ACS Publications. Most Trusted. Most Cited. Most Read
Nanoscale Additives Tailor Energetic Materials
My Activity
    Letter

    Nanoscale Additives Tailor Energetic Materials
    Click to copy article linkArticle link copied!

    View Author Information
    Mechanical, Materials and Aerospace Engineering, Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, University of Central Florida, Orlando, Florida 32816
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2007, 7, 7, 2157–2161
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl0625372
    Published June 12, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The effect of anatase, rutile, and amorphous TiO2 nanoparticles on the combustion of solid rocket propellant was investigated. Each additive increased the burning rate of propellant strands by 30%. Typical fast-burning propellants are unstable due to oversensitivity to pressure variations, but the anatase additive yielded propellants with high yet stable burning rates over a broad pressure range. Anatase nanoparticles also catalyzed the high-temperature decomposition of ammonium perchlorate, a key component of solid propellant.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Visiting Student, NSF-REU Program, Carnegie Mellon University.

    *

     Corresponding author. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    Methods and supporting data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 126 publications.

    1. Armando de Rezende, Jeremiah Zamora, Letícia S. Braga, Michelle L. Pantoya, Daniel Tunega, Andrew R. Demko, Adelia J. A. Aquino. Effects of TiO2 Anatase Polymorph on Ammonium Perchlorate Decomposition. The Journal of Physical Chemistry C 2024, 128 (45) , 19337-19347. https://doi.org/10.1021/acs.jpcc.4c04361
    2. Hakob Enfiajyan, Tran K. L. Hang, Dorsa Kamyab, Mahdi Yoozbashizadeh, Fangyuan Tian, Joseph Kalman. Functionalization of Titania Nanoparticles with Carboxyl Groups for Improved Mechanical Performance of Hydroxyl Terminated Polybutadiene (HTPB) Composites. Energy & Fuels 2024, 38 (21) , 20417-20425. https://doi.org/10.1021/acs.energyfuels.4c03691
    3. Lin-Yu Zhou, Shao-Bo Cao, Liang-Liang Zhang, Guolei Xiang, Xiao-Fei Zeng, Jian-Feng Chen. Promotion of the Co3O4/TiO2 Interface on Catalytic Decomposition of Ammonium Perchlorate. ACS Applied Materials & Interfaces 2022, 14 (2) , 3476-3484. https://doi.org/10.1021/acsami.1c20510
    4. Huiyu Liu, Zhiliang Guo, Qingchun Zhang, Bo Jin, Rufang Peng. Zeolite Imidazolate Frameworks-67 Precursor to Fabricate a Highly Active Cobalt-Embedded N-Doped Porous Graphitized Carbon Catalyst for the Thermal Decomposition of Ammonium Perchlorate. ACS Omega 2021, 6 (39) , 25440-25446. https://doi.org/10.1021/acsomega.1c03427
    5. Yiqiang Xu, Yanna Wang, Ye Zhong, Guorong Lei, Zhimin Li, Jianguo Zhang, Tonglai Zhang. Transition Metal Complexes Based on Hypergolic Anions for Catalysis of Ammonium Perchlorate Thermal Decomposition. Energy & Fuels 2020, 34 (11) , 14667-14675. https://doi.org/10.1021/acs.energyfuels.0c02570
    6. Qingqing Miao and Suojiang Zhang . In Situ Self-Assembly-Generated 3D Hierarchical Co3O4 Micro/Nanomaterial Series: Selective Synthesis, Morphological Control, and Energy Applications. ACS Applied Materials & Interfaces 2017, 9 (50) , 44199-44213. https://doi.org/10.1021/acsami.7b14543
    7. Zhichao Liu, Weihua Zhu, Guangfu Ji, Kefeng Song, and Heming Xiao . Decomposition Mechanisms of α-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine Nanoparticles at High Temperatures. The Journal of Physical Chemistry C 2017, 121 (14) , 7728-7740. https://doi.org/10.1021/acs.jpcc.7b01136
