Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Efficient, Stable, Small, and Water-Soluble Doped ZnSe Nanocrystal Emitters as Non-Cadmium Biomedical Labels

View Author Information
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, and NN-Labs LLC, Fayetteville, Arkansas 72701
Cite this: Nano Lett. 2007, 7, 2, 312–317
Publication Date (Web):December 29, 2006
https://doi.org/10.1021/nl062336y
Copyright © 2007 American Chemical Society

    Article Views

    6463

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Mn2+-doped ZnSe quantum dots (Mn:ZnSe d-dots) with a tunable photoluminescence (PL) peak position were made to be water soluble by coating them with a monolayer of mercaptopropionic acid, a very short hydrophilic thiol. If the dopant centers were located close to the surface, thiol-coating partially quenched the PL. With about 2−3 monolayers of pure ZnSe on the surface, the PL of d-dots was actually enhanced upon thiol coating. When the doping centers were placed reasonably inside a d-dot, with about four monolayers of pure ZnSe between the doping centers and the surface ligands, the thiol ligands did not quench the PL of the d-dots, even though they did completely quench the PL of intrinsic ZnSe quantum dots. The overall size of such d-dots/ligand complex is only about 7−8 nm, implying an excellent permeability in biological issues. These d-dots were found to be exceptionally stable against continuous UV radiation in air for at least 25 days. They were also stable in boiling water with air bubbling under room light for hours. Recognition of a biotin pattern by d-dots conjugated with avidine was carried to illustrate the suitability of these efficient (about 40% PL quantum yield), stable, small, and water-soluble d-dots as biomedical labeling reagents.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Department of Chemistry and Biochemistry, University of Arkansas.

    §

     Current address:  Centre for Advanced Materials, IACS, Kolkata, India.

     NN-Labs LLC.

    *

     Corresponding author. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Experimental details, emission and absorption spectra of Cu:ZnSe d-dots, and comparative emission properties of intrinsic ZnSe q-dots and d-dots. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 412 publications.

    1. Chumki Dalal, Reeddhi Ray. Synthesis and Applications of Colloidal Nanobioconjugates with Modular Multivalency: A Review. ACS Applied Nano Materials 2024, 7 (11) , 12230-12248. https://doi.org/10.1021/acsanm.4c01371
    2. Bapi Pradhan, Masoumeh Keshavarz, Yiyue Zhang, Li Sun, Carlos Marquez, Simon Smolders, Dirk De Vos, Eduard Fron, Joris Van de Vondel, Denys Naumenko, Heinz Amenitsch, Elke Debroye, Maarten BJ Roeffaers, Johan Hofkens. Mn Doping in Low-Dimensional Perovskites: A Switch for Controlling Dopant and Host Emission. The Journal of Physical Chemistry C 2023, 127 (22) , 10629-10639. https://doi.org/10.1021/acs.jpcc.3c01774
    3. Souvik Banerjee, Suman Bera, Narayan Pradhan. Chemically Sculpturing the Facets of CsPbBr3 Perovskite Platelet Nanocrystals. ACS Nano 2023, 17 (1) , 678-686. https://doi.org/10.1021/acsnano.2c10107
    4. Parna Roy, Arpita Mukherjee, Pritha Mondal, Biswajit Bhattacharyya, Awadhesh Narayan, Anshu Pandey. Electronic Structure and Spectroscopy of I–III–VI2 Nanocrystals: A Perspective. The Journal of Physical Chemistry C 2022, 126 (17) , 7364-7373. https://doi.org/10.1021/acs.jpcc.1c10922
    5. Liwei Dai, Abderrezak Torche, Christian Strelow, Tobias Kipp, Thanh Huyen Vuong, Jabor Rabeah, Kevin Oldenburg, Gabriel Bester, Alf Mews, Christian Klinke, Rostyslav Lesyuk. Role of Magnetic Coupling in Photoluminescence Kinetics of Mn2+-Doped ZnS Nanoplatelets. ACS Applied Materials & Interfaces 2022, 14 (16) , 18806-18815. https://doi.org/10.1021/acsami.1c25191
