ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

High-Density Silver Nanoparticle Film with Temperature-Controllable Interparticle Spacing for a Tunable Surface Enhanced Raman Scattering Substrate

View Author Information
Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California-Berkeley, Berkeley, California 94720
Cite this: Nano Lett. 2005, 5, 1, 5–9
Publication Date (Web):December 16, 2004
https://doi.org/10.1021/nl048965u
Copyright © 2005 American Chemical Society

    Article Views

    8484

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The formation of high-density silver nanoparticles and a novel method to precisely control the spacing between nanoparticles by temperature are demonstrated for a tunable surface enhanced Raman scattering substrates. The high-density nanoparticle thin film is accomplished by self-assembling through the Langmuir−Blodgett (LB) technique on a water surface and transferring the particle monolayer to a temperature-responsive polymer membrane. The temperature-responsive polymer membrane allows producing a dynamic surface enhanced Raman scattering substrate. The plasmon peak of the silver nanoparticle film red shifts up to 110 nm with increasing temperature. The high-density particle film serves as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), and the scattering signal enhancement factor can be dynamically tuned by the thermally activated SERS substrate. The SERS spectra of Rhodamine 6G on a high-density silver particle film at various temperatures is characterized to demonstrate the tunable plasmon coupling between high-density nanoparticles.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 537 publications.

    1. Bhavesh Bhartia, Subhabrata Das, Sundaramurthy Jayaraman, Mohit Sharma, Yen Peng Ting, Cedric Troadec, Srinivasan Palavedu Madapusi, Sreenivasa Reddy Puniredd. Universal Single-Step Approach to the Immobilization of Cyclodextrins in a Supercritical Medium for Capturing Drug, Dye, and Metal Nanoclusters. Langmuir 2023, 39 (27) , 9564-9578. https://doi.org/10.1021/acs.langmuir.3c01143
    2. Michal Swierczewski, Thomas Bürgi. Langmuir and Langmuir–Blodgett Films of Gold and Silver Nanoparticles. Langmuir 2023, 39 (6) , 2135-2151. https://doi.org/10.1021/acs.langmuir.2c02715
    3. Yun Hee Youn, Sayantan Pradhan, Lucília P. da Silva, Il Keun Kwon, Subhas C. Kundu, Rui L. Reis, Vamsi K. Yadavalli, Vitor M. Correlo. Micropatterned Silk-Fibroin/Eumelanin Composite Films for Bioelectronic Applications. ACS Biomaterials Science & Engineering 2021, 7 (6) , 2466-2474. https://doi.org/10.1021/acsbiomaterials.1c00216
    4. Soumili Daripa, Rampal Verma, Debanjan Guin, Chanchal Chakraborty, Kamlendra Awasthi, Biplab Kumar Kuila. Metal-Immobilized Micellar Aggregates of a Block Copolymer from a Mixed Solvent for a SERS-Active Sensing Substrate and Versatile Dip Catalysis. Langmuir 2021, 37 (7) , 2445-2456. https://doi.org/10.1021/acs.langmuir.0c03505
    5. Tsung-Ming Chao, Ta-Li Hsieh, Shinn-Jen Chang, Cha-Wen Chang, Chia-Chen Li. New Brush Copolymers as an Effective Dispersant for Stabilizing Concentrated Suspensions of Silver Nanoparticles. Langmuir 2020, 36 (13) , 3377-3385. https://doi.org/10.1021/acs.langmuir.0c00361
    6. Daniel García-Lojo, Sara Núñez-Sánchez, Sergio Gómez-Graña, Marek Grzelczak, Isabel Pastoriza-Santos, Jorge Pérez-Juste, Luis M. Liz-Marzán. Plasmonic Supercrystals. Accounts of Chemical Research 2019, 52 (7) , 1855-1864. https://doi.org/10.1021/acs.accounts.9b00213
    7. Yawen Zhan, Shiwei Shu, Chun-Kwan Tsang, Chris Lee, Qingguo Shao, Jian Lu, Yang Yang Li. Electrochemically Synthesized Porous Ag Double Layers for Surface-Enhanced Raman Spectroscopy Applications. Langmuir 2019, 35 (19) , 6340-6345. https://doi.org/10.1021/acs.langmuir.9b00567