    8. Gen Tang, Shouqin Tian, Zhaoxia Zhou, Yanwei Wen, Aimin Pang, Yungang Zhang, Dawen Zeng, Haitao Li, Bin Shan, and Changsheng Xie . ZnO Micro/Nanocrystals with Tunable Exposed (0001) Facets for Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate. The Journal of Physical Chemistry C 2014, 118 (22) , 11833-11841. https://doi.org/10.1021/jp503510x
    9. Sasidhar Siddabattuni, Thomas P. Schuman, and Fatih Dogan . Dielectric Properties of Polymer–Particle Nanocomposites Influenced by Electronic Nature of Filler Surfaces. ACS Applied Materials & Interfaces 2013, 5 (6) , 1917-1927. https://doi.org/10.1021/am3030239
    10. David L. Reid, Kevin R. Kreitz, Matthew A. Stephens, Jessica E. S. King, Ponnusamy Nachimuthu, Eric L. Petersen, and Sudipta Seal . Development of Highly Active Titania-Based Nanoparticles for Energetic Materials. The Journal of Physical Chemistry C 2011, 115 (21) , 10412-10418. https://doi.org/10.1021/jp200993s
    11. Collin R. Becker, Steven Apperson, Christopher J. Morris, Shubhra Gangopadhyay, Luke J. Currano, Wayne A. Churaman, and Conrad R. Stoldt . Galvanic Porous Silicon Composites for High-Velocity Nanoenergetics. Nano Letters 2011, 11 (2) , 803-807. https://doi.org/10.1021/nl104115u
    12. Jingzhou Yin, Qingyi Lu, Zhinan Yu, Jianjun Wang, Huan Pang and Feng Gao . Hierarchical ZnO Nanorod-Assembled Hollow Superstructures for Catalytic and Photoluminescence Applications. Crystal Growth & Design 2010, 10 (1) , 40-43. https://doi.org/10.1021/cg901200u
    13. Liping Li, Xuefei Sun, Xiaoqing Qiu, Jiaoxing Xu and Guangshe Li. Nature of Catalytic Activities of CoO Nanocrystals in Thermal Decomposition of Ammonium Perchlorate. Inorganic Chemistry 2008, 47 (19) , 8839-8846. https://doi.org/10.1021/ic8008283
    14. Xuefei Sun, Xiaoqing Qiu, Liping Li and Guangshe Li. ZnO Twin-Cones: Synthesis, Photoluminescence, and Catalytic Decomposition of Ammonium Perchlorate. Inorganic Chemistry 2008, 47 (10) , 4146-4152. https://doi.org/10.1021/ic702348c
    15. Jerimiah A. Zamora, Armando de Rezende, Reed Nieman, Neil Vaz, Andrew R. Demko, Michelle L. Pantoya, Daniel Tunega, Adelia J. A. Aquino. Modeling adsorption reactions of ammonium perchlorate on rutile and anatase surfaces. Journal of Computational Chemistry 2024, 45 (32) , 2739-2748. https://doi.org/10.1002/jcc.27476
    16. Hui Liu, Jifei Yuan, Xueqin Liao, Zhihao Sun, Jianzhong Liu. Aluminum particle agglomeration mechanism and microscopic combustion characteristics of NEPE propellants. Journal of Thermal Analysis and Calorimetry 2024, 149 (11) , 5187-5202. https://doi.org/10.1007/s10973-024-13137-0
    17. Chaofei Bai, DeSheng Yang, Chang Liu, FengDan Zhu, ChengZhao Tu, Guoping Li, Yunjun Luo. In situ synthesis NiO@TiO2/MXene as a promoter for ammonium perchlorate based solid propellants. Applied Surface Science 2024, 652 , 159228. https://doi.org/10.1016/j.apsusc.2023.159228
    18. Evangelos Voyiatzis, Eugenia Valsami-Jones, Antreas Afantitis. Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media. Beilstein Journal of Nanotechnology 2024, 15 , 995-1009. https://doi.org/10.3762/bjnano.15.81
    19. Neil G. Vaz, Joseph D. Pantoya, Kelsea K. Miller, Armando de Rezende, Adelia J. A. Aquino, Andrew R. Demko, Michelle L. Pantoya. A Metal Inorganic Framework Designed as a Propellant Burn Rate Modifier. Advanced Engineering Materials 2023, 25 (21) https://doi.org/10.1002/adem.202301099
    20. Zhanerke Yelemessova, Symbat Kydyrbekova, Ayan Yerken. Thermal Characteristics Enhancement of AN/Mg/NC Composite Using Activated Carbon/Cobalt Oxide as Highly Effective Catalytic Additive. Journal of Composites Science 2023, 7 (11) , 471. https://doi.org/10.3390/jcs7110471
    21. Kunkun Zhu, Zheng Sun, Fuding Sun, Kun Chen, Chengzhi Wang, Haibo Jin, Jingbo Li. Co metal-decorated carbon nanotubes with excellent thermal catalytic performance. Journal of Materials Science 2023, 58 (36) , 14315-14325. https://doi.org/10.1007/s10853-023-08899-1