    6. Payel Mondal, Ranjani Viswanatha. Insights into the Oxidation State of Cu Dopants in II–VI Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2022, 13 (8) , 1952-1961. https://doi.org/10.1021/acs.jpclett.1c04076
    7. Jared Frazier, Kevin Cavey, Sydney Coil, Helene Hamo, Mengliang Zhang, P. Gregory Van Patten. Rapid and Sensitive Identification and Discrimination of Bound/Unbound Ligands on Colloidal Nanocrystals via Direct Analysis in Real-Time Mass Spectrometry. Langmuir 2021, 37 (50) , 14703-14712. https://doi.org/10.1021/acs.langmuir.1c02548
    8. E. A. Tereshchenkov, E. S. Andrianov, A. A. Zyablovsky, A. A. Pukhov, A. P. Vinogradov. Mechanism for the Pumping-Dependent Red Shift in the Amplified Spontaneous Emission Spectra of Colloidal Quantum Dots. The Journal of Physical Chemistry C 2021, 125 (49) , 27298-27304. https://doi.org/10.1021/acs.jpcc.1c07949
    9. Desong Guo, Shuhong Xu, Chunlei Wang, Zhiliang Wang, Haihong Yin, Honghai Deng, Yuan Jiang, Zhenjuan Zhang, Xiaomei Zhang, Haibao Shao. Doping of Mn2+ into Aqueous ZnSe Nanocrystals with Pure Dopant Emission through a Light-Induced Electrostatic Attraction and Diffusion Method. The Journal of Physical Chemistry C 2021, 125 (1) , 989-997. https://doi.org/10.1021/acs.jpcc.0c09023
    10. Damiano Ricciarelli, Edoardo Mosconi, Boualem Merabet, Olivia Bizzarri, Filippo De Angelis. Electronic Properties and Carrier Trapping in Bi and Mn Co-doped CsPbCl3 Perovskite. The Journal of Physical Chemistry Letters 2020, 11 (14) , 5482-5489. https://doi.org/10.1021/acs.jpclett.0c01567
    11. Yong Liu, Jiaxu Zhang, Bing Han, Xiang Wang, Zhiqiang Wang, Chaozhuang Xue, Guoqing Bian, Dandan Hu, Rui Zhou, Dong-Sheng Li, Zhenxing Wang, Zhongwen Ouyang, Mingde Li, Tao Wu. New Insights into Mn–Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn2+-Doped Semiconductors. Journal of the American Chemical Society 2020, 142 (14) , 6649-6660. https://doi.org/10.1021/jacs.0c00156
    12. Edison Huixiang Ang, Jialiu Zeng, Gomathy Sandhya Subramanian, Vijila Chellappan, Thankiah Sudhaharan, Parasuraman Padmanabhan, Balázs Gulyás, Subramanian Tamil Selvan. Silica-Coated Mn-Doped ZnS Nanocrystals for Cancer Theranostics. ACS Applied Nano Materials 2020, 3 (3) , 3088-3096. https://doi.org/10.1021/acsanm.0c00598
    13. Hui Zhang, Jiabin Liu, Chao Wang, Gurpreet S. Selopal, David Barba, Zhiming M. Wang, Shuhui Sun, Haiguang Zhao, Federico Rosei. Near-Infrared Colloidal Manganese-Doped Quantum Dots: Photoluminescence Mechanism and Temperature Response. ACS Photonics 2019, 6 (10) , 2421-2431. https://doi.org/10.1021/acsphotonics.9b00491
    14. Meiling Chen, Xiaoxia Cui, Xusheng Xiao, Yantao Xu, Jian Cui, Junjiang Guo, Chao Liu, Haitao Guo. Mid-Infrared Emission of Transition Metal Co2+-Doped ZnSe Nanocrystals at Room Temperature via Hydrothermal Preparation. ACS Applied Nano Materials 2019, 2 (5) , 2844-2853. https://doi.org/10.1021/acsanm.9b00307
    15. Narayan Pradhan. Mn-Doped Semiconductor Nanocrystals: 25 Years and Beyond. The Journal of Physical Chemistry Letters 2019, 10 (10) , 2574-2577. https://doi.org/10.1021/acs.jpclett.9b01107
    16. Tushar Debnath, Hirendra N. Ghosh. Recent Progress of Electron Storage Mn Center in Doped Nanocrystals. The Journal of Physical Chemistry C 2019, 123 (17) , 10703-10719. https://doi.org/10.1021/acs.jpcc.8b11055
    17. Sumit Kumar Dutta, Anirban Dutta, Samrat Das Adhikari, Narayan Pradhan. Doping Mn2+ in Single-Crystalline Layered Perovskite Microcrystals. ACS Energy Letters 2019, 4 (1) , 343-351. https://doi.org/10.1021/acsenergylett.8b02349
    18. Eder Jose Guidelli, Ioannis Lignos, Jason Jungwan Yoo, Marcella Lusardi, Moungi G. Bawendi, Oswaldo Baffa, Klavs F. Jensen. Mechanistic Insights and Controlled Synthesis of Radioluminescent ZnSe Quantum Dots Using a Microfluidic Reactor. Chemistry of Materials 2018, 30 (23) , 8562-8570. https://doi.org/10.1021/acs.chemmater.8b03587
