ACS Publications. Most Trusted. Most Cited. Most Read
Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes:  Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry
My Activity
    Letter

    Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes:  Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, and Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511-8410
    Other Access Options

    Nano Letters

    Cite this: Nano Letters 2002, 2, 6, 615–619
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl020297u
    Published May 3, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Thermogravimetric analysis (TGA) has demonstrated that multiwalled nanotubes (MWNTs) annealed at 2200 to 2800 °C are more air stable than as-produced MWNTs, diamond, graphite, and annealed diamond. The annealed MWNTs are similar in stability to annealed graphite. Defect sites along the walls and at the ends of the raw MWNTs facilitate the thermal oxidative destruction of the nanotubes. Thermal annealing removes these defects, thereby providing MWNTs with enhanced air stability.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Chemistry.

     Center for Applied Energy Research.

    *

     Corresponding author:  [email protected]; 859-257-3484; 859-323-1069 (Fax).

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 436 publications.

    1. Lynn Hein, Sylvain Coulombe. Synthesis and Characterization of Magnetic Nanoparticle-Decorated Multiwalled Carbon Nanotubes. ACS Omega 2024, 9 (38) , 39776-39791. https://doi.org/10.1021/acsomega.4c05027
    2. Hideaki Oka, Taiji Ikawa, Naoko Takechi Takahashi, Hiroaki Kadoura. Edge Structure and Formation of a Solid Electrolyte Interphase Film in Amorphous Carbon-Coated Spheroidized Graphite. ACS Applied Energy Materials 2024, 7 (4) , 1539-1549. https://doi.org/10.1021/acsaem.3c02867
    3. Shervin Alaei, Weimin Jiao, Saman Ghazvini, Kathleen Moyer-Vanderburgh, Rizia Bardhan, Anna Douglas, Cary L. Pint. Pulsed Current for Diameter-Controlled Carbon Nanotubes and Hybrid Carbon Nanostructures in Electrolysis of Captured Carbon Dioxide. ACS Applied Nano Materials 2023, 6 (19) , 17792-17801. https://doi.org/10.1021/acsanm.3c03071
    4. Archana Kaliyaraj Selva Kumar, Yuanyuan Lu, Richard G. Compton. Voltammetry of Carbon Nanotubes and the Limitations of Particle-Modified Electrodes: Are Carbon Nanotubes Electrocatalytic?. The Journal of Physical Chemistry Letters 2022, 13 (37) , 8699-8710. https://doi.org/10.1021/acs.jpclett.2c02464
    5. Alyssa R. Deline, Benjamin P. Frank, Casey L. Smith, Leslie R. Sigmon, Alexa N. Wallace, Miranda J. Gallagher, David G. Goodwin, Jr., David P. Durkin, D. Howard Fairbrother. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chemical Reviews 2020, 120 (20) , 11651-11697. https://doi.org/10.1021/acs.chemrev.0c00351
    6. Gi Mihn Kim, Won Yeong Choi, Jae Hyun Park, Seung Jin Jeong, Jong-Eun Hong, WooChul Jung, Jae W. Lee. Electrically Conductive Oxidation-Resistant Boron-Coated Carbon Nanotubes Derived from Atmospheric CO2 for Use at High Temperature. ACS Applied Nano Materials 2020, 3 (9) , 8592-8597. https://doi.org/10.1021/acsanm.0c01909
    7. Sumit Kumar Pandey, Pramod Kumar Vishwakarma, Sunil Kumar Yadav, Prashant Shukla, Anchal Srivastava. Multiwalled Carbon Nanotube Filters for Toxin Removal from Cigarette Smoke. ACS Applied Nano Materials 2020, 3 (1) , 760-771. https://doi.org/10.1021/acsanm.9b02277
    8. Colin McConnell, Sathya Narayan Kanakaraj, Joshua Dugre, Rachit Malik, Guangqi Zhang, Mark R. Haase, Yu-Yun Hsieh, Yanbo Fang, David Mast, Vesselin Shanov. Hydrogen Sensors Based on Flexible Carbon Nanotube-Palladium Composite Sheets Integrated with Ripstop Fabric. ACS Omega 2020, 5 (1) , 487-497. https://doi.org/10.1021/acsomega.9b03023