    22. Felix A. Rodriguez, J. C. Thomas, E. L. Petersen. Manufacturing superfine AP by milling in a lab-scale resonant acoustic mixer (LabRAM). Journal of Energetic Materials 2023, 11 , 1-13. https://doi.org/10.1080/07370652.2023.2219686
    23. Kelly J. Figueroa-Lopez, Cristina Prieto, Maria Pardo-Figuerez, Luis Cabedo, Jose M. Lagaron. Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications. Nanomaterials 2023, 13 (5) , 823. https://doi.org/10.3390/nano13050823
    24. Andrew J. Tykol, F. A. Rodriguez, J. C. Thomas, E. L. Petersen. Burning Rate Characterization of Guanidine Nitrate and Basic Copper Nitrate Gas Generants with Metal Oxide Additives. Combustion Science and Technology 2022, 194 (16) , 3390-3407. https://doi.org/10.1080/00102202.2021.1928093
    25. Shenghao Meng, Wenpeng Mi, Jifang Liu, Weichang Xu, Xiangtong Kong. Preparation of Titanium Dioxide/Graphitic Carbon Nitride Hybrid and Its Catalytic Effect on Ammonium Perchlorate Decomposition. Russian Journal of Physical Chemistry A 2022, 96 (11) , 2497-2504. https://doi.org/10.1134/S0036024422110280
    26. Felix A. Rodriguez, James C. Thomas, Thomas E. Sammet, David S. Teitge, Eric L. Petersen. Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Micro- and Nano-Catalytic Additives. Journal of Propulsion and Power 2022, 38 (5) , 822-832. https://doi.org/10.2514/1.B38635
    27. Hicham Jabraoui, Mehdi Djafari Rouhani, Carole Rossi, Alain Esteve. First-principles investigation of CuO decomposition and its transformation into Cu 2 O . Physical Review Materials 2022, 6 (9) https://doi.org/10.1103/PhysRevMaterials.6.096001
    28. Andrew R. Demko, Kevin J. Hill, Elektra Katz Ismael, Alan Kastengren. Observation of aluminum interaction with the binder melt layer using high-speed synchrotron-based phase contrast imaging. Combustion and Flame 2022, 241 , 112054. https://doi.org/10.1016/j.combustflame.2022.112054
    29. Zhen Su, Yushu Li, Jiguang Li, Kun Li, Xincun Dou. Ultrasensitive dual-mode visualization of perchlorate in water, soil and air boosted by close and stable Pt–Pt packing endowed low-energy absorption and emission. Journal of Materials Chemistry A 2022, 10 (15) , 8195-8207. https://doi.org/10.1039/D2TA00843B
    30. Shao-Bo Cao, Lin-Yu Zhou, Cai Zhang, Liang-Liang Zhang, Guo-Lei Xiang, Jie-Xin Wang, Jian-Feng Chen. Core-shell structured AP/Fe3O4 composite with enhanced catalytic thermal decomposition property: Fabrication and mechanism study. Chemical Engineering Science 2022, 247 , 116899. https://doi.org/10.1016/j.ces.2021.116899
    31. Yuping Fu, Peng Deng, Xiaoxia Li, . The Effect of Particle Size of Copper Oxide (CuO) on the Heat‐Induced Catalysis Decomposition of Molecular Perovskite‐Based Energetic Material DAP‐4. Journal of Nanomaterials 2022, 2022 (1) https://doi.org/10.1155/2022/9725786
    32. Dan Li, Jianguo Li, Lijun Qin, Yiyun Hu, Ting Gong, Wangle Zhang, Longfei Hui, Hao Feng. H-titanate nanotube supported Fe2O3 nanoparticles for enhancing the thermal decomposition of ammonium perchlorate: The superb catalytic activity of interface sites. Applied Surface Science 2021, 563 , 150207. https://doi.org/10.1016/j.apsusc.2021.150207
    33. Zhen Su, Yushu Li, Jiguang Li, Xincun Dou. Ultrasensitive luminescent turn-on detection of perchlorate particulates by triggering supramolecular self-assembly of platinum(II) complex in hydrogel matrix. Sensors and Actuators B: Chemical 2021, 336 , 129728. https://doi.org/10.1016/j.snb.2021.129728
    34. Zhiliang Guo, Qingchun Zhang, Huiyu Liu, Hewen Zhang, Jinhao Zhang, Jin Zuo, Bo Jin, Rufang Peng. A novel metal-organic framework precursor strategy to fabricate sub-micron CuO microspheres for catalytic thermal decomposition of ammonium perchlorate. Materials Today Communications 2021, 26 , 102139. https://doi.org/10.1016/j.mtcomm.2021.102139