    19. Atanu Chakraborty, Chumki Dalal, Nikhil R. Jana. Colloidal Nanobioconjugate with Complementary Surface Chemistry for Cellular and Subcellular Targeting. Langmuir 2018, 34 (45) , 13461-13471. https://doi.org/10.1021/acs.langmuir.8b00376
    20. Muhammed P. U. Haris, Rangarajan Bakthavatsalam, Samir Shaikh, Bhushan P. Kore, Dhanashree Moghe, Rajesh G. Gonnade, D. D. Sarma, Dinesh Kabra, Janardan Kundu. Synthetic Control on Structure/Dimensionality and Photophysical Properties of Low Dimensional Organic Lead Bromide Perovskite. Inorganic Chemistry 2018, 57 (21) , 13443-13452. https://doi.org/10.1021/acs.inorgchem.8b02042
    21. Chunjuan Tang, Xiujuan Wei, Xinyin Cai, Qinyou An, Ping Hu, Jinzhi Sheng, Jiexin Zhu, Shulei Chou, Liming Wu, Liqiang Mai. ZnSe Microsphere/Multiwalled Carbon Nanotube Composites as High-Rate and Long-Life Anodes for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10 (23) , 19626-19632. https://doi.org/10.1021/acsami.8b02819
    22. Xiaodan Huang, Lihong Jing, Stephen V. Kershaw, Xiaojun Wei, Haoran Ning, Xiaodan Sun, Andrey L. Rogach, Mingyuan Gao. Narrowing the Photoluminescence of Aqueous CdTe Quantum Dots via Ostwald Ripening Suppression Realized by Programmed Dropwise Precursor Addition. The Journal of Physical Chemistry C 2018, 122 (20) , 11109-11118. https://doi.org/10.1021/acs.jpcc.8b01053
    23. Joicy Selvaraj, Arun Mahesh, Vijayshankar Asokan, Vaseeharan Baskaralingam, Arunkumar Dhayalan, Thangadurai Paramasivam. Phosphine-Free, Highly Emissive, Water-Soluble Mn:ZnSe/ZnS Core–Shell Nanorods: Synthesis, Characterization, and in Vitro Bioimaging of HEK293 and HeLa Cells. ACS Applied Nano Materials 2018, 1 (1) , 371-383. https://doi.org/10.1021/acsanm.7b00218
    24. Zhi-Jun Li, Elan Hofman, Amanda Blaker, Andrew Hunter Davis, Boris Dzikovski, De-Kun Ma, and Weiwei Zheng . Interface Engineering of Mn-Doped ZnSe-Based Core/Shell Nanowires for Tunable Host–Dopant Coupling. ACS Nano 2017, 11 (12) , 12591-12600. https://doi.org/10.1021/acsnano.7b06773
    25. Sourav Maiti, Jayanta Dana, Yogesh Jadhav, Tushar Debnath, Santosh K. Haram, and Hirendra N. Ghosh . Electrochemical Evaluation of Dopant Energetics and the Modulation of Ultrafast Carrier Dynamics in Cu-Doped CdSe Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (48) , 27233-27240. https://doi.org/10.1021/acs.jpcc.7b10262
    26. Kunyuan Xu, Chun Che Lin, Xiaobin Xie, and Andries Meijerink . Efficient and Stable Luminescence from Mn2+ in Core and Core–Isocrystalline Shell CsPbCl3 Perovskite Nanocrystals. Chemistry of Materials 2017, 29 (10) , 4265-4272. https://doi.org/10.1021/acs.chemmater.7b00345
    27. Amit K. Guria, Sumit K. Dutta, Samrat Das Adhikari, Narayan Pradhan. Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges. ACS Energy Letters 2017, 2 (5) , 1014-1021. https://doi.org/10.1021/acsenergylett.7b00177
    28. Haoyang Zou, Min Liu, Ding Zhou, Xun Zhang, Yi Liu, Bai Yang, and Hao Zhang . Employing CdSexTe1–x Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes. The Journal of Physical Chemistry C 2017, 121 (9) , 5313-5323. https://doi.org/10.1021/acs.jpcc.6b12129
    29. Junmei Wang, Haofei Zhao, Yuchen Zhu, and Yujun Song . Shape-Controlled Synthesis of CdSe Nanocrystals via a Programmed Microfluidic Process. The Journal of Physical Chemistry C 2017, 121 (6) , 3567-3572. https://doi.org/10.1021/acs.jpcc.6b10901
    30. Niko Hildebrandt, Christopher M. Spillmann, W. Russ Algar, Thomas Pons, Michael H. Stewart, Eunkeu Oh, Kimihiro Susumu, Sebastian A. Díaz, James B. Delehanty, and Igor L. Medintz . Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117 (2) , 536-711. https://doi.org/10.1021/acs.chemrev.6b00030
    31. Ashish Tiwari and S. J. Dhoble . Critical Analysis of Phase Evolution, Morphological Control, Growth Mechanism and Photophysical Applications of ZnS Nanostructures (Zero-Dimensional to Three-Dimensional): A Review. Crystal Growth & Design 2017, 17 (1) , 381-407. https://doi.org/10.1021/acs.cgd.6b01463