    9. Milad Kamkar, Soheil Sadeghi, Mohammad Arjmand, Uttandaraman Sundararaj. Structural Characterization of CVD Custom-Synthesized Carbon Nanotube/Polymer Nanocomposites in Large-Amplitude Oscillatory Shear (LAOS) Mode: Effect of Dispersion Characteristics in Confined Geometries. Macromolecules 2019, 52 (4) , 1489-1504. https://doi.org/10.1021/acs.macromol.8b01774
    10. Jamie Whelan, Marios S. Katsiotis, Samuel Stephen, Gisha E. Luckachan, Anjana Tharalekshmy, Nicoleta Doriana Banu, Juan-Carlos Idrobo, Sokrates T. Pantelides, Radu V. Vladea, Ionut Banu, Saeed M. Alhassan. Cobalt-Molybdenum Single-Layered Nanocatalysts Decorated on Carbon Nanotubes and the Influence of Preparation Conditions on Their Hydrodesulfurization Catalytic Activity. Energy & Fuels 2018, 32 (7) , 7820-7826. https://doi.org/10.1021/acs.energyfuels.8b01571
    11. Kamol K. Das, Lucas Bancroft, Xiaoliang Wang, Judith C. Chow, Baoshan Xing, Yu Yang. Digestion Coupled with Programmed Thermal Analysis for Quantification of Multiwall Carbon Nanotubes in Plant Tissues. Environmental Science & Technology Letters 2018, 5 (7) , 442-447. https://doi.org/10.1021/acs.estlett.8b00287
    12. Carlos A. de los Reyes, Kendahl L. Walz Mitra, Ashleigh D. Smith, Sadegh Yazdi, Axel Loredo, Frank J. Frankovsky, Emilie Ringe, Matteo Pasquali, Angel A. Martí. Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites. ACS Applied Nano Materials 2018, 1 (5) , 2421-2429. https://doi.org/10.1021/acsanm.8b00633
    13. Luis Estevez, Venkateshkumar Prabhakaran, Adam L. Garcia, Yongsoon Shin, Jinhui Tao, Ashleigh M. Schwarz, Jens Darsell, Priyanka Bhattacharya, Vaithiyalingam Shutthanandan, and Ji-Guang Zhang . Hierarchically Porous Graphitic Carbon with Simultaneously High Surface Area and Colossal Pore Volume Engineered via Ice Templating. ACS Nano 2017, 11 (11) , 11047-11055. https://doi.org/10.1021/acsnano.7b05085
    14. Elaheh Lohrasbi, Mehran Javanbakht, and Sayed Ahmad Mozaffari . Synthesis of Graphene-Supported PtCoFe Alloy with Different Thermal Treatment Procedures as Highly Active Oxygen Reduction Reaction Electrocatalysts for Proton Exchange Membrane Fuel Cells. Industrial & Engineering Chemistry Research 2016, 55 (34) , 9154-9163. https://doi.org/10.1021/acs.iecr.6b00980
    15. Mohammad Arjmand and Uttandaraman Sundararaj . Effects of Nitrogen Doping on X-band Dielectric Properties of Carbon Nanotube/Polymer Nanocomposites. ACS Applied Materials & Interfaces 2015, 7 (32) , 17844-17850. https://doi.org/10.1021/acsami.5b04211
    16. Duc Dung Nguyen, Seiya Suzuki, Shuji Kato, Bao Dong To, Chia Chen Hsu, Hidekazu Murata, Eiji Rokuta, Nyan-Hwa Tai, and Masamichi Yoshimura . Macroscopic, Freestanding, and Tubular Graphene Architectures Fabricated via Thermal Annealing. ACS Nano 2015, 9 (3) , 3206-3214. https://doi.org/10.1021/acsnano.5b00292
    17. D. Xanat Flores-Cervantes, Hanna M. Maes, Andreas Schäffer, Juliane Hollender, and Hans-Peter E. Kohler . Slow Biotransformation of Carbon Nanotubes by Horseradish Peroxidase. Environmental Science & Technology 2014, 48 (9) , 4826-4834. https://doi.org/10.1021/es4053279
    18. Ferdinando Tristán-López, Aaron Morelos-Gómez, Sofía Magdalena Vega-Díaz, María Luisa García-Betancourt, Néstor Perea-López, Ana L. Elías, Hiroyuki Muramatsu, Rodolfo Cruz-Silva, Shuji Tsuruoka, Yoong Ahm Kim, Takuya Hayahsi, Katsumi Kaneko, Morinobu Endo, and Mauricio Terrones . Large Area Films of Alternating Graphene–Carbon Nanotube Layers Processed in Water. ACS Nano 2013, 7 (12) , 10788-10798. https://doi.org/10.1021/nn404022m
    19. Andrew Li-Pook-Than, Jacques Lefebvre, and Paul Finnie . Type- and Species-Selective Air Etching of Single-Walled Carbon Nanotubes Tracked with in Situ Raman Spectroscopy. ACS Nano 2013, 7 (8) , 6507-6521. https://doi.org/10.1021/nn402412t
