsami.9b13708
    11. Yaoying Wu, Pamela K. Norberg, Elizabeth A. Reap, Kendra L. Congdon, Chelsea N. Fries, Sean H. Kelly, John H. Sampson, Vincent P. Conticello, and Joel H. Collier . A Supramolecular Vaccine Platform Based on α-Helical Peptide Nanofibers. ACS Biomaterials Science & Engineering 2017, 3 (12) , 3128-3132. https://doi.org/10.1021/acsbiomaterials.7b00561
    12. Boi Hoa San, Jeongmin Hwang, Sujatha Sampath, Yang Li, Lucas L. Bennink, and S. Michael Yu . Self-Assembled Water-Soluble Nanofibers Displaying Collagen Hybridizing Peptides. Journal of the American Chemical Society 2017, 139 (46) , 16640-16649. https://doi.org/10.1021/jacs.7b07900
    13. John T. M. DiMaio, Todd M. Doran, Derek M. Ryan, Danielle M. Raymond, and Bradley L. Nilsson . Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition. Biomacromolecules 2017, 18 (11) , 3591-3599. https://doi.org/10.1021/acs.biomac.7b00925
    14. Annada Rajbhandary, Danielle M. Raymond, and Bradley L. Nilsson . Self-Assembly, Hydrogelation, and Nanotube Formation by Cation-Modified Phenylalanine Derivatives. Langmuir 2017, 33 (23) , 5803-5813. https://doi.org/10.1021/acs.langmuir.7b00686
    15. Muhammad Waqas, Woo-jin Jeong, Young-Joo Lee, Dae-Hwan Kim, Chongsuk Ryou, and Yong-beom Lim . pH-Dependent In-Cell Self-Assembly of Peptide Inhibitors Increases the Anti-Prion Activity While Decreasing the Cytotoxicity. Biomacromolecules 2017, 18 (3) , 943-950. https://doi.org/10.1021/acs.biomac.6b01816
    16. Yuqiao Sun, Wen Li, Xiaoli Wu, Na Zhang, Yongnu Zhang, Songying Ouyang, Xiyong Song, Xinyu Fang, Ramakrishna Seeram, Wei Xue, Liumin He, and Wutian Wu . Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration. ACS Applied Materials & Interfaces 2016, 8 (3) , 2348-2359. https://doi.org/10.1021/acsami.5b11473
    17. Tao Jiang, Owen A. Vail, Zhigang Jiang, Xiaobing Zuo, and Vincent P. Conticello . Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control. Journal of the American Chemical Society 2015, 137 (24) , 7793-7802. https://doi.org/10.1021/jacs.5b03326
    18. Li Deng, Peng Zhou, Yurong Zhao, Yanting Wang, and Hai Xu . Molecular Origin of the Self-Assembled Morphological Difference Caused by Varying the Order of Charged Residues in Short Peptides. The Journal of Physical Chemistry B 2014, 118 (43) , 12501-12510. https://doi.org/10.1021/jp506385j
    19. Honggang Cui, Andrew G. Cheetham, E. Thomas Pashuck, and Samuel I. Stupp . Amino Acid Sequence in Constitutionally Isomeric Tetrapeptide Amphiphiles Dictates Architecture of One-Dimensional Nanostructures. Journal of the American Chemical Society 2014, 136 (35) , 12461-12468. https://doi.org/10.1021/ja507051w
    20. Rajwant Kaur, Muthusamy Ramesh, Prasad V. Bharatam, and Raghuvansh Kishore . Self-Association Behavior of a Novel Nonproteinogenic β-Strand-Mimic in an Organic Solvent. The Journal of Physical Chemistry B 2014, 118 (31) , 9199-9208. https://doi.org/10.1021/jp5042074
    21. Nicole M. B. Cogan, Charles J. Bowerman, Lisa J. Nogaj, Bradley L. Nilsson, and Todd D. Krauss . Selective Suspension of Single-Walled Carbon Nanotubes Using β-Sheet Polypeptides. The Journal of Physical Chemistry C 2014, 118 (11) , 5935-5944. https://doi.org/10.1021/jp410870y
    22. Tao Jiang, Chunfu Xu, Yang Liu, Zheng Liu, Joseph S. Wall, Xiaobing Zuo, Tianquan Lian, Khalid Salaita, Chaoying Ni, Darrin Pochan, and Vincent P. Conticello . Structurally Defined Nanoscale Sheets from Self-Assembly of Collagen-Mimetic Peptides. Journal of the American Chemical Society 2014, 136 (11) , 4300-4308. https://doi.org/10.1021/ja412867z