    8. Hu Zhu, Jean-François Masson, C. Geraldine Bazuin. Monolayer Arrays of Nanoparticles on Block Copolymer Brush Films. Langmuir 2019, 35 (15) , 5114-5124. https://doi.org/10.1021/acs.langmuir.8b04085
    9. Jeehan Chang, Jaekyeong Lee, Andrei Georgescu, Dongeun Huh, Taewook Kang. Generalized On-Demand Production of Nanoparticle Monolayers on Arbitrary Solid Surfaces via Capillarity-Mediated Inverse Transfer. Nano Letters 2019, 19 (3) , 2074-2083. https://doi.org/10.1021/acs.nanolett.9b00248
    10. Tyler Curtis, Audrey K. Taylor, Sasha E. Alden, Christopher Swanson, Joelle Lo, Liam Knight, Alyson Silva, Byron D. Gates, Steven R. Emory, David A. Rider. Synthesis and Characterization of Tunable, pH-Responsive Nanoparticle–Microgel Composites for Surface-Enhanced Raman Scattering Detection. ACS Omega 2018, 3 (9) , 10572-10588. https://doi.org/10.1021/acsomega.8b01561
    11. Jing Liu, Jianhe Guo, Guowen Meng, Donglei Fan. Superstructural Raman Nanosensors with Integrated Dual Functions for Ultrasensitive Detection and Tunable Release of Molecules. Chemistry of Materials 2018, 30 (15) , 5256-5263. https://doi.org/10.1021/acs.chemmater.8b01979
    12. Depanjan Sarkar, Rajesh Singh, Anirban Som, C. K. Manju, Mohd Azhardin Ganayee, Ronojoy Adhikari, Thalappil Pradeep. Electrohydrodynamic Assembly of Ambient Ion-Derived Nanoparticles to Nanosheets at Liquid Surfaces. The Journal of Physical Chemistry C 2018, 122 (31) , 17777-17783. https://doi.org/10.1021/acs.jpcc.8b04169
    13. Chih-Ping Yang, Sheng-Uei Fang, Kuang-Hsuan Yang, Hsiao-Chien Chen, Hui-Yen Tsai, Fu-Der Mai, Yu-Chuan Liu. Surface-Enhanced Raman Scattering-Active Substrate Prepared with New Plasmon-Activated Water. ACS Omega 2018, 3 (5) , 4743-4751. https://doi.org/10.1021/acsomega.8b00494
    14. Chaoxiong Ma, Kaiyu Fu, Michael J. Trujillo, Xin Gu, Nameera Baig, Paul W. Bohn, Jon P. Camden. In Situ Probing of Laser Annealing of Plasmonic Substrates with Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (20) , 11031-11037. https://doi.org/10.1021/acs.jpcc.8b01443
    15. Alexis C. Crawford, Aleksander Skuratovsky, and Marc D. Porter . Sampling Error: Impact on the Quantitative Analysis of Nanoparticle-Based Surface-Enhanced Raman Scattering Immunoassays. Analytical Chemistry 2016, 88 (12) , 6515-6522. https://doi.org/10.1021/acs.analchem.6b01263
    16. Limei Tian, Keng-Ku Liu, Max Fei, Sirimuvva Tadepalli, Sisi Cao, Jeffrey A. Geldmeier, Vladimir V. Tsukruk, and Srikanth Singamaneni . Plasmonic Nanogels for Unclonable Optical Tagging. ACS Applied Materials & Interfaces 2016, 8 (6) , 4031-4041. https://doi.org/10.1021/acsami.5b11399
    17. Guido Soliveri, Silvia Ardizzone, Sezin Yüksel, Dana Cialla-May, Juergen Popp, Ulrich S. Schubert, and Stephanie Hoeppener . Microwave-Assisted Silver Nanoparticle Film Formation for SERS Applications. The Journal of Physical Chemistry C 2016, 120 (2) , 1237-1244. https://doi.org/10.1021/acs.jpcc.5b10833
    18. Radhika Dasari and Francis P. Zamborini . Surface Enhanced Raman Spectroscopy at Electrochemically Fabricated Silver Nanowire Junctions. Analytical Chemistry 2016, 88 (1) , 675-681. https://doi.org/10.1021/acs.analchem.5b02343
    19. Xiang Li, Karen Scida, and Richard M. Crooks . Detection of Hepatitis B Virus DNA with a Paper Electrochemical Sensor. Analytical Chemistry 2015, 87 (17) , 9009-9015. https://doi.org/10.1021/acs.analchem.5b02210
    20. James P. Hitchcock, Alison L. Tasker, Elaine A. Baxter, Simon Biggs, and Olivier J. Cayre . Long-Term Retention of Small, Volatile Molecular Species within Metallic Microcapsules. ACS Applied Materials & Interfaces 2015, 7 (27) , 14808-14815. https://doi.org/10.1021/acsami.5b03116