    20. Leanne M. Pasquini, Ryan C. Sekol, André D. Taylor, Lisa D. Pfefferle, and Julie B. Zimmerman . Realizing Comparable Oxidative and Cytotoxic Potential of Single- and Multiwalled Carbon Nanotubes through Annealing. Environmental Science & Technology 2013, 47 (15) , 8775-8783. https://doi.org/10.1021/es401786s
    21. Saveria Santangelo and Candida Milone . Do Nanotubes Follow an Amorphization Trajectory as Other Nanocarbons Do?. The Journal of Physical Chemistry C 2013, 117 (27) , 14206-14212. https://doi.org/10.1021/jp4038599
    22. Dilushan R. Jayasundara, Ronan J. Cullen, and Paula E. Colavita . In Situ and Real Time Characterization of Spontaneous Grafting of Aryldiazonium Salts at Carbon Surfaces. Chemistry of Materials 2013, 25 (7) , 1144-1152. https://doi.org/10.1021/cm4007537
    23. Kyle Doudrick, Pierre Herckes, and Paul Westerhoff . Detection of Carbon Nanotubes in Environmental Matrices Using Programmed Thermal Analysis. Environmental Science & Technology 2012, 46 (22) , 12246-12253. https://doi.org/10.1021/es300804f
    24. Vicente Jiménez, Alfredo Muñoz, Paula Sánchez, José Luis Valverde, and Amaya Romero . Pilot Plant Scale Synthesis of CNS: Influence of the Operating Conditions. Industrial & Engineering Chemistry Research 2012, 51 (19) , 6745-6752. https://doi.org/10.1021/ie300254w
    25. Dilip K. Singh, P. K. Giri, and Parameswar K. Iyer . Evidence for Defect-Enhanced Photoluminescence Quenching of Fluorescein by Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (49) , 24067-24072. https://doi.org/10.1021/jp207392d
    26. Jarrn H. Lin, Ching S. Chen, Mark H. Rümmeli, Alicja Bachmatiuk, Zhi Y. Zeng, Hui L. Ma, Bernd Büchner, and Hsiu W. Chen . Growth of Carbon Nanotubes Catalyzed by Defect-Rich Graphite Surfaces. Chemistry of Materials 2011, 23 (7) , 1637-1639. https://doi.org/10.1021/cm103526s
    27. Elisabeth Mansfield, Aparna Kar, Timothy P. Quinn, and Stephanie A. Hooker. Quartz Crystal Microbalances for Microscale Thermogravimetric Analysis. Analytical Chemistry 2010, 82 (24) , 9977-9982. https://doi.org/10.1021/ac102030z
    28. Ana Martínez, Misaela Francisco-Marquez and Annia Galano . Effect of Different Functional Groups on the Free Radical Scavenging Capability of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2010, 114 (35) , 14734-14739. https://doi.org/10.1021/jp1033382
    29. Benjamin Frank, Ali Rinaldi, Raoul Blume, Robert Schlögl and Dang Sheng Su. Oxidation Stability of Multiwalled Carbon Nanotubes for Catalytic Applications. Chemistry of Materials 2010, 22 (15) , 4462-4470. https://doi.org/10.1021/cm101234d
    30. Annia Galano, Misaela Francisco-Marquez and Ana Martínez. Influence of Point Defects on the Free-Radical Scavenging Capability of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2010, 114 (18) , 8302-8308. https://doi.org/10.1021/jp101544u
    31. Wei Lin, Kyoung-Sik Moon, Shanju Zhang, Yong Ding, Jintang Shang, Mingxiang Chen and Ching-ping Wong . Microwave Makes Carbon Nanotubes Less Defective. ACS Nano 2010, 4 (3) , 1716-1722. https://doi.org/10.1021/nn901621c
    32. Vicente Jiménez, Antonio Nieto-Márquez, José Antonio Díaz, Rubi Romero, Paula Sánchez, José Luis Valverde and Amaya Romero . Pilot Plant Scale Study of the Influence of the Operating Conditions in the Production of Carbon Nanofibers. Industrial & Engineering Chemistry Research 2009, 48 (18) , 8407-8417. https://doi.org/10.1021/ie9005386
    33. Bin Zhao, Don N. Futaba, Satoshi Yasuda, Megumi Akoshima, Takeo Yamada and Kenji Hata . Exploring Advantages of Diverse Carbon Nanotube Forests with Tailored Structures Synthesized by Supergrowth from Engineered Catalysts. ACS Nano 2009, 3 (1) , 108-114. https://doi.org/10.1021/nn800648a