    23. Pravas Deria, Christopher D. Von Bargen, Jean-Hubert Olivier, Amar S. Kumbhar, Jeffery G. Saven, and Michael J. Therien . Single-Handed Helical Wrapping of Single-Walled Carbon Nanotubes by Chiral, Ionic, Semiconducting Polymers. Journal of the American Chemical Society 2013, 135 (43) , 16220-16234. https://doi.org/10.1021/ja408430v
    24. Chunfu Xu, Rui Liu, Anil K. Mehta, Ricardo C. Guerrero-Ferreira, Elizabeth R. Wright, Stanislaw Dunin-Horkawicz, Kyle Morris, Louise C. Serpell, Xiaobing Zuo, Joseph S. Wall, and Vincent P. Conticello . Rational Design of Helical Nanotubes from Self-Assembly of Coiled-Coil Lock Washers. Journal of the American Chemical Society 2013, 135 (41) , 15565-15578. https://doi.org/10.1021/ja4074529
    25. Naomi R. Lee, Charles J. Bowerman, and Bradley L. Nilsson . Effects of Varied Sequence Pattern on the Self-Assembly of Amphipathic Peptides. Biomacromolecules 2013, 14 (9) , 3267-3277. https://doi.org/10.1021/bm400876s
    26. Erica L. Bakota, Ozge Sensoy, Beytullah Ozgur, Mehmet Sayar, and Jeffrey D. Hartgerink . Self-Assembling Multidomain Peptide Fibers with Aromatic Cores. Biomacromolecules 2013, 14 (5) , 1370-1378. https://doi.org/10.1021/bm4000019
    27. Ria J. Swanekamp, John T. M. DiMaio, Charles J. Bowerman, and Bradley L. Nilsson . Coassembly of Enantiomeric Amphipathic Peptides into Amyloid-Inspired Rippled β-Sheet Fibrils. Journal of the American Chemical Society 2012, 134 (12) , 5556-5559. https://doi.org/10.1021/ja301642c
    28. Jai S. Rudra, Tao Sun, Katelyn C. Bird, Melvin D. Daniels, Joshua Z. Gasiorowski, Anita S. Chong, and Joel H. Collier . Modulating Adaptive Immune Responses to Peptide Self-Assemblies. ACS Nano 2012, 6 (2) , 1557-1564. https://doi.org/10.1021/nn204530r
    29. Charles J. Bowerman, Wathsala Liyanage, Alexander J. Federation, and Bradley L. Nilsson . Tuning β-Sheet Peptide Self-Assembly and Hydrogelation Behavior by Modification of Sequence Hydrophobicity and Aromaticity. Biomacromolecules 2011, 12 (7) , 2735-2745. https://doi.org/10.1021/bm200510k
    30. Hannah K. Murnen, Adrianne M. Rosales, Jonathan N. Jaworski, Rachel A. Segalman, and Ronald N. Zuckermann . Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices. Journal of the American Chemical Society 2010, 132 (45) , 16112-16119. https://doi.org/10.1021/ja106340f
    31. Hai Xu, Yuming Wang, Xin Ge, Shuyi Han, Shengjie Wang, Peng Zhou, Honghong Shan, Xiubo Zhao, and Jian R. Lu . Twisted Nanotubes Formed from Ultrashort Amphiphilic Peptide I3K and Their Templating for the Fabrication of Silica Nanotubes. Chemistry of Materials 2010, 22 (18) , 5165-5173. https://doi.org/10.1021/cm101019p
    32. Emilie Pouget, Nicolas Fay, Erik Dujardin, Nadège Jamin, Patrick Berthault, Lionel Perrin, Anjali Pandit, Thierry Rose, Céline Valéry, Daniel Thomas, Maïté Paternostre and Franck Artzner . Elucidation of the Self-Assembly Pathway of Lanreotide Octapeptide into β-Sheet Nanotubes: Role of Two Stable Intermediates. Journal of the American Chemical Society 2010, 132 (12) , 4230-4241. https://doi.org/10.1021/ja9088023
    33. Manli Deng, Defeng Yu, Yanbo Hou and Yilin Wang. Self-assembly of Peptide−Amphiphile C12−Aβ(11−17) into Nanofibrils. The Journal of Physical Chemistry B 2009, 113 (25) , 8539-8544. https://doi.org/10.1021/jp904289y