    35. Peng Deng, Qingjie Jiao, Hui Ren. Laminated ammonium perchlorate-based composite prepared by ice-template freezing-induced assembly. Journal of Materials Science 2021, 56 (3) , 2077-2087. https://doi.org/10.1007/s10853-020-05174-5
    36. Sheng-Hao Meng, Ji-Fang Liu, Xiang-Tong Kong, Shi-Guo Du. Preparation of TiO2/CNTs nanocomposite and its catalytic performance on the thermal decomposition of ammonium perchlorate. Transition Metal Chemistry 2020, 45 (8) , 545-551. https://doi.org/10.1007/s11243-020-00406-8
    37. Anastasios G. Papadiamantis, Jaak Jänes, Evangelos Voyiatzis, Lauri Sikk, Jaanus Burk, Peeter Burk, Andreas Tsoumanis, My Kieu Ha, Tae Hyun Yoon, Eugenia Valsami-Jones, Iseult Lynch, Georgia Melagraki, Kaido Tämm, Antreas Afantitis. Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform. Nanomaterials 2020, 10 (10) , 2017. https://doi.org/10.3390/nano10102017
    38. Felix A. Rodriguez, James C. Thomas, David Teitge, Eric L. Petersen. Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Micro- and Nano-Catalytic Additives. 2020https://doi.org/10.2514/6.2020-3899
    39. Harini Gunda, Chinmay Ghoroi, Kabeer Jasuja. Layered magnesium diboride and its derivatives as potential catalytic and energetic additives for tuning the exothermicity of ammonium perchlorate. Thermochimica Acta 2020, 690 , 178674. https://doi.org/10.1016/j.tca.2020.178674
    40. Linyu Zhou, Shaobo Cao, Liangliang Zhang, Guolei Xiang, Jiexin Wang, Xiaofei Zeng, Jianfeng Chen. Facet effect of Co3O4 nanocatalysts on the catalytic decomposition of ammonium perchlorate. Journal of Hazardous Materials 2020, 392 , 122358. https://doi.org/10.1016/j.jhazmat.2020.122358
    41. Felix A. Rodriguez, James C. Thomas, David Teitge, Eric L. Petersen. Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Nano-Catalytic Additives. 2020https://doi.org/10.2514/6.2020-1425
    42. Jalpa A. Vara, Pragnesh N. Dave. Metal oxide nanoparticles as catalyst for thermal behavior of AN based composite solid propellant. Chemical Physics Letters 2019, 730 , 600-607. https://doi.org/10.1016/j.cplett.2019.06.048
    43. Jalpa A. Vara, Pragnesh N. Dave, Shalini Chaturvedi. The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. Defence Technology 2019, 15 (4) , 629-635. https://doi.org/10.1016/j.dt.2019.04.002
    44. R.M. Jagtap, D.R. Kshirsagar, V.H. Khire, S.K. Pardeshi. Facile fabrication of porous La doped ZnO granular nanocrystallites and their catalytic evaluation towards thermal decomposition of ammonium perchlorate. Journal of Solid State Chemistry 2019, 276 , 194-204. https://doi.org/10.1016/j.jssc.2019.05.001
    45. Shao-bo Cao, Xiao-ge Han, Liang-liang Zhang, Jie-xin Wang, Yong Luo, Hai-kui Zou, Jian-feng Chen. Facile and scalable preparation of α-Fe2O3 nanoparticle by high-gravity reactive precipitation method for catalysis of solid propellants combustion. Powder Technology 2019, 353 , 444-449. https://doi.org/10.1016/j.powtec.2019.05.062
    46. Sunil Jain, Vrushali H. Khire, Balasubramanian Kandasubramanian. Barium Titanate: A Novel Perovskite Oxide Burning Rate Modifier for HTPB/AP/Al Based Composite Propellant Formulations. Propellants, Explosives, Pyrotechnics 2019, 44 (4) , 505-512. https://doi.org/10.1002/prep.201800167
    47. Nwabueze G. Emekwuru. Nanofuel Droplet Evaporation Processes. Journal of the Indian Institute of Science 2019, 99 (1) , 43-58. https://doi.org/10.1007/s41745-018-0092-2
    48. Xiao Zhang, Jian Zheng, Haoming Fang, Yafei Zhang, Shulin Bai, Guansong He, Ke Li. Catalytic decomposition and crack resistance of composite energetic material synthesized by recrystallizing with graphene oxide. Composites Part A: Applied Science and Manufacturing 2019, 118 , 90-98. https://doi.org/10.1016/j.compositesa.2018.12.015
    49. James C. Thomas, Thomas E. Sammet, Catherine A. M. Dillier, Andrew R. Demko, Felix A. Rodriguez, Eric L. Petersen. Aging Effects on the Burning Rates of Composite Solid Propellants with Nano-Additives. Journal of Propulsion and Power 2019, 35 (2) , 342-351. https://doi.org/10.2514/1.B37189
    50. Xiangfeng Guan, Peihui Luo, Yunlong Yu, Xiaoyan Li, Dagui Chen. Solvent-Tuned Synthesis of Mesoporous Nickel Cobaltite Nanostructures and Their Catalytic Properties. Applied Sciences 2019, 9 (6) , 1100. https://doi.org/10.3390/app9061100
    51. Wenhui Zeng, Calvin O. Nyapete, Alexander H.H. Benziger, Paul A. Jelliss, Steven W. Buckner. Encapsulation of Reactive Nanoparticles of Aluminum, Magnesium, Zinc, Titanium, or Boron within Polymers for Energetic Applications. Current Applied Polymer Science 2019, 3 (1) , 3-13. https://doi.org/10.2174/2452271602666180917095629
    52. Carlos Hortelano, José Luis de la Fuente. New Developments in Composite Propellants Catalysis. 2019, 363-388. https://doi.org/10.1016/B978-0-12-813908-0.00009-5
    53. James C. Thomas, Gabriel D. Homan-Cruz, Jacob M. Stahl, Eric L. Petersen. The effects of SiO2 and TiO2 on the two-phase burning behavior of aqueous HAN propellant. Proceedings of the Combustion Institute 2019, 37 (3) , 3159-3166. https://doi.org/10.1016/j.proci.2018.07.004
    54. Jingfeng Wang, Yang Li, Yadong Qiao, Guangzhi Yu, Jinzhu Wu, Xiaohong Wu, Wei Qin, Liang Xu. Visible light-enhanced thermal decomposition performance of ammonium perchlorate with a metal–organic framework-derived Ag-embedded porous ZnO nanocomposite. New Journal of Chemistry 2018, 42 (22) , 18001-18009. https://doi.org/10.1039/C8NJ04143A
    55. Ning Yan, Lijun Qin, Jianguo Li, Fengqi Zhao, Hao Feng. Atomic layer deposition of iron oxide on reduced graphene oxide and its catalytic activity in the thermal decomposition of ammonium perchlorate. Applied Surface Science 2018, 451 , 155-161. https://doi.org/10.1016/j.apsusc.2018.04.247
    56. Andrew R. Demko, Catherine Dillier, Thomas Sammet, Eric L. Petersen, David L. Reid, Sudipta Seal. Ignition Delay Times of Composite Solid Propellants Using Novel Nano-Additive Catalysts. Journal of Propulsion and Power 2018, 34 (5) , 1285-1296. https://doi.org/10.2514/1.B36802
    57. James C. Thomas, Thomas Sammet, Catherine A. Dillier, Andrew R. Demko, Felix Rodriguez, Eric L. Petersen. Effects of Aging on the Burning Rates of Composite Solid Propellants with and without Nano-Sized Additives. 2018https://doi.org/10.2514/6.2018-4960
    58. Nikita V. Muravyev, Konstantin A. Monogarov, Alexey N. Zhigach, Mikhail L. Kuskov, Igor V. Fomenkov, Alla N. Pivkina. Exploring enhanced reactivity of nanosized titanium toward oxidation. Combustion and Flame 2018, 191 , 109-115. https://doi.org/10.1016/j.combustflame.2018.01.011
    59. Andrew R. Demko, Tyler W. Allen, Catherine Dillier, Thomas Sammet, Eric L. Petersen, David L. Reid, Sudipta Seal. Temperature Sensitivity of Composite Propellants Containing Novel Nano-Additive Catalysts. Journal of Propulsion and Power 2018, 34 (3) , 795-807. https://doi.org/10.2514/1.B36392
    60. Sai Pavan Prashanth Sadhu, Sasidhar Siddabattuni, Sai Muthukumar V., K. B. R. Varma. Enhanced dielectric properties and energy storage density of surface engineered BCZT/PVDF-HFP nanodielectrics. Journal of Materials Science: Materials in Electronics 2018, 29 (8) , 6174-6182. https://doi.org/10.1007/s10854-018-8592-4
    61. Yanjing Yang, Fengqi Zhao, Huixiang Xu, Qing Pei, Hanyu Jiang, Jianhua Yi, Chunlei Xuan, Sanping Chen. Hydrogen-enhanced combustion of a composite propellant with ZrH2 as the fuel. Combustion and Flame 2018, 187 , 67-76. https://doi.org/10.1016/j.combustflame.2017.09.004
    62. Xiangfeng Guan, Yunlong Yu, Xiaoyan Li, Dagui Chen, Peihui Luo, Yu Zhang, Shanxin Guo. Hierarchically porous MgCo 2 O 4 nanochain networks: template-free synthesis and catalytic application. Materials Research Express 2018, 5 (1) , 015002. https://doi.org/10.1088/2053-1591/aa9f9d
    63. Chunpei Yu, Wenchao Zhang, Yu Gao, Yajie Chen, Kefeng Ma, Jiahai Ye, Ruiqi Shen, Yang Yang. Shape-controlled syntheses of Co3O4 nanowires arrays with excellent catalytic performances upon ammonium perchlorate decomposition. Materials Research Bulletin 2018, 97 , 483-489. https://doi.org/10.1016/j.materresbull.2017.09.049
    64. Meriem Amina Fertassi, Qi Liu, Runze Li, Pingan Liu, Jingyuan Liu, Rong-Rong Chen, Lianhe Liu, Jun Wang. $$\textit{Ex}\,\textit{situ}$$ Ex situ synthesis of G/ $$\upalpha $$ α - $$\hbox {Fe}_{2}\hbox {O}_{3}$$ Fe 2 O 3 nanocomposite and its catalytic effect on the thermal decomposition of ammonium perchlorate. Bulletin of Materials Science 2017, 40 (4) , 691-698. https://doi.org/10.1007/s12034-017-1412-2
    65. Kranthi Chatragadda, Anuj A Vargeese. Synergistically catalysed pyrolysis of hydroxyl terminated polybutadiene binder in composite propellants and burn rate enhancement by free-standing CuO nanoparticles. Combustion and Flame 2017, 182 , 28-35. https://doi.org/10.1016/j.combustflame.2017.04.007
    66. Jingfeng Wang, Yang Li, Huanhuan Wang, Tian Tian, Shanxu Zhu, Jia Zhou, Xiaohong Wu, Wei Qin. Atomic‐Layer‐Deposited ZnO on Carbon Black as High‐Performance Catalysts for the Thermal Decomposition of Ammonium Perchlorate. European Journal of Inorganic Chemistry 2017, 2017 (25) , 3154-3160. https://doi.org/10.1002/ejic.201700146
    67. Jingcheng Xu, Yingchun Bian, Yi Liu, Dong Zhai. Reactive molecular dynamics study of thermal decomposition of nanocarbon energetic composite materials. Computational Materials Science 2017, 131 , 126-131. https://doi.org/10.1016/j.commatsci.2017.01.044
    68. Yanjun Yin, Xueming Li, Yuanjie Shu, Xiaogang Guo, Yuhua Zhu, Xinyue Huang, Hebin Bao, Ke Xu. Highly-reactive Al/CuO nanoenergetic materials with a tubular structure. Materials & Design 2017, 117 , 104-110. https://doi.org/10.1016/j.matdes.2016.12.083
    69. Andrew R. Demko, Tyler W. Allen, James C. Thomas, Mitch Johnson, Gordon R. Morrow, David L. Reid, Sudipta Seal, Eric L. Petersen. Comparison of Commercially Available and Synthesized Titania Nano‐Additives in Composite HTPB/AP Propellant. Propellants, Explosives, Pyrotechnics 2017, 42 (2) , 158-166. https://doi.org/10.1002/prep.201600022
    70. Harish Kumar, Prahalad N. Tengli, Vijay Kumar Mishra, Pankaj Tripathi, Dan Bahadur Pal, Pradeep Kumar Mishra. Synthesis and catalytic activity of Cu–Cr–O–TiO 2 composites for the thermal decomposition of ammonium per-chlorate: enhanced decomposition rate of fuel for solid rocket motors. RSC Advances 2017, 7 (21) , 12486-12495. https://doi.org/10.1039/C6RA28297K
    71. Harish Kumar, Prahalad N. Tengli, Vijay Kumar Mishra, Pankaj Tripathi, Awani Bhushan, Pradeep Kumar Mishra. The effect of reduced graphene oxide on the catalytic activity of Cu–Cr–O–TiO 2 to enhance the thermal decomposition rate of ammonium perchlorate: an efficient fuel oxidizer for solid rocket motors and missiles. RSC Advances 2017, 7 (58) , 36594-36604. https://doi.org/10.1039/C7RA06012B
    72. Haitao Li, Kun Zhao, Shouqin Tian, Dawen Zeng, Aimin Pang, Xiaoxia Wang, Changsheng Xie. Origin of the efficient catalytic thermal decomposition of ammonium perchlorate over (2−1−10) facets of ZnO nanosheets: surface lattice oxygen. RSC Advances 2017, 7 (64) , 40262-40269. https://doi.org/10.1039/C7RA07906K
    73. Pengkun Tu, Meishuai Zou, Rongjie Yang, Xiaoyan Guo. Synthesis of ferric perfluorooctanoate [Fe(PFO)3] and its catalysis on thermal decomposition of ammonium perchlorate. Thermochimica Acta 2016, 646 , 32-38. https://doi.org/10.1016/j.tca.2016.10.012
    74. Qi-Long Yan, Feng-Qi Zhao, Kenneth K. Kuo, Xiao-Hong Zhang, Svatopluk Zeman, Luigi T. DeLuca. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Progress in Energy and Combustion Science 2016, 57 , 75-136. https://doi.org/10.1016/j.pecs.2016.08.002
    75. James C. Thomas, Andrew R. Demko, Thomas E. Sammet, David L. Reid, Sudipta Seal, Eric L. Petersen. Mechanical Properties of Composite AP/HTPB Propellants Containing Novel Titania Nanoparticles. Propellants, Explosives, Pyrotechnics 2016, 41 (5) , 822-834. https://doi.org/10.1002/prep.201600090
    76. Yuelan Zhang, Liping Li, Qi Li, Jianming Fan, Jing Zheng, Guangshe Li. Smart Solution Chemistry to Sn‐Containing Intermetallic Compounds through a Self‐Disproportionation Process. Chemistry – A European Journal 2016, 22 (40) , 14196-14204. https://doi.org/10.1002/chem.201601681
    77. Abbas Eslami, Nafise Modanlou Juibari, Seyed Ghorban Hosseini. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Materials Chemistry and Physics 2016, 181 , 12-20. https://doi.org/10.1016/j.matchemphys.2016.05.064
    78. Sanoop Paulose, Rajeev Raghavan, Benny K. George. Graphite oxide–iron oxide nanocomposites as a new class of catalyst for the thermal decomposition of ammonium perchlorate. RSC Advances 2016, 6 (51) , 45977-45985. https://doi.org/10.1039/C6RA06860J
    79. Kevin D. Grossman, Tamil S. Sakthivel, Catherine Dillier, Eric L. Petersen, Sudipta Seal. Effect of amine-modified boron nitride (BN) on ammonium perchlorate decomposition. RSC Advances 2016, 6 (92) , 89635-89641. https://doi.org/10.1039/C6RA21300F
    80. Linghua Tan, Jianhua Xu, Xiaojuan Zhang, Zusheng Hang, Yongqiang Jia, Shanbin Wang. Synthesis of g-C 3 N 4 /CeO 2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Applied Surface Science 2015, 356 , 447-453. https://doi.org/10.1016/j.apsusc.2015.08.078
    81. SASIDHAR SIDDABATTUNI, SRI HARSHA AKELLA, ABILASH GANGULA, SANDEEP PATNAIK. Impedance spectroscopy studies of surface engineered TiO2 nanoparticles using slurry technique. Bulletin of Materials Science 2015, 38 (5) , 1399-1405. https://doi.org/10.1007/s12034-015-1027-4
    82. Qi Li, Yi He, Rufang Peng. TeO 2 Nanoparticle Loaded Graphitic Carbon Nitride Hybrids: Their Preparation and Catalytic Activities in the Thermal Decomposition of Ammonium Perchlorate. European Journal of Inorganic Chemistry 2015, 2015 (24) , 4062-4067. https://doi.org/10.1002/ejic.201500507
    83. Thomas Sammet, Andrew R. Demko, Catherine Dillier, Eric L. Petersen. Aging Effects of Composite AP/HTPB Propellants Containing Nano-Sized Additives. 2015https://doi.org/10.2514/6.2015-3973
    84. Andrew R. Demko, Catherine Dillier, Eric L. Petersen, David Reid, Sudipta Seal. Ignition Delay Times of Composite Solid Propellants Using Novel Nano-Additive Catalysts. 2015https://doi.org/10.2514/6.2015-4106
    85. Seyed Ghorban Hosseini, Rezgar Ahmadi, Azam Ghavi, Abolfazl Kashi. Synthesis and characterization of α-Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles. Powder Technology 2015, 278 , 316-322. https://doi.org/10.1016/j.powtec.2015.03.032
    86. Shouqin Tian, Neng Li, Dawen Zeng, Haitao Li, Gen Tang, Aimin Pang, Changsheng Xie, Xiujian Zhao. Hierarchical ZnO hollow microspheres with exposed (001) facets as promising catalysts for the thermal decomposition of ammonium perchlorate. CrystEngComm 2015, 17 (45) , 8689-8696. https://doi.org/10.1039/C5CE01160D
    87. Xiangming Xu, Yongjie Zhao, Yuzhen Zhao, Heping Zhou, Fida Rehman, Jingbo Li, Haibo Jin. Self-assembly process of China rose-like β-Co(OH) 2 and its topotactic conversion route to Co 3 O 4 with optimizable catalytic performance. CrystEngComm 2015, 17 (43) , 8248-8255. https://doi.org/10.1039/C5CE01416F
    88. Qi Li, Yi He, Rufang Peng. One-step synthesis of SnO 2 nanoparticles-loaded graphitic carbon nitride and their application in thermal decomposition of ammonium perchlorate. New Journal of Chemistry 2015, 39 (11) , 8703-8707. https://doi.org/10.1039/C5NJ01236H
    89. Qi Li, Yi He, Rufang Peng. Graphitic carbon nitride (g-C 3 N 4 ) as a metal-free catalyst for thermal decomposition of ammonium perchlorate. RSC Advances 2015, 5 (31) , 24507-24512. https://doi.org/10.1039/C5RA01157D
    90. Jian Cheng, Rongxian Zhang, Zuliang Liu, Lixia Li, Fengqi Zhao, Siyu Xu. Thermal decomposition mechanism of Co–ANPyO/CNTs nanocomposites and their application to the thermal decomposition of ammonium perchlorate. RSC Advances 2015, 5 (62) , 50278-50288. https://doi.org/10.1039/C5RA05903H
    91. Robert E. Draper, David L. Reid, Tamil S. Sakthivel, Thomas Sammet, Andrew Demko, Eric L. Petersen, Sudipta Seal. Facile nanoparticle dispersion detection in energetic composites by rare earth doped in metal oxide nanostructures. RSC Advances 2015, 5 (84) , 68305-68313. https://doi.org/10.1039/C5RA10659A
    92. Seyed Ghorban Hosseini, Reza Abazari, Azam Gavi. Pure CuCr 2 O 4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sciences 2014, 37 , 72-79. https://doi.org/10.1016/j.solidstatesciences.2014.08.014
    93. Andrew R. Demko, James C. Thomas, Thomas Sammet, Eric L. Petersen, David Reid, Sudipta Seal. Temperature Sensitivity of Composite Propellant Containing Novel Nano-Additive Catalysts. 2014https://doi.org/10.2514/6.2014-3691
    94. Yuan Yuan, Wei Jiang, Yujiao Wang, Ping Shen, Fengsheng Li, Pingyun Li, Fengqi Zhao, Hongxu Gao. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Applied Surface Science 2014, 303 , 354-359. https://doi.org/10.1016/j.apsusc.2014.03.005
    95. Sumit Verma, P.A. Ramakrishna. Dependence of density and burning rate of composite solid propellant on mixer size. Acta Astronautica 2014, 93 , 130-137. https://doi.org/10.1016/j.actaastro.2013.07.016
    96. Lijuan Chen, Dingyi Zhu. The particle dimension controlling synthesis of α-MnO2 nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Solid State Sciences 2014, 27 , 69-72. https://doi.org/10.1016/j.solidstatesciences.2013.11.001
    97. David L. Reid, Robert Draper, David Richardson, Andrew Demko, Tyler Allen, Eric L. Petersen, Sudipta Seal. In situ synthesis of polyurethane–TiO2 nanocomposite and performance in solid propellants. Journal of Materials Chemistry A 2014, 2 (7) , 2313. https://doi.org/10.1039/c3ta14027j
    98. Anuj A. Vargeese, Krishnamurthi Muralidharan. Effect of anatase–brookite mixed phase titanium dioxide nanoparticles on the high temperature decomposition kinetics of ammonium perchlorate. Materials Chemistry and Physics 2013, 139 (2-3) , 537-542. https://doi.org/10.1016/j.matchemphys.2013.01.054
    99. Zhigang Jia, Daping Ren, Qiuze Wang, Rongsun Zhu. A new precursor strategy to prepare ZnCo2O4 nanorods and their excellent catalytic activity for thermal decomposition of ammonium perchlorate. Applied Surface Science 2013, 270 , 312-318. https://doi.org/10.1016/j.apsusc.2013.01.022
    100. Na Li, Zhenfeng Geng, Minhua Cao, Ling Ren, Xinyu Zhao, Bing Liu, Yuan Tian, Changwen Hu. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon 2013, 54 , 124-132. https://doi.org/10.1016/j.carbon.2012.11.009
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2007, 7, 7, 2157–2161
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl0625372
    Published June 12, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    1383

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.