    34. Bin Zhou, Wanlin Guo and Yitao Dai. Chemisorption of Hydrogen Molecule on Axially Strained (8, 0) Carbon Nanotube. The Journal of Physical Chemistry C 2008, 112 (47) , 18516-18520. https://doi.org/10.1021/jp8057959
    35. Chee Howe See, Oscar M. Dunens, Kieran J. MacKenzie and Andrew T. Harris. Process Parameter Interaction Effects during Carbon Nanotube Synthesis in Fluidized Beds. Industrial & Engineering Chemistry Research 2008, 47 (20) , 7686-7692. https://doi.org/10.1021/ie701786p
    36. Seoktae Kang, Meagan S. Mauter and Menachem Elimelech. Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity. Environmental Science & Technology 2008, 42 (19) , 7528-7534. https://doi.org/10.1021/es8010173
    37. G. S. B. McKee, J. S. Flowers and K. S. Vecchio . Length and the Oxidation Kinetics of Chemical-Vapor-Deposition-Generated Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry C 2008, 112 (27) , 10108-10113. https://doi.org/10.1021/jp800593r
    38. Daniele Gozzi, Alessandro Latini and Laura Lazzarini. Chemical Differentiation of Carbon Nanotubes in a Carbonaceous Matrix. Chemistry of Materials 2008, 20 (12) , 4126-4134. https://doi.org/10.1021/cm800484j
    39. Jiajun Wang,, Geping Yin,, Yuyan Shao,, Zhenbo Wang, and, Yunzhi Gao. Investigation of Further Improvement of Platinum Catalyst Durability with Highly Graphitized Carbon Nanotubes Support. The Journal of Physical Chemistry C 2008, 112 (15) , 5784-5789. https://doi.org/10.1021/jp800186p
    40. Arun K. Kota,, Bani H. Cipriano,, Matthew K. Duesterberg,, Alan L. Gershon,, Dan Powell,, Srinivasa R. Raghavan, and, Hugh A. Bruck. Electrical and Rheological Percolation in Polystyrene/MWCNT Nanocomposites. Macromolecules 2007, 40 (20) , 7400-7406. https://doi.org/10.1021/ma0711792
    41. Naigui Shang,, William I. Milne, and, Xin Jiang. Tubular Graphite Cones with Single-Crystal Nanotips and Their Antioxygenic Properties. Journal of the American Chemical Society 2007, 129 (28) , 8907-8911. https://doi.org/10.1021/ja071830g
    42. Qingfeng Liu,, Wencai Ren,, Feng Li,, Hongtao Cong, and, Hui-Ming Cheng. Synthesis and High Thermal Stability of Double-Walled Carbon Nanotubes Using Nickel Formate Dihydrate as Catalyst Precursor. The Journal of Physical Chemistry C 2007, 111 (13) , 5006-5013. https://doi.org/10.1021/jp068672k
    43. Yun Peng and, Hewen Liu. Effects of Oxidation by Hydrogen Peroxide on the Structures of Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research 2006, 45 (19) , 6483-6488. https://doi.org/10.1021/ie0604627
    44. J. S. Bendall,, A. Ilie,, M. E. Welland,, J. Sloan, and, M. L. H. Green. Thermal Stability and Reactivity of Metal Halide Filled Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B 2006, 110 (13) , 6569-6573. https://doi.org/10.1021/jp056405t
    45. Gregg S. B. McKee and, Kenneth S. Vecchio. Thermogravimetric Analysis of Synthesis Variation Effects on CVD Generated Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B 2006, 110 (3) , 1179-1186. https://doi.org/10.1021/jp054265h
    46. Xin Lu and, Zhongfang Chen. Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (<C60) and Single-Walled Carbon Nanotubes. Chemical Reviews 2005, 105 (10) , 3643-3696. https://doi.org/10.1021/cr030093d
    47. Holger F. Bettinger. The Reactivity of Defects at the Sidewalls of Single-Walled Carbon Nanotubes:  The Stone−Wales Defect. The Journal of Physical Chemistry B 2005, 109 (15) , 6922-6924. https://doi.org/10.1021/jp0440636
    48. Tan Xiao, , Yu Ren and, Kin Liao. A Kinetic Model for Time-Dependent Fracture of Carbon Nanotubes. Nano Letters 2004, 4 (6) , 1139-1142. https://doi.org/10.1021/nl049731d
