ACS Publications. Most Trusted. Most Cited. Most Read
Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography
My Activity
    Letter

    Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography
    Click to copy article linkArticle link copied!

    View Author Information
    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2005, 5, 9, 1784–1788
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl051389x
    Published August 23, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A low-cost procedure is introduced for fabricating large-area, liftable, ordered TiO2 nanobowl sheets. The sheet is made using the template of self-assembled polystyrene spheres, followed by atomic layer deposition (ALD), ion milling, and etching. By introducing a thin organic layer between the nanobowls and the substrate, the whole sheet can be lifted-off in full size. The dimension of the holes at the bottom of the nanobowls is controlled by additional ALD; thus, the sheet has been applied as a reusable mask for producing nanodot patterns with designed sizes. This technique demonstrates a simple and economic nanolithiography approach for producing various designed patterns without using a clean room, and it has a great potential for scale-up, mass production, and commercial applications.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 59 publications.

    1. Huayu Yang, Xin Lu, Zhong Xin. One-Step Synthesis of Nonspherical Organosilica Particles with Tunable Morphology. Langmuir 2018, 34 (39) , 11723-11728. https://doi.org/10.1021/acs.langmuir.8b01446
    2. Bin Wang, Fangmeng Liu, Xue Yang, Yehui Guan, Ce Ma, Xidong Hao, Xishuang Liang, Fengmin Liu, Peng Sun, Tong Zhang, and Geyu Lu . Fabrication of Well-Ordered Three-Phase Boundary with Nanostructure Pore Array for Mixed Potential-Type Zirconia-Based NO2 Sensor. ACS Applied Materials & Interfaces 2016, 8 (26) , 16752-16760. https://doi.org/10.1021/acsami.6b04219
    3. Shun Chen, Junjun Zhang, Shaokun Song, Rui Feng, Yanyun Ju, Chuanxi Xiong, and Lijie Dong . Hydrophilic Magnetofluorescent Nanobowls: Rapid Magnetic Response and Efficient Photoluminescence. Langmuir 2016, 32 (2) , 611-618. https://doi.org/10.1021/acs.langmuir.5b03978
    4. Hiroshi Endo, Yoshiyuki Mochizuki, Masahiro Tamura, and Takeshi Kawai . Fabrication and Functionalization of Periodically Aligned Metallic Nanocup Arrays Using Colloidal Lithography with a Sinusoidally Wrinkled Substrate. Langmuir 2013, 29 (48) , 15058-15064. https://doi.org/10.1021/la403431n
    5. Xianglin Li, Hailong Hu, Dehui Li, Zexiang Shen, Qihua Xiong, Shuzhou Li, and Hong Jin Fan . Ordered Array of Gold Semishells on TiO2 Spheres: An Ultrasensitive and Recyclable SERS Substrate. ACS Applied Materials & Interfaces 2012, 4 (4) , 2180-2185. https://doi.org/10.1021/am300189n
    6. Miaojun Xu, Nan Lu, Hongbo Xu, Dianpeng Qi, Yandong Wang and Lifeng Chi . Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography. Langmuir 2009, 25 (19) , 11216-11220. https://doi.org/10.1021/la902196t
    7. Xuemin Zhang, Junhu Zhang, Zhiyu Ren, Xiao Li, Xun Zhang, Difu Zhu, Tieqiang Wang, Tian Tian and Bai Yang . Morphology and Wettability Control of Silicon Cone Arrays Using Colloidal Lithography. Langmuir 2009, 25 (13) , 7375-7382. https://doi.org/10.1021/la900258e