    21. Qun Fu, Zhibing Zhan, Jinxia Dou, Xianzheng Zheng, Rui Xu, Minghong Wu, and Yong Lei . Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. ACS Applied Materials & Interfaces 2015, 7 (24) , 13322-13328. https://doi.org/10.1021/acsami.5b01524
    22. Nitant Gupta, Disha Gupta, Shantanu Aggarwal, Soumik Siddhanta, Chandrabhas Narayana, and Harish C. Barshilia . Thermally Stable Plasmonic Nanocermets Grown on Microengineered Surfaces as Versatile Surface Enhanced Raman Spectroscopy Sensors for Multianalyte Detection. ACS Applied Materials & Interfaces 2014, 6 (24) , 22733-22742. https://doi.org/10.1021/am506879h
    23. Panit Chantharasupawong, Laurene Tetard, and Jayan Thomas . Coupling Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable Plexcitonic Substrates. The Journal of Physical Chemistry C 2014, 118 (41) , 23954-23962. https://doi.org/10.1021/jp506091k
    24. Ichiro Tanabe, Masatoshi Egashira, Toshiaki Suzuki, Takeyoshi Goto, and Yukihiro Ozaki . Prevention of Photooxidation of Deoxymyoglobin and Reduced Cytochrome c during Enhanced Raman Measurements: SERRS with Thiol-Protected Ag Nanoparticles and a TERS Technique. The Journal of Physical Chemistry C 2014, 118 (19) , 10329-10334. https://doi.org/10.1021/jp502981e
    25. Anastasios C. Manikas, Giovanni Romeo, Antonio Papa, and Paolo A. Netti . Highly Efficient Surface-Enhanced Raman Scattering Substrate Formulation by Self-Assembled Gold Nanoparticles Physisorbed on Poly(N-isopropylacrylamide) Thermoresponsive Hydrogels. Langmuir 2014, 30 (13) , 3869-3875. https://doi.org/10.1021/la4048616
    26. Arno Seeboth, Detlef Lötzsch, Ralf Ruhmann, and Olaf Muehling . Thermochromic Polymers—Function by Design. Chemical Reviews 2014, 114 (5) , 3037-3068. https://doi.org/10.1021/cr400462e
    27. Jun-Ying Ho, Ting-Yu Liu, Jiun-Chiou Wei, Juen-Kai Wang, Yuh-Lin Wang, and Jiang-Jen Lin . Selective SERS Detecting of Hydrophobic Microorganisms by Tricomponent Nanohybrids of Silver–Silicate-Platelet–Surfactant. ACS Applied Materials & Interfaces 2014, 6 (3) , 1541-1549. https://doi.org/10.1021/am404218u
    28. Sang Ho Lee, David M. Hoffman, Allan J. Jacobson, and T. Randall Lee . Transparent, Homogeneous Tin Oxide (SnO2) Thin Films Containing SnO2-Coated Gold Nanoparticles. Chemistry of Materials 2013, 25 (23) , 4697-4702. https://doi.org/10.1021/cm402098n
    29. E. Hariprasad and T. P. Radhakrishnan . In Situ Fabricated Polymer–Silver Nanocomposite Thin Film as an Inexpensive and Efficient Substrate for Surface-Enhanced Raman Scattering. Langmuir 2013, 29 (42) , 13050-13057. https://doi.org/10.1021/la402594j
    30. Hiromi Okamoto and Kohei Imura . Visualizing the Optical Field Structures in Metal Nanostructures. The Journal of Physical Chemistry Letters 2013, 4 (13) , 2230-2241. https://doi.org/10.1021/jz401023d
    31. Hyelim Kang, Chul-Joon Heo, Hwan Chul Jeon, Su Yeon Lee, and Seung-Man Yang . Durable Plasmonic Cap Arrays on Flexible Substrate with Real-Time Optical Tunability for High-Fidelity SERS Devices. ACS Applied Materials & Interfaces 2013, 5 (11) , 4569-4574. https://doi.org/10.1021/am400019v
    32. Lingfeng Wu, Weiwei Wu, Xiaolian Jing, Jiale Huang, Daohua Sun, Tareque Odoom-Wubah, Hongyu Liu, Haitao Wang, and Qingbiao Li . Trisodium Citrate-Assisted Biosynthesis of Silver Nanoflowers by Canarium album Foliar Broths as a Platform for SERS Detection. Industrial & Engineering Chemistry Research 2013, 52 (14) , 5085-5094. https://doi.org/10.1021/ie303518z