    49. Yujun Qin,, Jiahua Shi,, Wei Wu,, Xianglong Li,, Zhi-Xin Guo, and, Daoben Zhu. Concise Route to Functionalized Carbon Nanotubes. The Journal of Physical Chemistry B 2003, 107 (47) , 12899-12901. https://doi.org/10.1021/jp036512s
    50. Yujun Qin,, Luqi Liu,, Jiahua Shi,, Wei Wu,, Jun Zhang,, Zhi-Xin Guo,, Yongfang Li, and, Daoben Zhu. Large-Scale Preparation of Solubilized Carbon Nanotubes. Chemistry of Materials 2003, 15 (17) , 3256-3260. https://doi.org/10.1021/cm030219n
    51. Chang Q. Sun,, H. L. Bai,, B. K. Tay,, S. Li, and, E. Y. Jiang. Dimension, Strength, and Chemical and Thermal Stability of a Single C−C Bond in Carbon Nanotubes. The Journal of Physical Chemistry B 2003, 107 (31) , 7544-7546. https://doi.org/10.1021/jp035070h
    52. Orrakanya Phichairatanaphong, Oraya Leelaphuthipong, Yingyot Poo-arporn, Metta Chareonpanich, Waleeporn Donphai. Catalytic role of nickel/silica foams structure in boosting hydrogen production from methane. Inorganic Chemistry Communications 2025, 175 , 114213. https://doi.org/10.1016/j.inoche.2025.114213
    53. Rakesh Saini, Danda Srinivas Rao, Ramanuj Narayan, Suryakanta Behera, Sanjay M. Mahajani. Industrial coal gasification ash as a support substrate for the thermocatalytic decomposition of methane into hydrogen and carbon nanotubes. Fuel 2025, 388 , 134432. https://doi.org/10.1016/j.fuel.2025.134432
    54. José D. Pizha, Diana G. Heredia, Luis Corredor, Carlos Reinoso, Werner Bramer, Jules Gardener, Guillermo Solorzano, Gema Gonzalez. Encapsulation of magnetic nanoparticles into carbon nanotubes by one-step facile synthesis method. Carbon Trends 2025, 19 , 100446. https://doi.org/10.1016/j.cartre.2024.100446
    55. Nagaraj Nandihalli. Microwave-driven synthesis and modification of nanocarbons and hybrids in liquid and solid phases. Journal of Energy Storage 2025, 111 , 115315. https://doi.org/10.1016/j.est.2025.115315
    56. Fernanda F. Roman, Adriano S. Silva, Jose L. Diaz de Tuesta, Arthur P. Baldo, Jessica P.M. Lopes, Giane Gonçalves, Ana I. Pereira, Paulo Praça, Adrián M.T. Silva, Joaquim L. Faria, Manuel Bañobre-López, Helder T. Gomes. Plastic waste-derived carbon nanotubes: Influence of growth catalyst and catalytic activity in CWPO. Journal of Environmental Chemical Engineering 2025, 13 (1) , 115206. https://doi.org/10.1016/j.jece.2024.115206
    57. Jorge Reyna-Alvarado, Oscar A. López-Galán, Jorge Trimmer, Oscar Recalde-Benitez, Leopoldo Molina, Albina Gutiérrez-Martínez, Raúl Pérez-Hernández, Manuel Ramos. Enhanced syngas (H2/CO) production by Co/CeO2 nanorods catalyst through dry reforming of methane. MRS Communications 2024, 14 (6) , 1201-1209. https://doi.org/10.1557/s43579-024-00585-w
    58. Mattias Mases, Daniel Jacobsson, David Wahlqvist, Martin Ek, Henrik Wiinikka. The oxidation of carbon nanostructures imaged by electron microscopy: Comparison between in-situ TEM and TGA experiments. Applied Surface Science 2024, 672 , 160755. https://doi.org/10.1016/j.apsusc.2024.160755
    59. Cole R. Davis, R. Blake Nuwayhid, Caroline A. Campbell, Sara C. Mills, Lavina Backman, Joseph E. Estevez, Manda R. Schaeffer. Improved oxidation resistance of boron nitride nanotubes with protective alumina nano-coatings. Ceramics International 2024, 50 (22) , 48620-48627. https://doi.org/10.1016/j.ceramint.2024.09.211
    60. Lauren W. Taylor, Oliver S. Dewey, Evan G. Biggers, Michelle Durán-Chaves, Joe F. Khoury, Matteo Pasquali. Purification of carbon nanotubes for dissolution in chlorosulfonic acid. Carbon 2024, 228 , 119317. https://doi.org/10.1016/j.carbon.2024.119317
    61. Yuyu Zhang, Xuemeng Zhang, Lingxiang Guo, Yuqi Wang, Jia Sun, Qiangang Fu. Effect of temperature-dependent nano SiC on the ablation resistance of ZrC coating. Journal of the European Ceramic Society 2024, 44 (12) , 6875-6888. https://doi.org/10.1016/j.jeurceramsoc.2024.04.033