    8. Jiabing Shen, Huizhao Zhuang, Dexiao Wang, Chengshan Xue and Hang Liu. Growth and Characterization of ZnO Nanoporous Belts. Crystal Growth & Design 2009, 9 (5) , 2187-2190. https://doi.org/10.1021/cg800847d
    9. Jian Ye, Pol Van Dorpe, Willem Van Roy, Gustaaf Borghs and Guido Maes. Fabrication, Characterization, and Optical Properties of Gold Nanobowl Submonolayer Structures. Langmuir 2009, 25 (3) , 1822-1827. https://doi.org/10.1021/la803768y
    10. Sherdeep Singh, Miguel Festin, Warren R. T. Barden, Luan Xi, James T. Francis and Peter Kruse . Universal Method for the Fabrication of Detachable Ultrathin Films of Several Transition Metal Oxides. ACS Nano 2008, 2 (11) , 2363-2373. https://doi.org/10.1021/nn800488h
    11. Dong-Feng Zhang, Ling-Dong Sun, Jing Zhang, Zheng-Guang Yan and Chun-Hua Yan. Hierarchical Construction of ZnO Architectures Promoted by Heterogeneous Nucleation. Crystal Growth & Design 2008, 8 (10) , 3609-3615. https://doi.org/10.1021/cg800143x
    12. Ling Chen, Jingyun Huang, Zhizhen Ye, Haiping He, Yujia Zeng, Shuangjiang Wang and Huizhen Wu . Controllable Synthesis of Ordered ZnO Nanodots Arrays by Nanosphere Lithography. Crystal Growth & Design 2008, 8 (8) , 2917-2920. https://doi.org/10.1021/cg701277f
    13. Gang Zhang and Dayang Wang. Fabrication of Heterogeneous Binary Arrays of Nanoparticles via Colloidal Lithography. Journal of the American Chemical Society 2008, 130 (17) , 5616-5617. https://doi.org/10.1021/ja710771j
    14. Yue Li, Weiping Cai and Guotao Duan. Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals. Chemistry of Materials 2008, 20 (3) , 615-624. https://doi.org/10.1021/cm701977g
    15. Gang Zhang,, Dayang Wang, and, Helmuth Möhwald. Fabrication of Multiplex Quasi-Three-Dimensional Grids of One-Dimensional Nanostructures via Stepwise Colloidal Lithography. Nano Letters 2007, 7 (11) , 3410-3413. https://doi.org/10.1021/nl071820d
    16. Bahri Gür, Kadem Meral. Characterization of merocyanine 540-octadecylamine thin films fabricated by Langmuir-Blodgett and Spin-Coating techniques. Journal of Molecular Structure 2019, 1197 , 227-234. https://doi.org/10.1016/j.molstruc.2019.07.051
    17. Zohreh Vafapour. Polarization-Independent Perfect Optical Metamaterial Absorber as a Glucose Sensor in Food Industry Applications. IEEE Transactions on NanoBioscience 2019, 18 (4) , 622-627. https://doi.org/10.1109/TNB.2019.2929802
    18. Yandong Wang, Mengyuan Zhang, Yuekun Lai, Lifeng Chi. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22 , 36-61. https://doi.org/10.1016/j.nantod.2018.08.010
    19. Lingling Chen, Aihua Sun, Biao Wang, Gaojie Xu. Methyl-modified silica nanobowl for 2D self-organized nanostructure with hydrophobic performance. Nanotechnology 2018, 29 (29) , 295605. https://doi.org/10.1088/1361-6528/aac281
    20. Huan Yang, Ben Q Li, Xinbing Jiang, Wei Yu, Hongzhong Liu. Nano-fabrication of depth-varying amorphous silicon crescent shell array for light trapping. Nanotechnology 2017, 28 (50) , 505301. https://doi.org/10.1088/1361-6528/aa982b