    33. Hongyun Guo, Dan Jiang, Haibo Li, Shuping Xu, and Weiqing Xu . Highly Efficient Construction of Silver Nanosphere Dimers on Poly(dimethylsiloxane) Sheets for Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2013, 117 (1) , 564-570. https://doi.org/10.1021/jp309396x
    34. An-Xiang Yin, Wen-Chi Liu, Jun Ke, Wei Zhu, Jun Gu, Ya-Wen Zhang, and Chun-Hua Yan . Ru Nanocrystals with Shape-Dependent Surface-Enhanced Raman Spectra and Catalytic Properties: Controlled Synthesis and DFT Calculations. Journal of the American Chemical Society 2012, 134 (50) , 20479-20489. https://doi.org/10.1021/ja3090934
    35. Lifeng Zhang, Xiao Gong, Ying Bao, Yong Zhao, Min Xi, Chaoyang Jiang, and Hao Fong . Electrospun Nanofibrous Membranes Surface-Decorated with Silver Nanoparticles as Flexible and Active/Sensitive Substrates for Surface-Enhanced Raman Scattering. Langmuir 2012, 28 (40) , 14433-14440. https://doi.org/10.1021/la302779q
    36. Minjung Kim, Young Wook Lee, Dongheun Kim, Seunghoon Lee, Soo-Ryoon Ryoo, Dal-Hee Min, Sang Bok Lee, and Sang Woo Han . Reshaping Nanocrystals for Tunable Plasmonic Substrates. ACS Applied Materials & Interfaces 2012, 4 (9) , 5038-5043. https://doi.org/10.1021/am3015058
    37. Chun-Chao Chang, Kuang-Hsuan Yang, Yu-Chuan Liu, Ting-Chu Hsu, and Fu-Der Mai . Surface-Enhanced Raman Scattering-Active Au/SiO2 Nanocomposites Prepared Using Sonoelectrochemical Pulse Deposition Methods. ACS Applied Materials & Interfaces 2012, 4 (9) , 4700-4707. https://doi.org/10.1021/am3017366
    38. Yongxing Hu and Yugang Sun . Stable Magnetic Hot Spots for Simultaneous Concentration and Ultrasensitive Surface-Enhanced Raman Scattering Detection of Solution Analytes. The Journal of Physical Chemistry C 2012, 116 (24) , 13329-13335. https://doi.org/10.1021/jp303775m
    39. Holger Lange, Beatriz H. Juárez, Adrian Carl, Marten Richter, Neus G. Bastús, Horst Weller, Christian Thomsen, Regine von Klitzing, and Andreas Knorr . Tunable Plasmon Coupling in Distance-Controlled Gold Nanoparticles. Langmuir 2012, 28 (24) , 8862-8866. https://doi.org/10.1021/la3001575
    40. K. Marvin Schulz, Sabine Abb, Rute Fernandes, Martina Abb, Antonios G. Kanaras, and Otto L. Muskens . Formation and Plasmonic Response of Self-Assembled Layers of Colloidal Gold Nanorods and Branched Gold Nanoparticles. Langmuir 2012, 28 (24) , 8874-8880. https://doi.org/10.1021/la300199j
    41. Xianzhong Lang, Teng Qiu, Yin Yin, Fan Kong, Lifang Si, Qi Hao, and Paul K. Chu . Silver Nanovoid Arrays for Surface-Enhanced Raman Scattering. Langmuir 2012, 28 (23) , 8799-8803. https://doi.org/10.1021/la301542n
    42. A. Marimuthu, Phillip Christopher, and Suljo Linic . Design of Plasmonic Platforms for Selective Molecular Sensing Based on Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C 2012, 116 (17) , 9824-9829. https://doi.org/10.1021/jp301443y
    43. Syed Mubeen, Shunping Zhang, Namhoon Kim, Seungjoon Lee, Stephan Krämer, Hongxing Xu, and Martin Moskovits . Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide. Nano Letters 2012, 12 (4) , 2088-2094. https://doi.org/10.1021/nl300351j
    44. Huhu Cheng, Yang Zhao, Yueqiong Fan, Xuejun Xie, Liangti Qu, and Gaoquan Shi . Graphene-Quantum-Dot Assembled Nanotubes: A New Platform for Efficient Raman Enhancement. ACS Nano 2012, 6 (3) , 2237-2244. https://doi.org/10.1021/nn204289t
    45. Chang H. Lee, Mikella E. Hankus, Limei Tian, Paul M. Pellegrino, and Srikanth Singamaneni . Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Analytical Chemistry 2011, 83 (23) , 8953-8958. https://doi.org/10.1021/ac2016882
    46. Xiao-Yang Zhang, Anming Hu, Tong Zhang, Wei Lei, Xiao-Jun Xue, Yunhong Zhou, and Walt W. Duley . Self-Assembly of Large-Scale and Ultrathin Silver Nanoplate Films with Tunable Plasmon Resonance Properties. ACS Nano 2011, 5 (11) , 9082-9092. https://doi.org/10.1021/nn203336m