    34. Ulung Khoe, Yanlian Yang and Shuguang Zhang . Self-Assembly of Nanodonut Structure from a Cone-Shaped Designer Lipid-like Peptide Surfactant. Langmuir 2009, 25 (7) , 4111-4114. https://doi.org/10.1021/la8025232
    35. Honggang Cui, Takahiro Muraoka, Andrew G. Cheetham and Samuel I. Stupp. Self-Assembly of Giant Peptide Nanobelts. Nano Letters 2009, 9 (3) , 945-951. https://doi.org/10.1021/nl802813f
    36. Kazuya Murasato, Kazunori Matsuura and Nobuo Kimizuka . Self-Assembly of Nanofiber with Uniform Width from Wheel-Type Trigonal-β-Sheet-Forming Peptide. Biomacromolecules 2008, 9 (3) , 913-918. https://doi.org/10.1021/bm701302p
    37. Hong Yang,, Shan-Yu Fung,, Mark Pritzker, and, P. Chen. Surface-Assisted Assembly of an Ionic-Complementary Peptide:  Controllable Growth of Nanofibers. Journal of the American Chemical Society 2007, 129 (40) , 12200-12210. https://doi.org/10.1021/ja073168u
    38. Yong-beom Lim,, Somi Park,, Eunji Lee,, Haemi Jeong,, Ja-Hyoung Ryu,, Myeong Sup Lee, and, Myongsoo Lee. Glycoconjugate Nanoribbons from the Self-Assembly of Carbohydrate−Peptide Block Molecules for Controllable Bacterial Cell Cluster Formation. Biomacromolecules 2007, 8 (5) , 1404-1408. https://doi.org/10.1021/bm0700901
    39. Hui Shao,, Jeffrey W. Lockman, and, Jon R. Parquette. Coupled Conformational Equilibria in β-Sheet Peptide−Dendron Conjugates. Journal of the American Chemical Society 2007, 129 (7) , 1884-1885. https://doi.org/10.1021/ja068154n
    40. Silvia Cavalli,, Jan-Willem Handgraaf,, Emily E. Tellers,, Daniela C. Popescu,, Mark Overhand,, Kristian Kjaer,, Vladimir Vaiser,, Nico A. J. M. Sommerdijk,, Hanna Rapaport, and, Alexander Kros. Two-Dimensional Ordered β-Sheet Lipopeptide Monolayers. Journal of the American Chemical Society 2006, 128 (42) , 13959-13966. https://doi.org/10.1021/ja065479v
    41. Natalya I. Topilina,, Seiichiro Higashiya,, Narender Rana,, Vladimir V. Ermolenkov,, Christopher Kossow,, Autumn Carlsen,, Silvana C. Ngo,, Christopher C. Wells,, Eric T. Eisenbraun,, Kathleen A. Dunn,, Igor K. Lednev,, Robert E. Geer,, Alain E. Kaloyeros, and, John T. Welch. Bilayer Fibril Formation by Genetically Engineered Polypeptides:  Preparation and Characterization. Biomacromolecules 2006, 7 (4) , 1104-1111. https://doi.org/10.1021/bm0509016
    42. Jurgen M. Smeenk,, Peter Schön,, Matthijs B. J. Otten,, Sylvia Speller,, Hendrik G. Stunnenberg, and, Jan C. M. van Hest. Fibril Formation by Triblock Copolymers of Silklike β-Sheet Polypeptides and Poly(ethylene glycol). Macromolecules 2006, 39 (8) , 2989-2997. https://doi.org/10.1021/ma0521654
    43. Matthew S. Lamm,, Karthikan Rajagopal,, Joel P. Schneider, and, Darrin J. Pochan. Laminated Morphology of Nontwisting β-Sheet Fibrils Constructed via Peptide Self-Assembly. Journal of the American Chemical Society 2005, 127 (47) , 16692-16700. https://doi.org/10.1021/ja054721f
    44. Maxim G. Ryadnov and, Derek N. Woolfson. MaP Peptides:  Programming the Self-Assembly of Peptide-Based Mesoscopic Matrices. Journal of the American Chemical Society 2005, 127 (35) , 12407-12415. https://doi.org/10.1021/ja052972i
    45. Kazunori Matsuura,, Kazuya Murasato, and, Nobuo Kimizuka. Artificial Peptide-Nanospheres Self-Assembled from Three-Way Junctions of β-Sheet-Forming Peptides. Journal of the American Chemical Society 2005, 127 (29) , 10148-10149. https://doi.org/10.1021/ja052644i