    62. Chengxin Wang, Wenchao Zhang, Dingding Yao, Qiang Hu, Haiping Yang. Gas-phase and liquid-phase purification of plastic waste derived carbon nanotubes: Effect of purification agent and operational parameters. Chemical Engineering Journal 2024, 496 , 153725. https://doi.org/10.1016/j.cej.2024.153725
    63. Nguyen Hoang Lam, Chang-Duk Kim, Seung Beom Kang, Kyeong Seok Lee, Dong Chul Chung, Younjung Jo, Nguyen Huu Hieu, Hamid Shaikh, Saeed M. Al-Zahrani, Nguyen Tam Nguyen Truong. Effects of synthesis time on the optical–electrical and structural properties of silicon carbide/graphite core–shell structures for supercapacitor applications. Journal of Materials Science: Materials in Electronics 2024, 35 (16) https://doi.org/10.1007/s10854-024-12767-2
    64. Kai-Rui Luan, Jing-Pei Cao, Wen Tang, Zi-Meng He, Xiao-Yan Zhao, Wei Jiang, Dan Xie, Hong-Cun Bai, Zhou Zhou. Effect of oxygen vacancy of lignite-char-supported Co catalysts doped with In on efficient dry reforming of methane. Chemical Engineering Science 2024, 290 , 119914. https://doi.org/10.1016/j.ces.2024.119914
    65. Edi Mados, Inbar Atar, Yuval Gratz, Mai Israeli, Olga Kondrova, Victor Fourman, Dov Sherman, Diana Golodnitsky, Amit Sitt. Polymer-based LFP cathode/current collector microfiber-meshes with bi- and interlayered architectures for Li-ion battery. Journal of Power Sources 2024, 603 , 234397. https://doi.org/10.1016/j.jpowsour.2024.234397
    66. Yang Liu, Sizhe Zhang, Jian Guo, Wenfeng Qiu, Gengheng Zhou, Qingwen Li. Debundling and reorganization of CNT networks under high temperature treatment. Carbon 2024, 222 , 119004. https://doi.org/10.1016/j.carbon.2024.119004
    67. Takehito Hirose, Kenzo Fukumori. Mechanical Properties of Multi-walled Carbon Nanotube Dispersion-controlled Olefin-based Dynamically Crosslinked Thermoplastic Elastomers. Seikei-Kakou 2024, 36 (3) , 121-127. https://doi.org/10.4325/seikeikakou.36.121
    68. JunHui Hu, Ying Yan, Huiping Zhang. Preparation of a new B-CNTs/PSSF composite catalyst for catalytic wet peroxide oxidation of phenol in structured fixed bed. Journal of Environmental Chemical Engineering 2024, 12 (1) , 111704. https://doi.org/10.1016/j.jece.2023.111704
    69. Mircea Chipara, Dorina Chipara, Karen Martirosyan, Ananta Adhikari, Alexandro Trevino. Interphase of polyoctenamer‐single‐wall carbon nanotubes by thermogravimetric analysis in air. Journal of Applied Polymer Science 2024, 141 (4) https://doi.org/10.1002/app.54850
    70. Behnaz Ranjbar, Sahar Foroughirad, Zahra Ranjbar. Thermal and Rheological Properties of Carbon Nanoparticle Dispersions. 2024, 1-29. https://doi.org/10.1007/978-3-031-14955-9_41-1
    71. Behnaz Ranjbar, Sahar Foroughirad, Zahra Ranjbar. Thermal and Rheological Properties of Carbon Nanoparticle Dispersions. 2024, 1441-1468. https://doi.org/10.1007/978-3-031-32150-4_41
    72. Ratnesh Raj, Annada Prasad Moharana, Amit Rai Dixit. Design and Fabrication of Flexible Woodpile Structured Nanocomposite for Microwave Absorption Using Material Extrusion Additive Technique. Additive Manufacturing 2024, 79 , 103935. https://doi.org/10.1016/j.addma.2023.103935
    73. Mijin Kim, Dana Goerzen, Prakrit V. Jena, Emma Zeng, Matteo Pasquali, Rachel A. Meidl, Daniel A. Heller. Human and environmental safety of carbon nanotubes across their life cycle. Nature Reviews Materials 2024, 9 (1) , 63-81. https://doi.org/10.1038/s41578-023-00611-8
    74. Fernanda F. Roman, Adriano S. Silva, Jose Luis Diaz de Tuesta, Jessica Lopes, Giane Gonçalves Lenzi, Ana I. Pereira, Paulo Praça, Adrián M. T. Silva, Joaquim L. Faria, Manuel Banobre-López, Helder Teixeira Gomes. Low-Density Polyethylene Plastic Waste Valorization into Carbon Nanotubes for Catalytic Wet Peroxide Oxidation. 2024https://doi.org/10.2139/ssrn.4764090