    47. Qin Zhou, Yuping He, Justin Abell, Zhengjun Zhang, and Yiping Zhao . Optical Properties and Surface Enhanced Raman Scattering of L-Shaped Silver Nanorod Arrays. The Journal of Physical Chemistry C 2011, 115 (29) , 14131-14140. https://doi.org/10.1021/jp204389v
    48. Fu-Der Mai, Chung-Chin Yu, Yu-Chuan Liu, Kuang-Hsuan Yang, and Ming-Yu Juang . Preparation of Surface-Enhanced Raman Scattering-Active Au/Al2O3 Colloids by Sonoelectrochemical Methods. The Journal of Physical Chemistry C 2011, 115 (28) , 13660-13666. https://doi.org/10.1021/jp203931r
    49. Matthew Rycenga, Claire M. Cobley, Jie Zeng, Weiyang Li, Christine H. Moran, Qiang Zhang, Dong Qin, and Younan Xia . Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews 2011, 111 (6) , 3669-3712. https://doi.org/10.1021/cr100275d
    50. Yasushi Mino, Satoshi Watanabe, and Minoru T. Miyahara . Fabrication of Colloidal Grid Network by Two-Step Convective Self-Assembly. Langmuir 2011, 27 (9) , 5290-5295. https://doi.org/10.1021/la200515w
    51. Yu Zhao, Xue-Jin Zhang, Jing Ye, Li-Miao Chen, Shu-Ping Lau, Wen-Jun Zhang, and Shuit-Tong Lee . Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering. ACS Nano 2011, 5 (4) , 3027-3033. https://doi.org/10.1021/nn2001068
    52. Xiaoying Xu, Katyayani Seal, Xiaoshan Xu, Ilia Ivanov, Chun-Hway Hsueh, Nahla Abu Hatab, Lifeng Yin, Xiangqun Zhang, Zhaohua Cheng, Baohua Gu, Zhenyu Zhang, and Jian Shen . High Tunability of the Surface-Enhanced Raman Scattering Response with a Metal−Multiferroic Composite. Nano Letters 2011, 11 (3) , 1265-1269. https://doi.org/10.1021/nl104291g
    53. Heechul Lee, Sukbeom You, Peter V. Pikhitsa, Junhoi Kim, Sunghoon Kwon, Chang Gyu Woo, and Mansoo Choi . Three-Dimensional Assembly of Nanoparticles from Charged Aerosols. Nano Letters 2011, 11 (1) , 119-124. https://doi.org/10.1021/nl103787k
    54. Juan Hu and Chun-yang Zhang. Sensitive Detection of Nucleic Acids with Rolling Circle Amplification and Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry 2010, 82 (21) , 8991-8997. https://doi.org/10.1021/ac1019599
    55. Naomi J. Halas. Plasmonics: An Emerging Field Fostered by Nano Letters. Nano Letters 2010, 10 (10) , 3816-3822. https://doi.org/10.1021/nl1032342
    56. Nam-Jung Kim. Physical Origins of Chemical Enhancement of Surface-Enhanced Raman Spectroscopy on a Gold Nanoparticle-Coated Polymer. The Journal of Physical Chemistry C 2010, 114 (33) , 13979-13984. https://doi.org/10.1021/jp103360m
    57. Kuang-Hsuan Yang, Yu-Chuan Liu, Chung-Chin Yu and Bo-Chuen Chen. New Pathway To Prepare Surface-Enhanced Raman Scattering-Active Au/TiO2 Nanocomposites-Containing Substrates by Sonoelectrochemical Methods. The Journal of Physical Chemistry C 2010, 114 (30) , 12863-12869. https://doi.org/10.1021/jp100247h
    58. Kuang-Hsuan Yang, Yu-Chuan Liu and Chung-Chin Yu . Simple Strategy To Improve Surface-Enhanced Raman Scattering Based on Electrochemically Prepared Roughened Silver Substrates. Langmuir 2010, 26 (13) , 11512-11517. https://doi.org/10.1021/la100235x
    59. Yinghui Sun, Kai Liu, Jiao Miao, Zheyao Wang, Baozhong Tian, Lina Zhang, Qunqing Li, Shoushan Fan and Kaili Jiang . Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes. Nano Letters 2010, 10 (5) , 1747-1753. https://doi.org/10.1021/nl100170j
    60. Kensuke Akamatsu, Megumi Shimada, Takaaki Tsuruoka, Hidemi Nawafune, Syuji Fujii and Yoshinobu Nakamura . Synthesis of pH-Responsive Nanocomposite Microgels with Size-Controlled Gold Nanoparticles from Ion-Doped, Lightly Cross-Linked Poly(vinylpyridine). Langmuir 2010, 26 (2) , 1254-1259. https://doi.org/10.1021/la902450c