    32. Jian Lin, Dan-Dan Hu, Qian Zhang, Dong-Sheng Li, Tao Wu, Xianhui Bu, and Pingyun Feng . Improving Photoluminescence Emission Efficiency of Nanocluster-Based Materials by in Situ Doping Synthetic Strategy. The Journal of Physical Chemistry C 2016, 120 (51) , 29390-29396. https://doi.org/10.1021/acs.jpcc.6b09126
    33. Uwe R. Kortshagen, R. Mohan Sankaran, Rui N. Pereira, Steven L. Girshick, Jeslin J. Wu, and Eray S. Aydil . Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chemical Reviews 2016, 116 (18) , 11061-11127. https://doi.org/10.1021/acs.chemrev.6b00039
    34. Lihong Jing, Stephen V. Kershaw, Yilin Li, Xiaodan Huang, Yingying Li, Andrey L. Rogach, and Mingyuan Gao . Aqueous Based Semiconductor Nanocrystals. Chemical Reviews 2016, 116 (18) , 10623-10730. https://doi.org/10.1021/acs.chemrev.6b00041
    35. Jeffrey M. Pietryga, Young-Shin Park, Jaehoon Lim, Andrew F. Fidler, Wan Ki Bae, Sergio Brovelli, and Victor I. Klimov . Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews 2016, 116 (18) , 10513-10622. https://doi.org/10.1021/acs.chemrev.6b00169
    36. Dae-Yeon Jo, Daekyoung Kim, Jong-Hoon Kim, Heeyeop Chae, Hyo Jin Seo, Young Rag Do, and Heesun Yang . Tunable White Fluorescent Copper Gallium Sulfide Quantum Dots Enabled by Mn Doping. ACS Applied Materials & Interfaces 2016, 8 (19) , 12291-12297. https://doi.org/10.1021/acsami.6b01763
    37. Patrick J. Whitham, Kathryn E. Knowles, Philip J. Reid, and Daniel R. Gamelin . Photoluminescence Blinking and Reversible Electron Trapping in Copper-Doped CdSe Nanocrystals. Nano Letters 2015, 15 (6) , 4045-4051. https://doi.org/10.1021/acs.nanolett.5b01046
    38. Ding Zhou, Min Liu, Min Lin, Xinyuan Bu, Xintao Luo, Hao Zhang, and Bai Yang . Hydrazine-Mediated Construction of Nanocrystal Self-Assembly Materials. ACS Nano 2014, 8 (10) , 10569-10581. https://doi.org/10.1021/nn5040444
    39. Christian S. Erickson, Liam R. Bradshaw, Stephen McDowall, John D. Gilbertson, Daniel R. Gamelin, and David L. Patrick . Zero-Reabsorption Doped-Nanocrystal Luminescent Solar Concentrators. ACS Nano 2014, 8 (4) , 3461-3467. https://doi.org/10.1021/nn406360w
    40. Chaoying Xu, Ronghui Zhou, Wenwei He, Lan Wu, Peng Wu, and Xiandeng Hou . Fast Imaging of Eccrine Latent Fingerprints with Nontoxic Mn-Doped ZnS QDs. Analytical Chemistry 2014, 86 (7) , 3279-3283. https://doi.org/10.1021/ac404244v
    41. Sheraz Gul, Jason Kyle Cooper, Per-Anders Glans, Jinghua Guo, Vittal K. Yachandra, Junko Yano, and Jin Zhong Zhang . Effect of Al3+ Co-doping on the Dopant Local Structure, Optical Properties, and Exciton Dynamics in Cu+-Doped ZnSe Nanocrystals. ACS Nano 2013, 7 (10) , 8680-8692. https://doi.org/10.1021/nn402932q
    42. Riya Bose, Goutam Manna, and Narayan Pradhan . Surface Doping for Hindrance of Crystal Growth and Structural Transformation in Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2013, 117 (40) , 20991-20997. https://doi.org/10.1021/jp407123s
    43. Suresh Sarkar, Shinjita Acharya, Arup Chakraborty, and Narayan Pradhan . Zinc Blende 0D Quantum Dots to Wurtzite 1D Quantum Wires: The Oriented Attachment and Phase Change in ZnSe Nanostructures. The Journal of Physical Chemistry Letters 2013, 4 (19) , 3292-3297. https://doi.org/10.1021/jz401816e
    44. Lihong Jing, Ke Ding, Sergii Kalytchuk, Yu Wang, Ruirui Qiao, Stephen V. Kershaw, Andrey L. Rogach, and Mingyuan Gao . Aqueous Manganese-Doped Core/Shell CdTe/ZnS Quantum Dots with Strong Fluorescence and High Relaxivity. The Journal of Physical Chemistry C 2013, 117 (36) , 18752-18761. https://doi.org/10.1021/jp406342m
    45. Yucheng Wang, Rui Hu, Guimiao Lin, Indrajit Roy, and Ken-Tye Yong . Functionalized Quantum Dots for Biosensing and Bioimaging and Concerns on Toxicity. ACS Applied Materials & Interfaces 2013, 5 (8) , 2786-2799. https://doi.org/10.1021/am302030a