    46. Andrea Lomander,, Wonmuk Hwang, and, Shuguang Zhang. Hierarchical Self-Assembly of a Coiled-Coil Peptide into Fractal Structure. Nano Letters 2005, 5 (7) , 1255-1260. https://doi.org/10.1021/nl050203r
    47. Toshimi Shimizu,, Mitsutoshi Masuda, and, Hiroyuki Minamikawa. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chemical Reviews 2005, 105 (4) , 1401-1444. https://doi.org/10.1021/cr030072j
    48. Heather A. Behanna,, Jack J. J. M. Donners,, Alex C. Gordon, and, Samuel I. Stupp. Coassembly of Amphiphiles with Opposite Peptide Polarities into Nanofibers. Journal of the American Chemical Society 2005, 127 (4) , 1193-1200. https://doi.org/10.1021/ja044863u
    49. Maxim G. Ryadnov and, Derek N. Woolfson. Fiber Recruiting Peptides:  Noncovalent Decoration of an Engineered Protein Scaffold. Journal of the American Chemical Society 2004, 126 (24) , 7454-7455. https://doi.org/10.1021/ja048144r
    50. Veysel Kayser,, David A. Turton,, Amalia Aggeli,, Andrew Beevers,, Gavin D. Reid, and, Godfrey S. Beddard. Energy Migration in Novel pH-Triggered Self-Assembled β-Sheet Ribbons. Journal of the American Chemical Society 2004, 126 (1) , 336-343. https://doi.org/10.1021/ja035340+
    51. Colin W. G. Fishwick,, Andrew J. Beevers,, Lisa M. Carrick,, Conor D. Whitehouse,, Amalia Aggeli, and, Neville Boden. Structures of Helical β-Tapes and Twisted Ribbons:  The Role of Side-Chain Interactions on Twist and Bend Behavior. Nano Letters 2003, 3 (11) , 1475-1479. https://doi.org/10.1021/nl034095p
    52. Yooseong Hong, Raymond L. Legge, S. Zhang, and P. Chen . Effect of Amino Acid Sequence and pH on Nanofiber Formation of Self-Assembling Peptides EAK16-II and EAK16-IV. Biomacromolecules 2003, 4 (5) , 1433-1442. https://doi.org/10.1021/bm0341374
    53. Amalia Aggeli,, Mark Bell,, Lisa M. Carrick,, Colin W. G. Fishwick,, Richard Harding,, Peter J. Mawer,, Sheena E. Radford,, Andrew E. Strong, and, Neville Boden. pH as a Trigger of Peptide β-Sheet Self-Assembly and Reversible Switching between Nematic and Isotropic Phases. Journal of the American Chemical Society 2003, 125 (32) , 9619-9628. https://doi.org/10.1021/ja021047i
    54. Joel H. Collier and, Phillip B. Messersmith. Enzymatic Modification of Self-Assembled Peptide Structures with Tissue Transglutaminase. Bioconjugate Chemistry 2003, 14 (4) , 748-755. https://doi.org/10.1021/bc034017t
    55. Geoffrey von Maltzahn,, Sylvain Vauthey,, Steve Santoso, and, Shuguang Zhang. Positively Charged Surfactant-like Peptides Self-assemble into Nanostructures. Langmuir 2003, 19 (10) , 4332-4337. https://doi.org/10.1021/la026526+
    56. Joel P. Schneider,, Darrin J. Pochan,, Bulent Ozbas,, Karthikan Rajagopal,, Lisa Pakstis, and, Juliana Kretsinger. Responsive Hydrogels from the Intramolecular Folding and Self-Assembly of a Designed Peptide. Journal of the American Chemical Society 2002, 124 (50) , 15030-15037. https://doi.org/10.1021/ja027993g
    57. Nathan A. Lockwood,, Robert van Tankeren, and, Kevin H. Mayo. Aqueous Gel Formation of a Synthetic Peptide Derived from the β-Sheet Domain of Platelet Factor-4. Biomacromolecules 2002, 3 (6) , 1225-1232. https://doi.org/10.1021/bm025573d
    58. Steve Santoso,, Wonmuk Hwang,, Hyman Hartman, and, Shuguang Zhang. Self-assembly of Surfactant-like Peptides with Variable Glycine Tails to Form Nanotubes and Nanovesicles. Nano Letters 2002, 2 (7) , 687-691. https://doi.org/10.1021/nl025563i