    61. R. Clayton Shallcross, Gulraj S. Chawla, F. Saneeha Marikkar, Stephanie Tolbert, Jeffrey Pyun and Neal R. Armstrong. Efficient CdSe Nanocrystal Diffraction Gratings Prepared by Microcontact Molding. ACS Nano 2009, 3 (11) , 3629-3637. https://doi.org/10.1021/nn900735y
    62. Matthias Geissler, Kebin Li, Bo Cui, Liviu Clime and Teodor Veres. Plastic Substrates for Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2009, 113 (40) , 17296-17300. https://doi.org/10.1021/jp9038607
    63. Di-Yan Wang, Tzu-Shen Teng, Yi-Chou Wu, Yi-Cheng Lee, Kuei-Hsien Chen, Chung-Hsuan Chen, Ying-Chih Chang and Chia-Chun Chen . Silver-Nanoparticle-Conjugated Polypeptide Brushes for Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2009, 113 (31) , 13498-13504. https://doi.org/10.1021/jp903664u
    64. Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, R. A. Dluhy and Y.-P. Zhao . Surface Enhanced Raman Scattering from an Ag Nanorod Array Substrate: The Site Dependent Enhancement and Layer Absorbance Effect. The Journal of Physical Chemistry C 2009, 113 (22) , 9664-9669. https://doi.org/10.1021/jp902142y
    65. Yu-Chuan Liu, Kuang-Hsuan Yang and Ting-Chu Hsu. Improved Surface-Enhanced Raman Scattering Performances on Silver−Silica Nanocomposites. The Journal of Physical Chemistry C 2009, 113 (19) , 8162-8168. https://doi.org/10.1021/jp810503z
    66. Taejoon Kang, Ilsun Yoon, Ki-Seok Jeon, Wonjun Choi, Yonghoon Lee, Kwanyong Seo, Youngdong Yoo, Q-Han Park, Hyotcherl Ihee, Yung Doug Suh and Bongsoo Kim. Creating Well-Defined Hot Spots for Surface-Enhanced Raman Scattering by Single-Crystalline Noble Metal Nanowire Pairs. The Journal of Physical Chemistry C 2009, 113 (18) , 7492-7496. https://doi.org/10.1021/jp809391c
    67. Ilsun Yoon, Taejoon Kang, Wonjun Choi, Jangbae Kim, Youngdong Yoo, Sang-Woo Joo, Q-Han Park, Hyotcherl Ihee and Bongsoo Kim . Single Nanowire on a Film as an Efficient SERS-Active Platform. Journal of the American Chemical Society 2009, 131 (2) , 758-762. https://doi.org/10.1021/ja807455s
    68. Shaojun Guo, Shaojun Dong and Erkang Wang. Rectangular Silver Nanorods: Controlled Preparation, Liquid−Liquid Interface Assembly, and Application in Surface-Enhanced Raman Scattering. Crystal Growth & Design 2009, 9 (1) , 372-377. https://doi.org/10.1021/cg800583h
    69. Bingjie Yang, Nan Lu, Chunyu Huang, Dianpeng Qi, Gang Shi, Hongbo Xu, Xiaodong Chen, Bin Dong, Wei Song, Bing Zhao and Lifeng Chi . Electrochemical Deposition of Silver Nanoparticle Arrays with Tunable Density. Langmuir 2009, 25 (1) , 55-58. https://doi.org/10.1021/la803559c
    70. Yu-Chuan Liu, Chung-Chin Yu and Ting-Chu Hsu . Effect of TiO2 Nanoparticles on the Improved Performances on Electrochemically Prepared Surface-Enhanced Raman Scattering-Active Silver Substrates. The Journal of Physical Chemistry C 2008, 112 (41) , 16022-16027. https://doi.org/10.1021/jp805997n
    71. Nicolas Marquestaut, Amanda Martin, David Talaga, Laurent Servant, Serge Ravaine, Stéphane Reculusa, Dario M. Bassani, Elizabeth Gillies and François Lagugné-Labarthet . Raman Enhancement of Azobenzene Monolayers on Substrates Prepared by Langmuir−Blodgett Deposition and Electron-Beam Lithography Techniques. Langmuir 2008, 24 (19) , 11313-11321. https://doi.org/10.1021/la801697u
    72. L. Minati, G. Speranza, L. Calliari, V. Micheli, A. Baranov and S. Fanchenko . The Influence of Metal Nanoparticle Size Distribution in Photoelectron Spectroscopy. The Journal of Physical Chemistry A 2008, 112 (34) , 7856-7861. https://doi.org/10.1021/jp804169q