    21. Yu-Lin Tsai, Kun-Yu Lai, Ming-Jui Lee, Yu-Kuang Liao, Boon S. Ooi, Hao-Chung Kuo, Jr-Hau He. Photon management of GaN-based optoelectronic devices via nanoscaled phenomena. Progress in Quantum Electronics 2016, 49 , 1-25. https://doi.org/10.1016/j.pquantelec.2016.08.001
    22. Guoxiu Tong, Yun Liu, Jianguo Guan. In situ gas bubble-assisted one-step synthesis of polymorphic Co3O4 nanostructures with improved electrochemical performance for lithium ion batteries. Journal of Alloys and Compounds 2014, 601 , 167-174. https://doi.org/10.1016/j.jallcom.2014.02.152
    23. Guan-Jhong Lin, Hsin-Ping Wang, Der-Hsien Lien, Po-Han Fu, Hung-Chih Chang, Cheng-Han Ho, Chin-An Lin, Kun-Yu Lai, Jr-Hau He. A broadband and omnidirectional light-harvesting scheme employing nanospheres on Si solar cells. Nano Energy 2014, 6 , 36-43. https://doi.org/10.1016/j.nanoen.2014.03.004
    24. J. Bai, C. C. Yang, M. Athanasiou, T. Wang. Efficiency enhancement of InGaN/GaN solar cells with nanostructures. Applied Physics Letters 2014, 104 (5) https://doi.org/10.1063/1.4864640
    25. XiaoZhou Ye, LiMin Qi. Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas. Science China Chemistry 2014, 57 (1) , 58-69. https://doi.org/10.1007/s11426-013-5018-2
    26. Zhijun Ma, Xuanzhao Pan, Zhongliang Hu, Guoping Dong, Jianrong Qiu. Preparation of free-standing SiO2 nanobowl with an electrospraying technique. Journal of Non-Crystalline Solids 2014, 383 , 75-80. https://doi.org/10.1016/j.jnoncrysol.2013.04.009
    27. Jiaojie Cao, Qingzeng Zhu, Jintao Dou, Chunxiao Li, Weikai Chen, Zhengqiang Li. Controlling sol–gel polymerization to create bowl-shaped polysilsesquioxane particles with a kippah structure. Polymer 2013, 54 (10) , 2493-2497. https://doi.org/10.1016/j.polymer.2013.03.033
    28. Zhi-ming Zhang, Yue Wang, Qiong Li, Liang-min Yu, Jadranka Travas-Sejdic, Li-juan Zhang. Bowl-shaped poly(3,4-ethylenedioxythiophene)/γ-Fe2O3 composites with elecromagnetic function. Chinese Journal of Polymer Science 2013, 31 (3) , 503-513. https://doi.org/10.1007/s10118-013-1239-2
    29. Hoo Keun Park, Seong Woong Yoon, Da Yeon Choi, Young Rag Do. Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals. Journal of Materials Chemistry C 2013, 1 (9) , 1732. https://doi.org/10.1039/c2tc00652a
    30. Tao Ding, Kai Song, Guoqiang Yang, Chen-Ho Tung. Tunable Fabrication of Two-Dimensional Arrays of Polymer Nanobowls for Biomimic Growth of Amorphous Calcium Carbonate. Macromolecular Rapid Communications 2012, 33 (18) , 1562-1567. https://doi.org/10.1002/marc.201200351
    31. You-Cun Chen, Li-Hua Chen, Yu-Lin Min, Yuan-Guang Zhang. Simple method to synthesize novel mesoporous zinc oxide. Journal of Materials Science: Materials in Electronics 2012, 23 (9) , 1759-1763. https://doi.org/10.1007/s10854-012-0658-0
    32. . “Home”-Like Nanostructures. 2012, 285-382. https://doi.org/10.1201/b11801-12
    33. P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, J. H. He. Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs. Applied Physics Letters 2012, 100 (1) https://doi.org/10.1063/1.3673838
    34. Qian Sun, Wei Liu, Rongming Wang. Double-layered NiPt nanobowls with ultrathin shell synthesized in water at room temperature. CrystEngComm 2012, 14 (16) , 5151. https://doi.org/10.1039/c2ce25425e
    35. Xueping Ge, Xuewu Ge, Mozhen Wang, Huarong Liu, Bin Fang, Zhi Li, Xiaojun Shi, Cunzhong Yang, Guang Li. One‐Pot Synthesis of Colloidal Nanobowls and Hybrid Multipod‐like Nanoparticles by Radiation Miniemulsion Polymerization. Macromolecular Rapid Communications 2011, 32 (20) , 1615-1619. https://doi.org/10.1002/marc.201100337
    36. Bingxin Zhang, Yanhui Zhao, Qingzhen Hao, Brian Kiraly, Iam-Choon Khoo, Shufen Chen, Tony Jun Huang. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Optics Express 2011, 19 (16) , 15221. https://doi.org/10.1364/OE.19.015221
    37. Di Di, Pei Tao Dong, Jian Chen, Jiao Chen, Xue Zhong Wu, Sheng Yi Li. MEMS Assisted Fabrication of Cr Nanobowls. Key Engineering Materials 2011, 483 , 521-525. https://doi.org/10.4028/www.scientific.net/KEM.483.521
    38. Lorenz Steidl, Stefan Frank, Stefan A. L. Weber, Martin Panthöfer, Alexander Birkel, Dominik Koll, Rüdiger Berger, Wolfgang Tremel, Rudolf Zentel. Electrodeposition of ZnO nanorods on opaline replica as hierarchically structured systems. J. Mater. Chem. 2011, 21 (4) , 1079-1085. https://doi.org/10.1039/C0JM02759F
    39. Shikuan Yang, Yong Lei. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3 (7) , 2768. https://doi.org/10.1039/c1nr10296f
    40. Y.J. Zhang, Y.X. Wang, W.E. Billups, H.B. Liu, J.H. Yang. Ordered magnetic multilayer nanobowl array by nanosphere template method. Solid State Communications 2010, 150 (47-48) , 2357-2361. https://doi.org/10.1016/j.ssc.2010.09.047
    41. Junhu Zhang, Yunfeng Li, Xuemin Zhang, Bai Yang. Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Materials 2010, 22 (38) , 4249-4269. https://doi.org/10.1002/adma.201000755
    42. Baoyou Geng, Jun Liu, Chunhua Wang. Multi-layer ZnO architectures: Polymer induced synthesis and their application as gas sensors. Sensors and Actuators B: Chemical 2010, 150 (2) , 742-748. https://doi.org/10.1016/j.snb.2010.08.008
    43. Hui‐yan Ma, Yun‐wu Li, Fei Cao, Yu Gao, Jian Gong, Yu‐lin Deng. Facile synthesis of polyaniline hemispheres in diethyl ether/ice mixture solvent and growth mechanism study. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (16) , 3596-3603. https://doi.org/10.1002/pola.24140
    44. Shan Jiang, Jingyu Chen, Jun Tang, E. Jin, Lirong Kong, Wanjin Zhang, Ce Wang. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor. Sensors and Actuators B: Chemical 2009, 140 (2) , 520-524. https://doi.org/10.1016/j.snb.2009.04.060
    45. Huizhao Zhuang, Jiabing Shen, Chengshan Xue, Dexiao Wang, Xiaokai Zhang, Hang Liu. Novel W-shaped and straight porous ZnO nanobelts. Applied Surface Science 2009, 255 (9) , 4970-4973. https://doi.org/10.1016/j.apsusc.2008.12.045
    46. Zhe-Xue Lu, Lynn F. Wood, Dennis E. Ohman, Maryanne M. Collinson. Bio-inspired chemical reactors for growing aligned gold nanoparticle-like wires. Chemical Communications 2009, 105 (28) , 4200. https://doi.org/10.1039/b906250e
    47. Tsung-Han Chen, Tsung-Yen Tsai, Kun-Che Hsieh, Shih-Chin Chang, Nyan-Hwa Tai, Hsuen-Li Chen. Two-dimensional metallic nanobowl array transferred onto thermoplastic substrates by microwave heating of carbon nanotubes. Nanotechnology 2008, 19 (46) , 465303. https://doi.org/10.1088/0957-4484/19/46/465303
    48. Yanfang Wang, Xiaolu Chen, Junhu Zhang, Zhiqiang Sun, Yunfeng Li, Kai Zhang, Bai Yang. Fabrication of surface-patterned and free-standing ZnO nanobowls. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 329 (3) , 184-189. https://doi.org/10.1016/j.colsurfa.2008.07.018
    49. Dinesh Jagadeesan, Uzma Mansoori, Pranab Mandal, Athinarayanan Sundaresan, Muthusamy Eswaramoorthy. Hollow Spheres to Nanocups: Tuning the Morphology and Magnetic Properties of Single‐Crystalline α‐Fe 2 O 3 Nanostructures. Angewandte Chemie International Edition 2008, 47 (40) , 7685-7688. https://doi.org/10.1002/anie.200802626
    50. Dinesh Jagadeesan, Uzma Mansoori, Pranab Mandal, Athinarayanan Sundaresan, Muthusamy Eswaramoorthy. Hollow Spheres to Nanocups: Tuning the Morphology and Magnetic Properties of Single‐Crystalline α‐Fe 2 O 3 Nanostructures. Angewandte Chemie 2008, 120 (40) , 7799-7802. https://doi.org/10.1002/ange.200802626
    51. Qingyue Cui, Ke Yu, Ning Zhang, Ziqiang Zhu. Porous ZnO nanobelts evolved from layered basic zinc acetate nanobelts. Applied Surface Science 2008, 254 (11) , 3517-3521. https://doi.org/10.1016/j.apsusc.2007.11.044
    52. M. J. Xue, W. T. Xiao, Z. J. Zhang. Porous Films from Transformation of Polymeric Sphere Arrays. Advanced Materials 2008, 20 (3) , 439-442. https://doi.org/10.1002/adma.200702015
    53. Ting Yu, Binni Varghese, Zexiang Shen, Chwee-Teck Lim, Chorng-Haur Sow. Large-scale metal oxide nanostructures on template-patterned microbowls: A simple method for growth of hierarchical structures. Materials Letters 2008, 62 (3) , 389-393. https://doi.org/10.1016/j.matlet.2007.05.045
    54. Ming Fu, Ji Zhou, Bo Li, Xueguang Huang, Yuehui Wang, Longtu Li. Template-induced directional growth of ZnO nanomeshes by colloidal crystals. Journal of Materials Chemistry 2008, 18 (48) , 5986. https://doi.org/10.1039/b810904d
    55. Gabriele Centi, Siglinda Perathoner. Nano-architecture and reactivity of Titania catalytic materials. Quasi -1D nanostructures. 2007, 367-394. https://doi.org/10.1039/b600902f
    56. W.‐S. Liao, T. Yang, E. T. Castellana, S. Kataoka, P. S. Cremer. A Rapid Prototyping Approach to Ag Nanoparticle Fabrication in the 10–100 nm Range. Advanced Materials 2006, 18 (17) , 2240-2243. https://doi.org/10.1002/adma.200600589
    57. Jingyu Chen, Danming Chao, Xiaofeng Lu, Wanjin Zhang, Sanjeev. K. Manohar. General Synthesis of Two‐Dimensional Patterned Conducting Polymer‐Nanobowl Sheet via Chemical Polymerization. Macromolecular Rapid Communications 2006, 27 (10) , 771-775. https://doi.org/10.1002/marc.200600047
    58. M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen, J. Zhang. ZnO Nanosheets with Ordered Pore Periodicity via Colloidal Crystal Template Assisted Electrochemical Deposition. Advanced Materials 2006, 18 (8) , 1001-1004. https://doi.org/10.1002/adma.200502658
    59. Peter J. Hesketh. Nano/Microfabrication Methods for Sensors and NEMS/MEMS. , 63-130. https://doi.org/10.1007/978-0-387-46283-7_4

    Nano Letters

    Cite this: Nano Lett. 2005, 5, 9, 1784–1788
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl051389x
    Published August 23, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    979

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.