    59. Jolien Bertouille, Sandor Kasas, Charlotte Martin, Ulrich Hennecke, Steven Ballet, Ronnie G. Willaert. Fast Self‐Assembly Dynamics of a β‐Sheet Peptide Soft Material. Small 2023, 19 (20) https://doi.org/10.1002/smll.202206795
    60. Vincent P. Conticello. Peptide-based nanomaterials: Building back better & beyond. Current Opinion in Solid State and Materials Science 2023, 27 (2) , 101066. https://doi.org/10.1016/j.cossms.2023.101066
    61. Yingbing Liang, Shigesaburo Ogawa, Hiroshi Inaba, Kazunori Matsuura. Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1137885
    62. Joe T. Sharick, Angelina J. Atieh, Keith J. Gooch, Jennifer L. Leight. Click chemistry functionalization of self‐assembling peptide hydrogels. Journal of Biomedical Materials Research Part A 2023, 111 (3) , 389-403. https://doi.org/10.1002/jbm.a.37460
    63. Elena Quigley, Bradley L. Nilsson. β-Sheet and β-Hairpin Peptide Nanomaterials. 2023, 53-86. https://doi.org/10.1007/978-3-031-29360-3_2
    64. Weiwei Guo, Yinping Ma, Lei Hu, Yujie Feng, Yanmiao Liu, Xuedong Yi, Wenzhi Zhang, Fushan Tang. Modification Strategies for Ionic Complementary Self-Assembling Peptides: Taking RADA16-I as an Example. Polymers 2022, 14 (23) , 5221. https://doi.org/10.3390/polym14235221
    65. Shan She, Nicola L. Bell, Dazhong Zheng, Jennifer S. Mathieson, Maria D. Castro, De-Liang Long, Jesko Koehnke, Leroy Cronin. Robotic synthesis of peptides containing metal-oxide-based amino acids. Chem 2022, 8 (10) , 2734-2748. https://doi.org/10.1016/j.chempr.2022.07.007
    66. Mark A. B. Kreutzberger, Shengyuan Wang, Leticia C. Beltran, Abraham Tuachi, Xiaobing Zuo, Edward H. Egelman, Vincent P. Conticello. Phenol-soluble modulins PSMα3 and PSMβ2 form nanotubes that are cross-α amyloids. Proceedings of the National Academy of Sciences 2022, 119 (20) https://doi.org/10.1073/pnas.2121586119
    67. Tong Li, Xian-Mao Lu, Ming-Rong Zhang, Kuan Hu, Zhou Li. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioactive Materials 2022, 11 , 268-282. https://doi.org/10.1016/j.bioactmat.2021.09.029
    68. Shuailing Yang, Songyi Lin, Haiqing Ye. Water distribution and moisture-absorption in egg-white derived peptides: Effects on their physicochemical, conformational, thermostable, and self-assembled properties. Food Chemistry 2022, 375 , 131916. https://doi.org/10.1016/j.foodchem.2021.131916
    69. William B. Weeks, Craig J. Tainter, Lauren E. Buchanan. Investigating the effects of N-terminal acetylation on KFE8 self-assembly with 2D IR spectroscopy. Biophysical Journal 2022, 121 (8) , 1549-1559. https://doi.org/10.1016/j.bpj.2022.03.003
    70. Vincent P. Gray, Connor D. Amelung, Israt Jahan Duti, Emma G. Laudermilch, Rachel A. Letteri, Kyle J. Lampe. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomaterialia 2022, 140 , 43-75. https://doi.org/10.1016/j.actbio.2021.10.030
    71. Sharareh Jalali, Yanxing Yang, Farbod Mahmoudinobar, Shaneen M. Singh, Bradley L. Nilsson, Cristiano Dias. Using all-atom simulations in explicit solvent to study aggregation of amphipathic peptides into amyloid-like fibrils. Journal of Molecular Liquids 2022, 347 , 118283. https://doi.org/10.1016/j.molliq.2021.118283
    72. Jessalyn G. Miller, Spencer A. Hughes, Charles Modlin, Vincent P. Conticello. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Quarterly Reviews of Biophysics 2022, 55 https://doi.org/10.1017/S0033583522000014