    75. Matías Picuntureo, José Antonio García-Merino, Roberto Villarroel, Samuel A. Hevia. The Synthesis of Sponge-like V2O5/CNT Hybrid Nanostructures Using Vertically Aligned CNTs as Templates. Nanomaterials 2024, 14 (2) , 211. https://doi.org/10.3390/nano14020211
    76. Elodie Marcerou, Barbara Daffos, Pierre-Louis Taberna, Patrice Simon. Understanding ageing mechanism of carbon electrodes in double layer capacitors operating in organic electrolytes. Electrochimica Acta 2023, 472 , 143399. https://doi.org/10.1016/j.electacta.2023.143399
    77. Morteza Adibi, S. Mohammad Mirkazemi, Somaye Alamolhoda. The comparative study on microstructure and magnetic properties of cobalt ferrite/MWCNTs nanocomposite prepared using mechanical mixing and hydrothermal routs. Journal of Magnetism and Magnetic Materials 2023, 586 , 171187. https://doi.org/10.1016/j.jmmm.2023.171187
    78. Ye Rim Park, Geun-Ho Han, Sang Yun Kim, Do Heui Kim, Young Gul Hur, Kwan-Young Lee. Cooperative catalysis of Co-promoted Zn/HZSM-5 catalysts for ethane dehydroaromatization. Fuel 2023, 349 , 128583. https://doi.org/10.1016/j.fuel.2023.128583
    79. Meghdad Pirsaheb, Hooman Seifi, Elmuez A. Dawi, Tahereh Gholami, Sarah Qutayba Badraldin, Abrar Ryadh, Masoud Salavati-Niasari. Thermal analysis techniques in herbal medicine: A comprehensive review on unveiling integrity and quality for future perspectives. Journal of Analytical and Applied Pyrolysis 2023, 175 , 106192. https://doi.org/10.1016/j.jaap.2023.106192
    80. Damian Pawelski, Marta E. Plonska-Brzezinska. Microwave-Assisted Synthesis as a Promising Tool for the Preparation of Materials Containing Defective Carbon Nanostructures: Implications on Properties and Applications. Materials 2023, 16 (19) , 6549. https://doi.org/10.3390/ma16196549
    81. Liu He, Yiyang Qiu, Chu Yao, Guojun Lan, Na Li, Huacong Zhou, Quansheng Liu, Xiucheng Sun, Zaizhe Cheng, Ying Li. Role of intrinsic defects on carbon adsorbent for enhanced removal of Hg2+ in aqueous solution. Chinese Journal of Chemical Engineering 2023, 61 , 129-139. https://doi.org/10.1016/j.cjche.2023.03.021
    82. Bo Liang, Tingting Yang, Huiqian Yang, Jinsheng Zhao, Yunyun Dong. Preparation of CuO@humic acid@carbon nanotube composite material using humic acid as a coupling agent and its lithium-ion storage performance. RSC Advances 2023, 13 (35) , 24191-24200. https://doi.org/10.1039/D3RA01926H
    83. Pradeep Kumar Yadav, Kalyani Patrikar, Anirban Mondal, Sudhanshu Sharma. Ni/Co in and on CeO 2 : a comparative study on the dry reforming reaction. Sustainable Energy & Fuels 2023, 7 (16) , 3853-3870. https://doi.org/10.1039/D3SE00649B
    84. Lujain Abdullatif Alshuhail, Feroz Shaik, L. Syam Sundar. Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications – A review. Alexandria Engineering Journal 2023, 68 , 365-404. https://doi.org/10.1016/j.aej.2023.01.043
    85. Tobias Karlsson, Per Hallander, Fang Liu, Thirza Poot, Malin Åkermo. Sensing abilities of embedded vertically aligned carbon nanotube forests in structural composites: From nanoscale properties to mesoscale functionalities. Composites Part B: Engineering 2023, 255 , 110587. https://doi.org/10.1016/j.compositesb.2023.110587
    86. Jih-Mirn Jehng, Israel E. Wachs, Michael Ford. Temperature-Programmed (TP) Techniques. 2023, 1005-1029. https://doi.org/10.1007/978-3-031-07125-6_45
    87. Javier Lara-Romero. Properties, classification, synthesis, purification and characterization of carbon nanotubes. 2023, 37-59. https://doi.org/10.1016/B978-0-323-85199-2.00010-8
    88. B. Vidya, Asha P. Johnson, G. Hrishikesh, S.L. Jyothi, S. Hemanth Kumar, K. Pramod, H.V. Gangadharappa. Biomedical applications of carbon nanotubes. 2023, 127-167. https://doi.org/10.1016/B978-0-323-96117-2.00015-7
    89. Amit Kaushal, Rajath Alexander, D. Mandal, Jyeshtharaj B. Joshi, Kinshuk Dasgupta. Remarkable enhancement in CNT fiber synthesis by reducing convection vortex in floating catalyst chemical vapour deposition. Chemical Engineering Journal 2023, 452 , 139142. https://doi.org/10.1016/j.cej.2022.139142
    90. Qibing Liu, Farhad Saba, Genlian Fan, Zhanqiu Tan, Qiang Guo, Dingbang Xiong, Zhiqiang Li. High-speed shearing process as a novel strategy toward tailoring ultra-short carbon nanotubes. Diamond and Related Materials 2023, 131 , 109588. https://doi.org/10.1016/j.diamond.2022.109588
    91. J. Toman, M. Šnírer, R. Rincón, O. Jašek, D. Všianský, A.M. Raya, F.J. Morales-Calero, J. Muñoz, M.D. Calzada. On the gas-phase graphene nanosheet synthesis in atmospheric microwave plasma torch: Upscaling potential and graphene nanosheet‑copper nanocomposite oxidation resistance. Fuel Processing Technology 2023, 239 , 107534. https://doi.org/10.1016/j.fuproc.2022.107534
    92. Kanchna Bhatrola, N C Kothiyal, Sameer Kumar Maurya. Durability & mechanical properties of functionalized multiwalled carbon nanotube incorporated pozzolana portland cement composite. Materials Today: Proceedings 2023, 93 , 249-256. https://doi.org/10.1016/j.matpr.2023.07.178
    93. Edi Mados, Inbar Atar, Olga Kondrova, Diana Golodnitsky, Amit Sitt. Polymer-Based Lfp Cathode/Current Collector Microfiber-Meshes with Bi- and Interlayered Architectures for Li-Ion Battery. 2023https://doi.org/10.2139/ssrn.4642739
    94. Tri N. M. Nguyen, Taek Hee Han, Jun Kil Park, Jung J. Kim. Microstructural and Mechanical Properties of Cement Blended with TEOS/PVP Nanofibers Containing CNTs. Applied Sciences 2023, 13 (2) , 714. https://doi.org/10.3390/app13020714
    95. A. Angayarkanni, J. Philip. Synthesis of Nanoparticles and Nanofluids. 2022, 1-40. https://doi.org/10.1039/9781839166457-00001
    96. Guanxu Chen, Jintao Chen, Ivan P. Parkin, Guanjie He, Thomas S. Miller. Pseudohexagonal Nb 2 O 5 ‐Decorated Carbon Nanotubes as a High‐Performance Composite Anode for Sodium Ion Batteries. ChemElectroChem 2022, 9 (23) https://doi.org/10.1002/celc.202200800
    97. Pallvi Dariyal, Bhanu Pratap Singh, Gaurav Singh Chauhan, Manoj Sehrawat, Sushant Sharma, Ashok Kumar, Sanjay Ranganth Dhakate. Aerosol based synthesis of highly conducting carbon nanotube macro assemblies by novel mist assisted precursor purging system. Journal of Alloys and Compounds 2022, 925 , 166634. https://doi.org/10.1016/j.jallcom.2022.166634
    98. Sohei Shibuki, Takaya Akashi, Hiromichi Watanabe. Effect of catalyst support layers on emissivity of carbon nanotubes grown via floating catalyst chemical vapor deposition. Measurement: Sensors 2022, 24 , 100479. https://doi.org/10.1016/j.measen.2022.100479
    99. Dongsu Kim, Yeonghwan Jang, Eunho Choi, Ji Eon Chae, Segeun Jang. Reinforced Nafion Membrane with Ultrathin MWCNTs/Ceria Layers for Durable Proton-Exchange Membrane Fuel Cells. Membranes 2022, 12 (11) , 1073. https://doi.org/10.3390/membranes12111073
    100. Rajath Alexander, Amit Khausal, Jitendra Bahadur, Kinshuk Dasgupta. Bi-directional catalyst injection in floating catalyst chemical vapor deposition for enhanced carbon nanotube fiber yield. Carbon Trends 2022, 9 , 100211. https://doi.org/10.1016/j.cartre.2022.100211
    Load more citations

    Nano Letters

    Cite this: Nano Letters 2002, 2, 6, 615–619
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl020297u
    Published May 3, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    7756

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.