    73. Bo Hu, Shang-Bing Wang, Kan Wang, Meng Zhang and Shu-Hong Yu. Microwave-Assisted Rapid Facile “Green” Synthesis of Uniform Silver Nanoparticles: Self-Assembly into Multilayered Films and Their Optical Properties. The Journal of Physical Chemistry C 2008, 112 (30) , 11169-11174. https://doi.org/10.1021/jp801267j
    74. Dermot Diamond,, Shirley Coyle,, Silvia Scarmagnani, and, Jer Hayes. Wireless Sensor Networks and Chemo-/Biosensing. Chemical Reviews 2008, 108 (2) , 652-679. https://doi.org/10.1021/cr0681187
    75. Sujit Kumar Ghosh and, Tarasankar Pal. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chemical Reviews 2007, 107 (11) , 4797-4862. https://doi.org/10.1021/cr0680282
    76. Yong Yang,, Jianlin Shi,, Taiki Tanaka, and, Masayuki Nogami. Self-Assembled Silver Nanochains for Surface-Enhanced Raman Scattering. Langmuir 2007, 23 (24) , 12042-12047. https://doi.org/10.1021/la701610s
    77. Juncheng Liu,, Jonathan Sutton, and, Christopher B. Roberts. Synthesis and Extraction of Monodisperse Sodium Carboxymethylcellulose-Stabilized Platinum Nanoparticles for the Self-assembly of Ordered Arrays. The Journal of Physical Chemistry C 2007, 111 (31) , 11566-11576. https://doi.org/10.1021/jp071967t
    78. Yu-Chuan Liu,, Ting-Chu Hsu, and, Jeng-Feng Tsai. Thermal Stability of Electrochemically Prepared Surface-Enhanced Raman Scattering-Active Metals Substrates. The Journal of Physical Chemistry C 2007, 111 (28) , 10570-10574. https://doi.org/10.1021/jp0702898
    79. Matthew R. Branham,, Alicia D. Douglas,, Allan J. Mills,, Joseph B. Tracy,, Peter S. White, and, Royce W. Murray. Arylthiolate-Protected Silver Quantum Dots. Langmuir 2006, 22 (26) , 11376-11383. https://doi.org/10.1021/la062329p
    80. Fredrik Svedberg,, Zhipeng Li,, Hongxing Xu, and, Mikael Käll. Creating Hot Nanoparticle Pairs for Surface-Enhanced Raman Spectroscopy through Optical Manipulation. Nano Letters 2006, 6 (12) , 2639-2641. https://doi.org/10.1021/nl062101m
    81. Li Zhang,, Yuhua Shen,, Anjian Xie,, Shikuo Li,, Baokang Jin, and, Qingfeng Zhang. One-Step Synthesis of Monodisperse Silver Nanoparticles beneath Vitamin E Langmuir Monolayers. The Journal of Physical Chemistry B 2006, 110 (13) , 6615-6620. https://doi.org/10.1021/jp0570216
    82. Juncheng Liu,, Madhu Anand, and, Christopher B. Roberts. Synthesis and Extraction of β-d-Glucose-Stabilized Au Nanoparticles Processed into Low-Defect, Wide-Area Thin Films and Ordered Arrays Using CO2-Expanded Liquids. Langmuir 2006, 22 (9) , 3964-3971. https://doi.org/10.1021/la060450q
    83. A. Kaan Kalkan and, Stephen J. Fonash. Electroless Synthesis of Ag Nanoparticles on Deposited Nanostructured Si Films. The Journal of Physical Chemistry B 2005, 109 (44) , 20779-20785. https://doi.org/10.1021/jp052958s
    84. Wenlong Cheng,, Shaojun Dong, and, Erkang Wang. Spontaneous Fractal Aggregation of Gold Nanoparticles and Controlled Generation of Aggregate-Based Fractal Networks at Air/Water Interface. The Journal of Physical Chemistry B 2005, 109 (41) , 19213-19218. https://doi.org/10.1021/jp052255a
    85. Deepti S. Sidhaye,, Sudhir Kashyap,, Murali Sastry,, Srinivas Hotha, and, B. L. V. Prasad. Gold Nanoparticle Networks with Photoresponsive Interparticle Spacings. Langmuir 2005, 21 (17) , 7979-7984. https://doi.org/10.1021/la051125q
    86. Maria Josè Lo Faro, Ileana Ielo, Dario Morganti, Antonio Alessio Leonardi, Sabrina Conoci, Barbara Fazio, Giovanna De Luca, Alessia Irrera. Alkoxysilane-Mediated Decoration of Si Nanowires Vertical Arrays with Au Nanoparticles as Improved SERS-Active Platforms. International Journal of Molecular Sciences 2023, 24 (23) , 16685. https://doi.org/10.3390/ijms242316685