    73. Tiankuo Wang, Yu Zhang, Zichen Gu, Wei Cheng, Hai Lei, Meng Qin, Bin Xue, Wei Wang, Yi Cao. Regulating Mechanical Properties of Polymer‐Supramolecular Double‐Network Hydrogel by Supramolecular Self‐assembling Structures. Chinese Journal of Chemistry 2021, 39 (10) , 2711-2717. https://doi.org/10.1002/cjoc.202100370
    74. Conor L. O'Neill, Paresh C. Shrimali, Zoe E. Clapacs, Megan A. Files, Jai S. Rudra. Peptide-based supramolecular vaccine systems. Acta Biomaterialia 2021, 133 , 153-167. https://doi.org/10.1016/j.actbio.2021.05.003
    75. Fengbin Wang, Ordy Gnewou, Shengyuan Wang, Tomasz Osinski, Xiaobing Zuo, Edward H. Egelman, Vincent P. Conticello. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 2021, 4 (10) , 3217-3231. https://doi.org/10.1016/j.matt.2021.06.037
    76. Christopher W. Jones, Crystal G. Morales, Sharon L. Eltiste, Francine E. Yanchik‐Slade, Naomi R. Lee, Bradley L. Nilsson. Capacity for increased surface area in the hydrophobic core of β ‐sheet peptide bilayer nanoribbons. Journal of Peptide Science 2021, 27 (9) https://doi.org/10.1002/psc.3334
    77. Patrizia Janković, Iva Šantek, Ana Sofia Pina, Daniela Kalafatovic. Exploiting Peptide Self-Assembly for the Development of Minimalistic Viral Mimetics. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.723473
    78. Tuo-Di Zhang, Liang-Liang Chen, Wen-Juan Lin, Wen-Pu Shi, Jia-Qi Wang, Chen-Yan Zhang, Wei-Hong Guo, Xudong Deng, Da-Chuan Yin. Searching for conditions of protein self-assembly by protein crystallization screening method. Applied Microbiology and Biotechnology 2021, 105 (7) , 2759-2773. https://doi.org/10.1007/s00253-021-11188-z
    79. Yoshiyuki Manabe, Atushi Shimoyama, Kazuya Kabayama, Koichi Fukase. Conjugation Strategies for Development of Bioactive Middle Molecules. 2021, 3-20. https://doi.org/10.1007/978-981-16-2458-2_1
    80. Angela Imere, Cosimo Ligorio, Marie O'Brien, Jason K.F. Wong, Marco Domingos, Sarah H. Cartmell. Engineering a cell-hydrogel-fibre composite to mimic the structure and function of the tendon synovial sheath. Acta Biomaterialia 2021, 119 , 140-154. https://doi.org/10.1016/j.actbio.2020.11.017
    81. Rajarajeswari Muthusivarajan, William J. Allen, Ashok D. Pehere, Konstantin V. Sokolov, David Fuentes. Role of alkylated residues in the tetrapeptide self‐assembly—A molecular dynamics study. Journal of Computational Chemistry 2020, 41 (31) , 2634-2640. https://doi.org/10.1002/jcc.26419
    82. Yurong Zhao, Xingfan Li, Limin Zhang, Dong Wang, Wenxin Wang, Li Wang, Cuixia Chen. Tuning the self-assembled nanostructures of ultra-short bola peptides via side chain variations of the hydrophobic amino acids. Journal of Molecular Liquids 2020, 315 , 113765. https://doi.org/10.1016/j.molliq.2020.113765
    83. Taku Aiga, Yoshiyuki Manabe, Keita Ito, Tsung‐Che Chang, Kazuya Kabayama, Shino Ohshima, Yoshie Kametani, Ayane Miura, Hiroto Furukawa, Hiroshi Inaba, Kazunori Matsuura, Koichi Fukase. Immunological Evaluation of Co‐Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self‐Adjuvanting Anti‐Breast‐Cancer Vaccine Candidates. Angewandte Chemie 2020, 132 (40) , 17858-17864. https://doi.org/10.1002/ange.202007999
    84. Taku Aiga, Yoshiyuki Manabe, Keita Ito, Tsung‐Che Chang, Kazuya Kabayama, Shino Ohshima, Yoshie Kametani, Ayane Miura, Hiroto Furukawa, Hiroshi Inaba, Kazunori Matsuura, Koichi Fukase. Immunological Evaluation of Co‐Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self‐Adjuvanting Anti‐Breast‐Cancer Vaccine Candidates. Angewandte Chemie International Edition 2020, 59 (40) , 17705-17711. https://doi.org/10.1002/anie.202007999