    46. Ding Zhou, Min Lin, Xun Liu, Jing Li, Zhaolai Chen, Dong Yao, Haizhu Sun, Hao Zhang, and Bai Yang . Conducting the Temperature-Dependent Conformational Change of Macrocyclic Compounds to the Lattice Dilation of Quantum Dots for Achieving an Ultrasensitive Nanothermometer. ACS Nano 2013, 7 (3) , 2273-2283. https://doi.org/10.1021/nn305423p
    47. G. Krishnamurthy Grandhi and Ranjani Viswanatha . Tunable Infrared Phosphors Using Cu Doping in Semiconductor Nanocrystals: Surface Electronic Structure Evaluation. The Journal of Physical Chemistry Letters 2013, 4 (3) , 409-415. https://doi.org/10.1021/jz3021588
    48. Joren Eilers, Esther Groeneveld, Celso de Mello Donegá, and Andries Meijerink . Optical Properties of Mn-Doped ZnTe Magic Size Nanocrystals. The Journal of Physical Chemistry Letters 2012, 3 (12) , 1663-1667. https://doi.org/10.1021/jz300300g
    49. Bohua Dong, Lixin Cao, Ge Su, and Wei Liu . Facile Synthesis of Highly Luminescent Water-Soluble ZnSe:Mn/ZnS Core/Shell Doped Nanocrystals with Pure Dopant Emission. The Journal of Physical Chemistry C 2012, 116 (22) , 12258-12264. https://doi.org/10.1021/jp300437y
    50. Liam R. Bradshaw, Andreas Hauser, Emily J. McLaurin, and Daniel R. Gamelin . Luminescence Saturation via Mn2+–Exciton Cross Relaxation in Colloidal Doped Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2012, 116 (16) , 9300-9310. https://doi.org/10.1021/jp300765y
    51. Clive R. Bealing, William J. Baumgardner, Joshua J. Choi, Tobias Hanrath, and Richard G. Hennig . Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions. ACS Nano 2012, 6 (3) , 2118-2127. https://doi.org/10.1021/nn3000466
    52. Wenjin Zhang, Xinggui Zhou, and Xinhua Zhong . One-Pot Noninjection Synthesis of Cu-Doped ZnxCd1-xS Nanocrystals with Emission Color Tunable over Entire Visible Spectrum. Inorganic Chemistry 2012, 51 (6) , 3579-3587. https://doi.org/10.1021/ic2024023
    53. H. Yokota, K. Okazaki, K. Shimura, M. Nakayama, and D. Kim . Photoluminescence Properties of Self-Assembled Monolayers of CdSe and CdSe/ZnS Quantum Dots. The Journal of Physical Chemistry C 2012, 116 (9) , 5456-5459. https://doi.org/10.1021/jp2116609
    54. Hongbo Li, Rosaria Brescia, Roman Krahne, Giovanni Bertoni, Marcelo J. P. Alcocer, Cosimo D’Andrea, Francesco Scotognella, Francesco Tassone, Marco Zanella, Milena De Giorgi, and Liberato Manna . Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange. ACS Nano 2012, 6 (2) , 1637-1647. https://doi.org/10.1021/nn204601n
    55. Chih-Hao Hsia, Anna Wuttig, and Haw Yang . An Accessible Approach to Preparing Water-Soluble Mn2+-Doped (CdSSe)ZnS (Core)Shell Nanocrystals for Ratiometric Temperature Sensing. ACS Nano 2011, 5 (12) , 9511-9522. https://doi.org/10.1021/nn2025622
    56. Dong Zhu, Yun Chen, Liping Jiang, Jun Geng, Jianrong Zhang, and Jun-Jie Zhu . Manganese-Doped ZnSe Quantum Dots as a Probe for Time-Resolved Fluorescence Detection of 5-Fluorouracil. Analytical Chemistry 2011, 83 (23) , 9076-9081. https://doi.org/10.1021/ac202101u
    57. Sheraz Gul, Jason K. Cooper, Carley Corrado, Brian Vollbrecht, Frank Bridges, Jinghua Guo, and Jin Z. Zhang . Synthesis, Optical and Structural Properties, and Charge Carrier Dynamics of Cu-Doped ZnSe Nanocrystals. The Journal of Physical Chemistry C 2011, 115 (43) , 20864-20875. https://doi.org/10.1021/jp2047272
    58. Ekaterina Badaeva, Joseph W. May, Jiao Ma, Daniel R. Gamelin, and Xiaosong Li . Characterization of Excited-State Magnetic Exchange in Mn2+-Doped ZnO Quantum Dots Using Time-Dependent Density Functional Theory. The Journal of Physical Chemistry C 2011, 115 (43) , 20986-20991. https://doi.org/10.1021/jp206622e