    87. K. L. P. Thi, V. N. Tran, L. V. T. Hung. Size and Density Control of Au Nanoparticles Decorated on MoS2 Thin Films for Preparing High-Performance SERS Substrates. Russian Journal of Inorganic Chemistry 2023, 68 (14) , 1980-1992. https://doi.org/10.1134/S0036023623602581
    88. Wenjing Lou, Liting Xie, Lei Xu, Min Xu, Fan Xu, Qiyu Zhao, Tianan Jiang. Present and future of metal nanoparticles in tumor ablation therapy. Nanoscale 2023, 15 (44) , 17698-17726. https://doi.org/10.1039/D3NR04362B
    89. Taehyun Kim, Jongsu Lee, Eui‐Sang Yu, Seungha Lee, Hyeonbin Woo, Jeonghun Kwak, Seok Chung, Inhee Choi, Yong‐Sang Ryu. Fabry–Perot Cavity Control for Tunable Raman Scattering. Small 2023, 19 (29) https://doi.org/10.1002/smll.202207003
    90. Guangyin Qu, Xiaojuan Zhang, Liang Lu, Siqi Li, Wenyu Du, Zhigang Cao, Chao Li, Lin Zhang, Kaiming Zhou, Si Wu, Jiajun Ma, Jiangang Gao, Benli Yu, Zhijia Hu. Efficient and tunable liquid crystal random laser based on plasmonic-enhanced FRET. APL Photonics 2023, 8 (6) https://doi.org/10.1063/5.0134978
    91. Mingqian Liu, Man Yang, Xizi Wan, Zhiyong Tang, Lei Jiang, Shutao Wang. From Nanoscopic to Macroscopic Materials by Stimuli‐Responsive Nanoparticle Aggregation. Advanced Materials 2023, 35 (20) https://doi.org/10.1002/adma.202208995
    92. Tianchi Liu, Tzu-Lan Chang, Xiaqing Zhou, Scott Ruppel, Jun F Liang. Phase separation enabled silver nano-array. Nanotechnology 2023, 34 (6) , 065301. https://doi.org/10.1088/1361-6528/aca0f5
    93. Ziran Ye, Haixia Huang, Fengyun Xu, Ping Lu, Yiben Chen, Jiawei Shen, Gaoxiang Ye, Fan Gao, Bo Yan. Thermal Annealing Effect on Surface-Enhanced Raman Scattering of Gold Films Deposited on Liquid Substrates. Molecules 2023, 28 (3) , 1472. https://doi.org/10.3390/molecules28031472
    94. Muhammad Usman, M. U. U. Ishafaq, Zahir Muhammad, Wajid Ali, Ghulam Dastgeer, Xiao Zhang, Liang Wang. Evaporation-induced self-assembly of gold nanorods on a hydrophobic substrate for surface enhanced Raman spectroscopy applications. Frontiers in Materials 2023, 9 https://doi.org/10.3389/fmats.2022.1048011
    95. Wanqing Teng, Jing Zhao, Qi Li, Pengfei Shi, Jing Zhang, Mei Yan, Shusheng Zhang. A DNAzyme-mediated signal amplification biosensor for ultrasensitive detection of lead ions based on SERS tags. Sensors & Diagnostics 2023, 2 (1) , 132-139. https://doi.org/10.1039/D2SD00147K
    96. Xinhui Mao, Yanxin Wang, Xianhang Yan, Zhenzhen Huang, Zhiyuan Gao, Yuxuan Wang, Linjun Huang, Matt J. Kipper, Jianguo Tang. A review of superwetting membranes and nanofibers for efficient oil/water separation. Journal of Materials Science 2023, 58 (1) , 3-33. https://doi.org/10.1007/s10853-022-07945-8
    97. Elena Shevchenko. Multicomponent nanoparticle superlattices. 2023, 298-323. https://doi.org/10.1016/B978-0-12-822425-0.00112-3
    98. Chih-Ping Yang, Wei-Yu Kao, Shih-Hao Yu, Fu-Der Mai, Hui-Yen Tsai, Jing-Wei Chen, Yu-Chuan Liu. Environmentally friendly etchant of in situ plasmon-activated water to improve SERS sensing of pesticides. Sensors and Actuators B: Chemical 2023, 374 , 132798. https://doi.org/10.1016/j.snb.2022.132798
    99. Yashna Sharma, Enes Cakmak, Hsiang-kuo Yuan, Roberto Garcia, Dale Batchelor, Tuan Vo-Dinh, Tushar Ghosh, Anuj Dhawan. Voltage-tunable surface-enhanced Raman scattering substrates based on electroactive polymeric membranes containing plasmonic nanoparticles. Optics Continuum 2022, 1 (12) , 2426. https://doi.org/10.1364/OPTCON.455460
    100. R Khalil. Electrical characteristics of (AgNPs-PVA)-based Schottky diode and its application as a low-voltage varistor devices. Physica Scripta 2022, 97 (12) , 125832. https://doi.org/10.1088/1402-4896/aca2f3
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect