ACS Publications. Most Trusted. Most Cited. Most Read
Measurement of Current-Induced Local Heating in a Single Molecule Junction
My Activity
    Letter

    Measurement of Current-Induced Local Heating in a Single Molecule Junction
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Electrical Engineering & The Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287, Department of Physics, University of California, San Diego, La Jolla, California 92093, and Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2006, 6, 6, 1240–1244
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl0608285
    Published May 23, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have studied the current-induced local heating effects in single molecules covalently bound to two electrodes by measuring the force required to break the molecule−electrode bonds under various conditions. The breakdown process is thermally activated, which is used to extract the effective temperature of the molecular junction as a function of applied bias voltage. We have also performed first-principles calculations of both local heating and current-induced force effects, and the results are in good agreement with the experimental findings.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Arizona State University.

    §

     National Chiao Tung University.

    *

     Corresponding authors. E-mail:  [email protected]; [email protected].

     University of California.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 221 publications.

    1. Umar Rashid, William Bro-Jørgensen, KB Harilal, PA Sreelakshmi, Reetu Rani Mondal, Varun Chittari Pisharam, Keshaba N. Parida, K. Geetharani, Joseph M. Hamill, Veerabhadrarao Kaliginedi. Chemistry of the Au–Thiol Interface through the Lens of Single-Molecule Flicker Noise Measurements. Journal of the American Chemical Society 2024, 146 (13) , 9063-9073. https://doi.org/10.1021/jacs.3c14079
    2. Dylan Dyer, Oliver L. A. Monti. Bond Breaking Kinetics in Mechanically Controlled Break Junction Experiments: A Bayesian Approach. The Journal of Physical Chemistry Letters 2023, 14 (49) , 10935-10942. https://doi.org/10.1021/acs.jpclett.3c02643
    3. Borja Cirera, Martin Wolf, Takashi Kumagai. Joule Heating in Single-Molecule Point Contacts Studied by Tip-Enhanced Raman Spectroscopy. ACS Nano 2022, 16 (10) , 16443-16451. https://doi.org/10.1021/acsnano.2c05642
    4. Junwoo Park, Mohamad S. Kodaimati, Lee Belding, Samuel E. Root, George C. Schatz, George M. Whitesides. Controlled Hysteresis of Conductance in Molecular Tunneling Junctions. ACS Nano 2022, 16 (3) , 4206-4216. https://doi.org/10.1021/acsnano.1c10155
    5. Yixuan Zhu, Zhibing Tan, Wenjing Hong. Simultaneous Electrical and Mechanical Characterization of Single-Molecule Junctions Using AFM-BJ Technique. ACS Omega 2021, 6 (46) , 30873-30888. https://doi.org/10.1021/acsomega.1c04785
    6. Tobias Preis, Sasha Vrbica, Jonathan Eroms, Jascha Repp, Jan M. van Ruitenbeek. Current-Induced One-Dimensional Diffusion of Co Adatoms on Graphene Nanoribbons. Nano Letters 2021, 21 (20) , 8794-8799. https://doi.org/10.1021/acs.nanolett.1c03073
    7. Viviana Mollica Nardo, Giuseppe Cassone, Rosina Celeste Ponterio, Franz Saija, Jiri Sponer, Matteo Tommasini, Sebastiano Trusso. Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. The Journal of Physical Chemistry A 2020, 124 (51) , 10856-10869. https://doi.org/10.1021/acs.jpca.0c09791
    8. Erica S. Forzani, Huixin He, Joshua Hihath, Stuart Lindsay, Reginald M. Penner, Shaopeng Wang, Bingqian Xu. Moving Electrons Purposefully through Single Molecules and Nanostructures: A Tribute to the Science of Professor Nongjian Tao (1963–2020). ACS Nano 2020, 14 (10) , 12291-12312. https://doi.org/10.1021/acsnano.0c06017
    9. Lei Yu, Zhe Wang, Haijian Chen, Jing Guo, Mingyang Zhang, Yichong Liu, Jin He, Shuai Chang. Long-Lived Gold Single-Atom Junctions Formed by a Flexible Probe for Scanning Tunneling Microscopy Applications. ACS Applied Nano Materials 2020, 3 (4) , 3410-3416. https://doi.org/10.1021/acsanm.0c00161
    10. Hui Wang, Zixiao Wang, Yan Wang, Joshua Hihath, Hong-Yuan Chen, Yueqi Li, Nongjian Tao. Potential Dependence of Mechanical Stability and Electronic Coupling of Single S–Au Bonds. Journal of the American Chemical Society 2018, 140 (51) , 18074-18081. https://doi.org/10.1021/jacs.8b10857
    11. Qian Zhang, Shuhui Tao, Yinqi Fan, Cezhou Zhao, Chun Zhao, Weitao Su, Yannick J. Dappe, Richard J. Nichols, Li Yang. Technical Effects of Molecule–Electrode Contacts in Graphene-Based Molecular Junctions. The Journal of Physical Chemistry C 2018, 122 (40) , 23200-23207. https://doi.org/10.1021/acs.jpcc.8b08196
    12. Yuta Tsuji, Thijs Stuyver, Suman Gunasekaran, and Latha Venkataraman . The Influence of Linkers on Quantum Interference: A Linker Theorem. The Journal of Physical Chemistry C 2017, 121 (27) , 14451-14462. https://doi.org/10.1021/acs.jpcc.7b03493
    13. Giuseppe Foti and Héctor Vázquez . Interface Tuning of Current-Induced Cooling in Molecular Circuits. The Journal of Physical Chemistry C 2017, 121 (2) , 1082-1088. https://doi.org/10.1021/acs.jpcc.6b11955
    14. Dong Xiang, Xiaolong Wang, Chuancheng Jia, Takhee Lee, and Xuefeng Guo . Molecular-Scale Electronics: From Concept to Function. Chemical Reviews 2016, 116 (7) , 4318-4440. https://doi.org/10.1021/acs.chemrev.5b00680
    15. Ilias Amanatidis, Jing-Yao Kao, Li-Yang Du, Chun-Wei Pao, and Yu-Chang Chen . Thermoelectric Efficiency of Single-Molecule Junctions: Phase Diagram Constructed from First-Principles Calculations. The Journal of Physical Chemistry C 2015, 119 (52) , 28728-28736. https://doi.org/10.1021/acs.jpcc.5b09221
    16. Damien Thompson, Jianhui Liao, Michael Nolan, Aidan J. Quinn, Christian A. Nijhuis, Colm O’Dwyer, Peter N. Nirmalraj, Christian Schönenberger, and Michel Calame . Formation Mechanism of Metal–Molecule–Metal Junctions: Molecule-Assisted Migration on Metal Defects. The Journal of Physical Chemistry C 2015, 119 (33) , 19438-19451. https://doi.org/10.1021/acs.jpcc.5b04383
    17. Robert M. Metzger . Unimolecular Electronics. Chemical Reviews 2015, 115 (11) , 5056-5115. https://doi.org/10.1021/cr500459d
    18. Shaoyin Guo, Gang Zhou, and Nongjian Tao . Single Molecule Conductance, Thermopower, and Transition Voltage. Nano Letters 2013, 13 (9) , 4326-4332. https://doi.org/10.1021/nl4021073
    19. Tamar Yelin, Ran Vardimon, Natalia Kuritz, Richard Korytár, Alexei Bagrets, Ferdinand Evers, Leeor Kronik, and Oren Tal . Atomically Wired Molecular Junctions: Connecting a Single Organic Molecule by Chains of Metal Atoms. Nano Letters 2013, 13 (5) , 1956-1961. https://doi.org/10.1021/nl304702z
    20. Veerabhadrarao Kaliginedi, Pavel Moreno-García, Hennie Valkenier, Wenjing Hong, Víctor M. García-Suárez, Petra Buiter, Jelmer L. H. Otten, Jan C. Hummelen, Colin J. Lambert, and Thomas Wandlowski . Correlations between Molecular Structure and Single-Junction Conductance: A Case Study with Oligo(phenylene-ethynylene)-Type Wires. Journal of the American Chemical Society 2012, 134 (11) , 5262-5275. https://doi.org/10.1021/ja211555x
    21. Yuta Tsuji, Aleksandar Staykov, and Kazunari Yoshizawa . Molecular Rectifier Based on π–π Stacked Charge Transfer Complex. The Journal of Physical Chemistry C 2012, 116 (3) , 2575-2580. https://doi.org/10.1021/jp209547a
    22. Michael Galperin and Abraham Nitzan . Raman Scattering and Electronic Heating in Molecular Conduction Junctions. The Journal of Physical Chemistry Letters 2011, 2 (17) , 2110-2113. https://doi.org/10.1021/jz2008853
    23. Yu-Shen Liu, Hsuan-Te Yao, and Yu-Chang Chen . Atomic-Scale Field-Effect Transistor as a Thermoelectric Power Generator and Self-Powered Device. The Journal of Physical Chemistry C 2011, 115 (30) , 14988-14996. https://doi.org/10.1021/jp2021243
    24. Paranjothy Manikandan, Jeffrey A. Carter, Dana D. Dlott, and William L. Hase . Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment. The Journal of Physical Chemistry C 2011, 115 (19) , 9622-9628. https://doi.org/10.1021/jp200672e
    25. Xiao-Shun Zhou, Ling Liu, Philippe Fortgang, Anne-Sophie Lefevre, Anna Serra-Muns, Noureddine Raouafi, Christian Amatore, Bing-Wei Mao, Emmanuel Maisonhaute, and Bernd Schöllhorn . Do Molecular Conductances Correlate with Electrochemical Rate Constants? Experimental Insights. Journal of the American Chemical Society 2011, 133 (19) , 7509-7516. https://doi.org/10.1021/ja201042h
    26. Yuta Tsuji, Aleksandar Staykov, and Kazunari Yoshizawa . Orbital Views of Molecular Conductance Perturbed by Anchor Units. Journal of the American Chemical Society 2011, 133 (15) , 5955-5965. https://doi.org/10.1021/ja111021e
    27. Yu-Shen Liu, Bailey C. Hsu, and Yu-Chang Chen . Effect of Thermoelectric Cooling in Nanoscale Junctions. The Journal of Physical Chemistry C 2011, 115 (13) , 6111-6125. https://doi.org/10.1021/jp110920q
    28. Thomas Hines, Ismael Diez-Perez, Joshua Hihath, Hongmei Liu, Zhong-Sheng Wang, Jianwei Zhao, Gang Zhou, Klaus Müllen and Nongjian Tao. Transition from Tunneling to Hopping in Single Molecular Junctions by Measuring Length and Temperature Dependence. Journal of the American Chemical Society 2010, 132 (33) , 11658-11664. https://doi.org/10.1021/ja1040946
    29. Joshua Hihath, Christopher Bruot and Nongjian Tao. Electron−Phonon Interactions in Single Octanedithiol Molecular Junctions. ACS Nano 2010, 4 (7) , 3823-3830. https://doi.org/10.1021/nn100470s
    30. Xinqian Li, Aleksandar Staykov and Kazunari Yoshizawa. Orbital Views of the Electron Transport through Polycyclic Aromatic Hydrocarbons with Different Molecular Sizes and Edge Type Structures. The Journal of Physical Chemistry C 2010, 114 (21) , 9997-10003. https://doi.org/10.1021/jp102280r
    31. Kazumichi Yokota, Masateru Taniguchi and Tomoji Kawai. Metal−Molecule Interfaces Formed by Noble-Metal−Chalcogen Bonds for Nanoscale Molecular Devices. The Journal of Physical Chemistry C 2010, 114 (9) , 4044-4050. https://doi.org/10.1021/jp9109139
    32. Alejandro J. Gimenez, Gabriel Luna-Bárcenas and Jorge M. Seminario . Emulation of Molecular Programmability Using Microelectronics Programmable Devices. The Journal of Physical Chemistry C 2009, 113 (36) , 16254-16258. https://doi.org/10.1021/jp9050325
    33. Makusu Tsutsui, Masateru Taniguchi and Tomoji Kawai. Quantitative Evaluation of Metal−Molecule Contact Stability at the Single-Molecule Level. Journal of the American Chemical Society 2009, 131 (30) , 10552-10556. https://doi.org/10.1021/ja902871d
    34. Makusu Tsutsui, Masateru Taniguchi and Tomoji Kawai. Atomistic Mechanics and Formation Mechanism of Metal−Molecule−Metal Junctions. Nano Letters 2009, 9 (6) , 2433-2439. https://doi.org/10.1021/nl901142s
    35. F. Chen and N. J. Tao. Electron Transport in Single Molecules: From Benzene to Graphene. Accounts of Chemical Research 2009, 42 (3) , 429-438. https://doi.org/10.1021/ar800199a
    36. Makusu Tsutsui, Masateru Taniguchi and Tomoji Kawai . Local Heating in Metal−Molecule−Metal Junctions. Nano Letters 2008, 8 (10) , 3293-3297. https://doi.org/10.1021/nl801669e
    37. Andrey V. Danilov, Per Hedegård, Dmitrii S. Golubev, Thomas Bjørnholm and Sergey E. Kubatkin. Nanoelectromechanical Switch Operating by Tunneling of an Entire C60 Molecule. Nano Letters 2008, 8 (8) , 2393-2398. https://doi.org/10.1021/nl801273a
    38. Neil Bushong,, John Gamble, and, Massimiliano Di Ventra. Electron Turbulence at Nanoscale Junctions. Nano Letters 2007, 7 (6) , 1789-1792. https://doi.org/10.1021/nl070935e
    39. Roberto D'Agosta,, Na Sai, and, Massimiliano Di Ventra. Local Electron Heating in Nanoscale Conductors. Nano Letters 2006, 6 (12) , 2935-2938. https://doi.org/10.1021/nl062316w
    40. Hisao Nakamura, Naoyuki Karasawa. Anharmonicity-induced thermal rectification of a single diblock molecular junction inspired by the Aviram–Ratner diode. Nanoscale 2025, 17 (12) , 7402-7411. https://doi.org/10.1039/D4NR04716H
    41. Chao Fang, Yuting Li, Siwen Wang, Mingchen Liang, Chenshuai Yan, Junyang Liu, Wenjing Hong. Thermoelectric and thermal properties of molecular junctions: mechanisms, characterization methods and applications. Chemical Communications 2025, 61 (23) , 4447-4464. https://doi.org/10.1039/D4CC06822J
    42. Alaa A. Shanef, Jenan M. AL-Mukh. DYNAMICAL ANALYSIS OF ELECTRON-PHONON INTERACTIONS IN QUANTUM DOT MOLECULAR SYSTEMS. MOMENTO 2025, (70) , 1-15. https://doi.org/10.15446/mo.n70.113118
    43. Yuxin Tang, Lin Zhang, Feng Jiang, Yonghong Yan, Yanyan Zhu. Magnetic resonance of spin current and its accompanying heating or cooling. Journal of Applied Physics 2024, 136 (12) https://doi.org/10.1063/5.0230543
    44. Elena Gorenskaia, Paul J. Low. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chemical Science 2024, 15 (25) , 9510-9556. https://doi.org/10.1039/D4SC00488D
    45. Jin-Yi Wang, Zu-Quan Zhang, Lei-Lei Nian. Current-induced local heating and extractable work in nonthermal vibrational excitation. Physical Review B 2024, 109 (23) https://doi.org/10.1103/PhysRevB.109.235402
    46. Samuel L. Rudge, Christoph Kaspar, Robin L. Grether, Steffen Wolf, Gerhard Stock, Michael Thoss. Nonadiabatic dynamics of molecules interacting with metal surfaces: A quantum–classical approach based on Langevin dynamics and the hierarchical equations of motion. The Journal of Chemical Physics 2024, 160 (18) https://doi.org/10.1063/5.0204307
    47. Qiushi Meng, Junxian Zhang, Yao Zhang, Weizhe Chu, Wenjie Mao, Yang Zhang, Jinlong Yang, Yi Luo, Zhenchao Dong, J. G. Hou. Local heating and Raman thermometry in a single molecule. Science Advances 2024, 10 (3) https://doi.org/10.1126/sciadv.adl1015
    48. Andrea Donarini, Milena Grifoni. Transport in Molecular Junctions. 2024, 365-410. https://doi.org/10.1007/978-3-031-55619-7_10
    49. Leopoldo Mejía, Pilar Cossio, Ignacio Franco. Microscopic theory, analysis, and interpretation of conductance histograms in molecular junctions. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43169-3
    50. Yaling Ke, Jan Dvořák, Martin Čížek, Raffaele Borrelli, Michael Thoss. Current-induced bond rupture in single-molecule junctions: Effects of multiple electronic states and vibrational modes. The Journal of Chemical Physics 2023, 159 (2) https://doi.org/10.1063/5.0155290
    51. Lei Yu, Mingyang Zhang, Haijian Chen, Bohuai Xiao, Shuai Chang. Measurements of single-molecule electromechanical properties based on atomic force microscopy fixed-junction technique. Nanoscale 2023, 15 (9) , 4277-4281. https://doi.org/10.1039/D2NR06074D
    52. Katrin F. Domke, Albert C. Aragonès. Playing catch and release with single molecules: mechanistic insights into plasmon-controlled nanogaps. Nanoscale 2023, 15 (2) , 497-506. https://doi.org/10.1039/D2NR05448E
    53. Lasith S. Kariyawasam, Connor Filbin, Cameron Locke, Ying Yang. From Mechanochemistry to Mechanoresponsive Materials. 2022, 1-52. https://doi.org/10.1002/9783527832385.ch1
    54. Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee. Transient dynamics of a single molecular transistor in the presence of local electron–phonon and electron–electron interactions and quantum dissipation. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-13032-4
    55. Gen Li, Bing-Zhong Hu, Wen-Hao Mao, Nuo Yang, Jing-Tao Lü. Order of magnitude reduction in Joule heating of single molecular junctions between graphene electrodes. The Journal of Chemical Physics 2022, 157 (17) https://doi.org/10.1063/5.0118952
    56. Riley J. Preston, Thomas D. Honeychurch, Daniel S. Kosov. Emergence of negative viscosities and colored noise under current-driven Ehrenfest molecular dynamics. Physical Review B 2022, 106 (19) https://doi.org/10.1103/PhysRevB.106.195406
    57. Yi Zhao, Wenqing Liu, Jiaoyang Zhao, Yasi Wang, Jueting Zheng, Junyang Liu, Wenjing Hong, Zhong-Qun Tian. The fabrication, characterization and functionalization in molecular electronics. International Journal of Extreme Manufacturing 2022, 4 (2) , 022003. https://doi.org/10.1088/2631-7990/ac5f78
    58. Bingyu Cui, Galen T. Craven, Abrahan Nitzan. Heat transport induced by electron transfer: A general temperature quantum calculation. The Journal of Chemical Physics 2021, 155 (19) https://doi.org/10.1063/5.0068303
    59. Mingzhu Huang, Lei Yu, Mingyang Zhang, Zhe Wang, Bohuai Xiao, Yichong Liu, Jin He, Shuai Chang. Developing Longer‐Lived Single Molecule Junctions with a Functional Flexible Electrode. Small 2021, 17 (36) https://doi.org/10.1002/smll.202101911
    60. Lucas Domulevicz, Hyunhak Jeong, Nayan K. Paul, Juan Sebastian Gomez‐Diaz, Joshua Hihath. Multidimensional Characterization of Single‐Molecule Dynamics in a Plasmonic Nanocavity. Angewandte Chemie 2021, 133 (30) , 16572-16577. https://doi.org/10.1002/ange.202100886
    61. Lucas Domulevicz, Hyunhak Jeong, Nayan K. Paul, Juan Sebastian Gomez‐Diaz, Joshua Hihath. Multidimensional Characterization of Single‐Molecule Dynamics in a Plasmonic Nanocavity. Angewandte Chemie International Edition 2021, 60 (30) , 16436-16441. https://doi.org/10.1002/anie.202100886
    62. Yaling Ke, André Erpenbeck, Uri Peskin, Michael Thoss. Unraveling current-induced dissociation mechanisms in single-molecule junctions. The Journal of Chemical Physics 2021, 154 (23) https://doi.org/10.1063/5.0053828
    63. Albert C. Aragonès, Katrin F. Domke. Nearfield trapping increases lifetime of single-molecule junction by one order of magnitude. Cell Reports Physical Science 2021, 2 (4) , 100389. https://doi.org/10.1016/j.xcrp.2021.100389
    64. Yunxuan Zhu, Douglas Natelson, Longji Cui. Probing energy dissipation in molecular-scale junctions via surface enhanced Raman spectroscopy: vibrational pumping and hot carrier enhanced light emission. Journal of Physics: Condensed Matter 2021, 33 (13) , 134001. https://doi.org/10.1088/1361-648X/abda7b
    65. Feng Jiang, Guangwei Zhai, Yanyan Zhu, Yonghong Yan, Shikuan Wang. Spin polarization and heat generation matching in a quantum dot with magnetic background. Physics Letters A 2021, 393 , 127168. https://doi.org/10.1016/j.physleta.2021.127168
    66. Xiangzhong Zeng, Lyuzhou Ye, Daochi Zhang, Rui-Xue Xu, Xiao Zheng, Massimiliano Di Ventra. Effect of quantum resonances on local temperature in nonequilibrium open systems. Physical Review B 2021, 103 (8) https://doi.org/10.1103/PhysRevB.103.085411
    67. Masateru Taniguchi. Development of Single-Molecule Science. Molecular Science 2021, 15 (1) , A0120. https://doi.org/10.3175/molsci.15.A0120
    68. Dean Kos, Giuliana Di Martino, Alexandra Boehmke, Bart de Nijs, Dénes Berta, Tamás Földes, Sara Sangtarash, Edina Rosta, Hatef Sadeghi, Jeremy J. Baumberg. Optical probes of molecules as nano-mechanical switches. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19703-y
    69. Chou-Hsun Yang, Haobin Wang. Heat Transport in a Spin-Boson Model at Low Temperatures: A Multilayer Multiconfiguration Time-Dependent Hartree Study. Entropy 2020, 22 (10) , 1099. https://doi.org/10.3390/e22101099
    70. Tao Wang, Lei-Lei Nian, Jing-Tao Lü. Nonthermal vibrations in biased molecular junctions. Physical Review E 2020, 102 (2) https://doi.org/10.1103/PhysRevE.102.022127
    71. . Metal Electrodes for Molecular Electronics. 2020, 7-91. https://doi.org/10.1002/9783527818914.ch2
    72. H. Audi, Y. Viero, N. Alwhaibi, Z. Chen, M. Iazykov, A. Heynderickx, F. Xiao, D. Guérin, C. Krzeminski, I. M. Grace, C. J. Lambert, O. Siri, D. Vuillaume, S. Lenfant, H. Klein. Electrical molecular switch addressed by chemical stimuli. Nanoscale 2020, 12 (18) , 10127-10139. https://doi.org/10.1039/D0NR02461A
    73. Jing-Tao Lü, Susanne Leitherer, Nick R. Papior, Mads Brandbyge. Ab initio current-induced molecular dynamics. Physical Review B 2020, 101 (20) https://doi.org/10.1103/PhysRevB.101.201406
    74. Kun Wang, Edgar Meyhofer, Pramod Reddy. Thermal and Thermoelectric Properties of Molecular Junctions. Advanced Functional Materials 2020, 30 (8) https://doi.org/10.1002/adfm.201904534
    75. Albert Cortijos i Aragones, Katrin Domke. Nearfield Trapping Increases Lifetime of Single-Molecule Junction by One Order of Magnitude. SSRN Electronic Journal 2020, 58 https://doi.org/10.2139/ssrn.3751804
    76. Makusu Tsutsui, Yu-Chang Chen. Heat dissipation in quasi-ballistic single-atom contacts at room temperature. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-55048-3
    77. Feng Jiang, Yonghong Yan, Shikuan Wang, Yijing Yan. The current-induced heat generation in a quantum dot with Andreev-Fano resonance. Journal of Applied Physics 2019, 126 (19) https://doi.org/10.1063/1.5126720
    78. Daochi Zhang, Xiao Zheng, Massimiliano Di Ventra. Local temperatures out of equilibrium. Physics Reports 2019, 830 , 1-66. https://doi.org/10.1016/j.physrep.2019.10.003
    79. Masateru Taniguchi. Paving the way to single-molecule chemistry through molecular electronics. Physical Chemistry Chemical Physics 2019, 21 (19) , 9641-9650. https://doi.org/10.1039/C9CP00264B
    80. Yuanhui Li, Juan M. Artés, Busra Demir, Sumeyye Gokce, Hashem M. Mohammad, Mashari Alangari, M. P. Anantram, Ersin Emre Oren, Joshua Hihath. Detection and identification of genetic material via single-molecule conductance. Nature Nanotechnology 2018, 13 (12) , 1167-1173. https://doi.org/10.1038/s41565-018-0285-x
    81. Gabriel Cabra, Massimiliano Di Ventra, Michael Galperin. Local-noise spectroscopy for nonequilibrium systems. Physical Review B 2018, 98 (23) https://doi.org/10.1103/PhysRevB.98.235432
    82. Takanori Harashima, Yusuke Hasegawa, Manabu Kiguchi, Tomoaki Nishino. Evaluation of the Kinetic Property of Single-Molecule Junctions by Tunneling Current Measurements. Analytical Sciences 2018, 34 (6) , 639-641. https://doi.org/10.2116/analsci.18C011
    83. Gabriel Cabra, Anders Jensen, Michael Galperin. On simulation of local fluxes in molecular junctions. The Journal of Chemical Physics 2018, 148 (20) https://doi.org/10.1063/1.5029252
    84. Jia Liu, Yun Zhou, Feng Chi, Yong-Hong Ma. Effects of the Spin Heat Accumulation on the Heat Generation in a Quantum Dot Coupled to Leads. Journal of Low Temperature Physics 2018, 190 (1-2) , 67-77. https://doi.org/10.1007/s10909-017-1812-0
    85. Feng Jiang, Yonghong Yan, Shikuan Wang, Yijing Yan. The current-induced heat generation in a spin-flip quantum dot sandwiched between a ferromagnetic and a superconducting electrode. Physics Letters A 2017, 381 (45) , 3831-3842. https://doi.org/10.1016/j.physleta.2017.10.006
    86. Masateru Taniguchi. Single-Molecule Analysis Methods Using Nanogap Electrodes and Their Application to DNA Sequencing Technologies. Bulletin of the Chemical Society of Japan 2017, 90 (11) , 1189-1210. https://doi.org/10.1246/bcsj.20170224
    87. Ilya V. Pobelov, Kasper Primdal Lauritzen, Koji Yoshida, Anders Jensen, Gábor Mészáros, Karsten W. Jacobsen, Mikkel Strange, Thomas Wandlowski, Gemma C. Solomon. Dynamic breaking of a single gold bond. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15931
    88. Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias. Chinese Physics Letters 2017, 34 (6) , 067101. https://doi.org/10.1088/0256-307X/34/6/067101
    89. Bailey C. Hsu, Yu-Chang Chen. Band-Engineered Local Cooling in Nanoscale Junctions. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep42647
    90. Longji Cui, Ruijiao Miao, Chang Jiang, Edgar Meyhofer, Pramod Reddy. Perspective: Thermal and thermoelectric transport in molecular junctions. The Journal of Chemical Physics 2017, 146 (9) https://doi.org/10.1063/1.4976982
    91. Haobin Wang, Michael Thoss. On the accuracy of the noninteracting electron approximation for vibrationally coupled electron transport. Chemical Physics 2016, 481 , 117-123. https://doi.org/10.1016/j.chemphys.2016.06.002
    92. LvZhou Ye, Xiao Zheng, YiJing Yan, Massimiliano Di Ventra. Thermodynamic meaning of local temperature of nonequilibrium open quantum systems. Physical Review B 2016, 94 (24) https://doi.org/10.1103/PhysRevB.94.245105
    93. Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads. Chinese Physics Letters 2016, 33 (11) , 117201. https://doi.org/10.1088/0256-307X/33/11/117201
    94. Guoguang Qian, Qi Zhou, Kim M. Lewis. Stability of rectification of iron porphyrin molecular junctions. Materials Chemistry and Physics 2016, 180 , 161-165. https://doi.org/10.1016/j.matchemphys.2016.05.059
    95. Galen T. Craven, Abraham Nitzan. Electron transfer across a thermal gradient. Proceedings of the National Academy of Sciences 2016, 113 (34) , 9421-9429. https://doi.org/10.1073/pnas.1609141113
    96. Lisheng Zhang, Xun Li, Huifang Li, Xiaolin Fan. Theoretical studies on the electronic properties of alkyl chains. Computational and Theoretical Chemistry 2016, 1085 , 18-22. https://doi.org/10.1016/j.comptc.2016.04.003
    97. T. Yelin, R. Korytár, N. Sukenik, R. Vardimon, B. Kumar, C. Nuckolls, F. Evers, O. Tal. Conductance saturation in a series of highly transmitting molecular junctions. Nature Materials 2016, 15 (4) , 444-449. https://doi.org/10.1038/nmat4552
    98. Michael Kilgour, Dvira Segal. Inelastic effects in molecular transport junctions: The probe technique at high bias. The Journal of Chemical Physics 2016, 144 (12) https://doi.org/10.1063/1.4944470
    99. Jacob Lykkebo, Giuseppe Romano, Alessio Gagliardi, Alessandro Pecchia, Gemma C. Solomon. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current. The Journal of Chemical Physics 2016, 144 (11) https://doi.org/10.1063/1.4943578
    100. Feng Jiang, Yonghong Yan, Shikuan Wang, Yijing Yan. Magnetoresistance effect of heat generation in a single-molecular spin-valve. Physics Letters A 2016, 380 (7-8) , 942-950. https://doi.org/10.1016/j.physleta.2015.12.025
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2006, 6, 6, 1240–1244
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl0608285
    Published May 23, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    2208

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.