    59. Narayan Pradhan and D. D. Sarma . Advances in Light-Emitting Doped Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2011, 2 (21) , 2818-2826. https://doi.org/10.1021/jz201132s
    60. Wenjin Zhang, Yan Li, Hua Zhang, Xinggui Zhou, and Xinhua Zhong . Facile Synthesis of Highly Luminescent Mn-Doped ZnS Nanocrystals. Inorganic Chemistry 2011, 50 (20) , 10432-10438. https://doi.org/10.1021/ic201547g
    61. Lin Yang, Ruishi Xie, Lingyun Liu, Dingquan Xiao, and Jianguo Zhu . Synthesis and Characterization of ZnSe Nanocrystals by W/O Reverse Microemulsion Method: The Effect of Cosurfactant. The Journal of Physical Chemistry C 2011, 115 (40) , 19507-19512. https://doi.org/10.1021/jp204798y
    62. Shinjita Acharya and Narayan Pradhan . Insertion/Ejection of Dopant Ions in Composition Tunable Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2011, 115 (40) , 19513-19519. https://doi.org/10.1021/jp2052147
    63. Z. X. Gan, S. J. Xiong, X. L. Wu, C. Y. He, J. C. Shen, and Paul K. Chu . Mn2+-Bonded Reduced Graphene Oxide with Strong Radiative Recombination in Broad Visible Range Caused by Resonant Energy Transfer. Nano Letters 2011, 11 (9) , 3951-3956. https://doi.org/10.1021/nl202240s
    64. Abdelhay Aboulaich, Lavinia Balan, Jaafar Ghanbaja, Ghouti Medjahdi, Christophe Merlin, and Raphaël Schneider . Aqueous Route to Biocompatible ZnSe:Mn/ZnO Core/Shell Quantum Dots Using 1-Thioglycerol As Stabilizer. Chemistry of Materials 2011, 23 (16) , 3706-3713. https://doi.org/10.1021/cm2012928
    65. Santanu Jana, Bhupendra B. Srivastava, and Narayan Pradhan . Correlation of Dopant States and Host Bandgap in Dual-Doped Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2011, 2 (14) , 1747-1752. https://doi.org/10.1021/jz200673q
    66. Zhengtao Deng, Ling Tong, Marco Flores, Su Lin, Ji-Xin Cheng, Hao Yan, and Yan Liu . High-Quality Manganese-Doped Zinc Sulfide Quantum Rods with Tunable Dual-Color and Multiphoton Emissions. Journal of the American Chemical Society 2011, 133 (14) , 5389-5396. https://doi.org/10.1021/ja110996c
    67. Ruosheng Zeng, Tingting Zhang, Guozhang Dai, and Bingsuo Zou . Highly Emissive, Color-Tunable, Phosphine-Free Mn:ZnSe/ZnS Core/Shell and Mn:ZnSeS Shell-Alloyed Doped Nanocrystals. The Journal of Physical Chemistry C 2011, 115 (7) , 3005-3010. https://doi.org/10.1021/jp111288h
    68. Bhupendra B. Srivastava, Santanu Jana, and Narayan Pradhan . Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights. Journal of the American Chemical Society 2011, 133 (4) , 1007-1015. https://doi.org/10.1021/ja1089809
    69. Azhar Zahoor Abbasi, Faheem Amin, Tobias Niebling, Sebastian Friede, Markus Ochs, Susana Carregal-Romero, Jose-Maria Montenegro, Pilar Rivera Gil, Wolfram Heimbrodt, and Wolfgang J. Parak . How Colloidal Nanoparticles Could Facilitate Multiplexed Measurements of Different Analytes with Analyte-Sensitive Organic Fluorophores. ACS Nano 2011, 5 (1) , 21-25. https://doi.org/10.1021/nn1034026
    70. Lijun Zu, Andrew W. Wills, Thomas A. Kennedy, Evan R. Glaser, and David J. Norris . Effect of Different Manganese Precursors on the Doping Efficiency in ZnSe Nanocrystals. The Journal of Physical Chemistry C 2010, 114 (50) , 21969-21975. https://doi.org/10.1021/jp106594n
    71. Joel D. Krooswyk, Christina M. Tyrakowski, and Preston T. Snee. Multivariable Response of Semiconductor Nanocrystal-Dye Sensors: The Case of pH. The Journal of Physical Chemistry C 2010, 114 (49) , 21348-21352. https://doi.org/10.1021/jp1093096
    72. Abdelhay Aboulaich, Malgorzata Geszke, Lavinia Balan, Jaafar Ghanbaja, Ghouti Medjahdi, and Raphaël Schneider . Water-Based Route to Colloidal Mn-Doped ZnSe and Core/Shell ZnSe/ZnS Quantum Dots. Inorganic Chemistry 2010, 49 (23) , 10940-10948. https://doi.org/10.1021/ic101302q
    73. Angshuman Nag, Roby Cherian, Priya Mahadevan, Achanta Venu Gopal, Abhijit Hazarika, Akshatha Mohan, A. S. Vengurlekar, and D. D. Sarma . Size-Dependent Tuning of Mn2+ d Emission in Mn2+-Doped CdS Nanocrystals: Bulk vs Surface. The Journal of Physical Chemistry C 2010, 114 (43) , 18323-18329. https://doi.org/10.1021/jp105688w
    74. Niladri S. Karan, D. D. Sarma, R. M. Kadam, and Narayan Pradhan . Doping Transition Metal (Mn or Cu) Ions in Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2010, 1 (19) , 2863-2866. https://doi.org/10.1021/jz1012164
    75. Jinju Zheng, Wenyu Ji, Xiuying Wang, Micho Ikezawa, Pengtao Jing, Xueyan Liu, Haibo Li, Jialong Zhao, and Yasuaki Masumoto . Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell. The Journal of Physical Chemistry C 2010, 114 (36) , 15331-15336. https://doi.org/10.1021/jp104513k
    76. Feng Jiang, Yunchao Li, Mingfu Ye, Louzhen Fan, Yuqin Ding and Yongfang Li . Ligand-Tuned Shape Control, Oriented Assembly, and Electrochemical Characterization of Colloidal ZnTe Nanocrystals. Chemistry of Materials 2010, 22 (16) , 4632-4641. https://doi.org/10.1021/cm101225b
    77. Recep Kas, Esra Sevinc, Ugur Topal and Havva Yagci Acar. A Universal Method for the Preparation of Magnetic and Luminescent Hybrid Nanoparticles. The Journal of Physical Chemistry C 2010, 114 (17) , 7758-7766. https://doi.org/10.1021/jp100312e
    78. Ruosheng Zeng, Michael Rutherford, Renguo Xie, Bingsuo Zou and Xiaogang Peng . Synthesis of Highly Emissive Mn-Doped ZnSe Nanocrystals without Pyrophoric Reagents. Chemistry of Materials 2010, 22 (6) , 2107-2113. https://doi.org/10.1021/cm9036023
    79. Zhongbin Zhuang, Xiaotang Lu, Qing Peng and Yadong Li. Direct Synthesis of Water-Soluble Ultrathin CdS Nanorods and Reversible Tuning of the Solubility by Alkalinity. Journal of the American Chemical Society 2010, 132 (6) , 1819-1821. https://doi.org/10.1021/ja909776g
    80. Suresh Sarkar, Riya Bose, Santanu Jana, Nikhil R Jana and Narayan Pradhan . Doped Semiconductor Nanocrystals and Organic Dyes: An Efficient and Greener FRET System. The Journal of Physical Chemistry Letters 2010, 1 (3) , 636-640. https://doi.org/10.1021/jz9004015
    81. Shinjita Acharya, D. D. Sarma, Nikhil R. Jana and Narayan Pradhan . An Alternate Route to High-Quality ZnSe and Mn-Doped ZnSe Nanocrystals. The Journal of Physical Chemistry Letters 2010, 1 (2) , 485-488. https://doi.org/10.1021/jz900291a
    82. Jiwon Bang, Juwon Park, Ji Hwang Lee, Nayoun Won, Jutaek Nam, Jongwoo Lim, Byoung Yong Chang, Hyo Joong Lee, Bonghwan Chon, Junghan Shin, Jae Byung Park, Jong Hwa Choi, Kilwon Cho, Su Moon Park, Taiha Joo and Sungjee Kim . ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties. Chemistry of Materials 2010, 22 (1) , 233-240. https://doi.org/10.1021/cm9027995
    83. Min Li, Xue-Feng Yu, Wen-Yuan Yu, Jing Zhou, Xiao-Niu Peng and Qu-Quan Wang. Efficient and Switchable Manganese Luminescence in MnF2:Ce Nanocrystals. The Journal of Physical Chemistry C 2009, 113 (47) , 20271-20274. https://doi.org/10.1021/jp9081307
    84. Renguo Xie and Xiaogang Peng. Synthesis of Cu-Doped InP Nanocrystals (d-dots) with ZnSe Diffusion Barrier as Efficient and Color-Tunable NIR Emitters. Journal of the American Chemical Society 2009, 131 (30) , 10645-10651. https://doi.org/10.1021/ja903558r
    85. Dingan Chen, Ranjani Viswanatha, Grace L. Ong, Renguo Xie, Mahalingam Balasubramaninan and Xiaogang Peng . Temperature Dependence of “Elementary Processes” in Doping Semiconductor Nanocrystals. Journal of the American Chemical Society 2009, 131 (26) , 9333-9339. https://doi.org/10.1021/ja9018644
    86. Anastassia Sorkin, Donald G. Truhlar and Elizabeth A. Amin. Energies, Geometries, and Charge Distributions of Zn Molecules, Clusters, and Biocenters from Coupled Cluster, Density Functional, and Neglect of Diatomic Differential Overlap Models. Journal of Chemical Theory and Computation 2009, 5 (5) , 1254-1265. https://doi.org/10.1021/ct900038m
    87. Jishu Han, Hao Zhang, Yue Tang, Yi Liu, Xi Yao and Bai Yang. Role of Redox Reaction and Electrostatics in Transition-Metal Impurity-Promoted Photoluminescence Evolution of Water-Soluble ZnSe Nanocrystals. The Journal of Physical Chemistry C 2009, 113 (18) , 7503-7510. https://doi.org/10.1021/jp810165p
    88. Xiaosheng Tang, Eugene Shi Guang Choo, Ling Li, Jun Ding and Junmin Xue. One-Pot Synthesis of Water-Stable ZnO Nanoparticles via a Polyol Hydrolysis Route and Their Cell Labeling Applications. Langmuir 2009, 25 (9) , 5271-5275. https://doi.org/10.1021/la900374b
    89. Carley Corrado, Yu Jiang, Fadekemi Oba, Mike Kozina, Frank Bridges and Jin Z. Zhang . Synthesis, Structural, and Optical Properties of Stable ZnS:Cu,Cl Nanocrystals. The Journal of Physical Chemistry A 2009, 113 (16) , 3830-3839. https://doi.org/10.1021/jp809666t
    90. Vivekanand S. Shete and David E. Benson. Protein Design Provides Lead(II) Ion Biosensors for Imaging Molecular Fluxes around Red Blood Cells. Biochemistry 2009, 48 (2) , 462-470. https://doi.org/10.1021/bi801777h
    91. Yanpeng Zhang, Chenli Gan, Javed Muhammad, David Battaglia, Xiaogang Peng and Min Xiao . Enhanced Fluorescence Intermittency in Mn-Doped Single ZnSe Quantum Dots. The Journal of Physical Chemistry C 2008, 112 (51) , 20200-20205. https://doi.org/10.1021/jp805855m
    92. Anne-Charlotte Faure, Céline Hoffmann, Rana Bazzi, Fabrice Goubard, Emmanuel Pauthe, Christophe A. Marquette, Loïc J. Blum, Pascal Perriat, Stéphane Roux and Olivier Tillement. . Functionalization of Luminescent Aminated Particles for Facile Bioconjugation. ACS Nano 2008, 2 (11) , 2273-2282. https://doi.org/10.1021/nn8004476
    93. Yongan Yang, Ou Chen, Alexander Angerhofer and Y. Charles Cao. On Doping CdS/ZnS Core/Shell Nanocrystals with Mn. Journal of the American Chemical Society 2008, 130 (46) , 15649-15661. https://doi.org/10.1021/ja805736k
    94. Rui Shen, Pedro H. C. Camargo, Younan Xia and Hong Yang . Silane-Based Poly(ethylene glycol) as a Primer for Surface Modification of Nonhydrolytically Synthesized Nanoparticles Using the Stöber Method. Langmuir 2008, 24 (19) , 11189-11195. https://doi.org/10.1021/la801985g
    95. Bridgette Blackman, David Battaglia and Xiaogang Peng . Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stability by Growth. Chemistry of Materials 2008, 20 (15) , 4847-4853. https://doi.org/10.1021/cm8000688
    96. Sabyasachi Rakshit and Sukumaran Vasudevan. Resonance Energy Transfer from β-Cyclodextrin-Capped ZnO:MgO Nanocrystals to Included Nile Red Guest Molecules in Aqueous Media. ACS Nano 2008, 2 (7) , 1473-1479. https://doi.org/10.1021/nn800152a
    97. Huan-Ming Xiong, Yang Xu, Qing-Guang Ren and Yong-Yao Xia . Stable Aqueous ZnO@Polymer Core−Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging. Journal of the American Chemical Society 2008, 130 (24) , 7522-7523. https://doi.org/10.1021/ja800999u
    98. Mauro Epifani, Jordi Arbiol, Eva Pellicer, Elisabetta Comini, Pietro Siciliano, Guido Faglia and Joan R. Morante . Synthesis and Gas-Sensing Properties of Pd-Doped SnO2 Nanocrystals. A Case Study of a General Methodology for Doping Metal Oxide Nanocrystals. Crystal Growth & Design 2008, 8 (5) , 1774-1778. https://doi.org/10.1021/cg700970d
    99. Quanqin Dai, Ningru Xiao, Jiajia Ning, Chenyuan Li, Dongmei Li, Bo Zou, William W. Yu, Shihai Kan, Haiyong Chen, Bingbing Liu and Guangtian Zou. Synthesis and Mechanism of Particle- and Flower-Shaped ZnSe Nanocrystals: Green Chemical Approaches toward Green Nanoproducts. The Journal of Physical Chemistry C 2008, 112 (20) , 7567-7571. https://doi.org/10.1021/jp7120559
    100. Sayan Bhattacharyya, D. Zitoun and A. Gedanken . One-Pot Synthesis and Characterization of Mn2+-Doped Wurtzite CdSe Nanocrystals Encapsulated with Carbon. The Journal of Physical Chemistry C 2008, 112 (20) , 7624-7630. https://doi.org/10.1021/jp801353w
    Load more citations