    85. Krishna Gopal Goswami, Biswajit Saha, Priyadarsi De. Alternating copolymers with glycyl-glycine and alanyl-alanine side-chain pendants: synthesis, characterization and solution properties. Journal of Macromolecular Science, Part A 2020, 57 (9) , 675-683. https://doi.org/10.1080/10601325.2020.1759433
    86. Peng Zhang, Fenghuan Wang, Yuxuan Wang, Shuangyang Li, Sai Wen. Self-Assembling Behavior of pH-Responsive Peptide A6K without End-Capping. Molecules 2020, 25 (9) , 2017. https://doi.org/10.3390/molecules25092017
    87. Lan Li, Kaijia Zhang, Tiankuo Wang, Peng Wang, Bin Xue, Yi Cao, Liya Zhu, Qing Jiang. Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Materials & Design 2020, 189 , 108492. https://doi.org/10.1016/j.matdes.2020.108492
    88. Alain C. Pierre. Hybrid Organic–Inorganic and Composite Materials. 2020, 421-455. https://doi.org/10.1007/978-3-030-38144-8_10
    89. Man-Di Wang, Yan-Qing Huang, Hao Wang. In Vivo Self-Assembly of Polypeptide-Based Nanomaterials. 2020, 1023-1043. https://doi.org/10.1007/978-981-15-2686-2_42
    90. Gang Wei. Characterization techniques of protein and peptide nanofibers: Self-assembly kinetics. 2020, 99-118. https://doi.org/10.1016/B978-0-08-102850-6.00005-X
    91. Wenfeng Wei, Zhiqiang Su. Design of functional peptide nanofibers based on amyloid motifs. 2020, 163-183. https://doi.org/10.1016/B978-0-08-102850-6.00007-3
    92. Faisal Raza, Hajra Zafar, Xinru You, Asifullah Khan, Jun Wu, Liang Ge. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. Journal of Materials Chemistry B 2019, 7 (48) , 7639-7655. https://doi.org/10.1039/C9TB01842E
    93. Kelly M. Hainline, Fangqi Gu, Jacqueline F. Handley, Ye F. Tian, Yaoying Wu, Larischa de Wet, Donald J. Vander Griend, Joel H. Collier. Self‐Assembling Peptide Gels for 3D Prostate Cancer Spheroid Culture. Macromolecular Bioscience 2019, 19 (1) https://doi.org/10.1002/mabi.201800249
    94. Man-Di Wang, Yan-Qing Huang, Hao Wang. In Vivo Self-Assembly of Polypeptide-Based Nanomaterials. 2019, 1-21. https://doi.org/10.1007/978-981-13-1744-6_42-1
    95. Alireza Dastan, Elisabetta A. Matsumoto, William J. Frith, Douglas J. Cleaver. Self-assembly of twisted, multi-sheet aggregates. Molecular Physics 2018, 116 (21-22) , 2823-2835. https://doi.org/10.1080/00268976.2018.1492744
    96. Kyle A. Burgess, Victoria L. Workman, Mohamed A. Elsawy, Aline F. Miller, Delvac Oceandy, Alberto Saiani, . RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells. PLOS ONE 2018, 13 (6) , e0197517. https://doi.org/10.1371/journal.pone.0197517
    97. Ling Zhu, Yanlian Yang, Chen Wang. Molecular Self‐Assembly for Nanobiomaterial Fabrication. 2018, 107-141. https://doi.org/10.1002/9783527698646.ch5
    98. Karthikeyan Subramani, Waqar Ahmed. Self-assembly of proteins and peptides and their applications in bionanotechnology and dentistry. 2018, 231-249. https://doi.org/10.1016/B978-0-12-812291-4.00012-1
    99. Danielle M. Raymond, Bradley L. Nilsson. Multicomponent peptide assemblies. Chemical Society Reviews 2018, 47 (10) , 3659-3720. https://doi.org/10.1039/C8CS00115D
    100. Thomas Gibaud. Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly. Journal of Physics: Condensed Matter 2017, 29 (49) , 493003. https://doi.org/10.1088/1361-648X/aa97f9
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect