ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons

View Author Information
Radiation Laboratory, Departments of Chemistry & Biochemistry and Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556-0579
Cite this: Nano Lett. 2007, 7, 3, 676–680
Publication Date (Web):February 20, 2007
https://doi.org/10.1021/nl0627238
Copyright © 2007 American Chemical Society

    Article Views

    8333

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (303 KB)

    Abstract

    Abstract Image

    Single wall carbon nanotube (SWCNT) architecture when employed as conducting scaffolds in a TiO2 semiconductor based photoelectrochemical cell can boost the photoconversion efficiency by a factor of 2. Titanium dioxide nanoparticles were dispersed on SWCNT films to improve photoinduced charge separation and transport of carriers to the collecting electrode surface. The shift of ∼100 mV in apparent Fermi level of the SWCNT−TiO2 system as compared to the unsupported TiO2 system indicates the Fermi level equilibration between the two systems. The interplay between the TiO2 and SWCNT of attaining charge equilibration is an important factor for improving photoelectrochemical performance of nanostructured semiconductor based solar cells. The feasibility of employing a SWCNT−TiO2 composite to drive the water photoelectrolysis reaction has also been explored.

    *

      Author to whom correspondence should be addressed. E-mail:  [email protected].

    Cited By

    This article is cited by 557 publications.

    1. Haijiao Lu, Julie Tournet, Kamran Dastafkan, Yun Liu, Yun Hau Ng, Siva Krishna Karuturi, Chuan Zhao, Zongyou Yin. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews 2021, 121 (17) , 10271-10366. https://doi.org/10.1021/acs.chemrev.0c01328
    2. Aida Amini, Hossein Abdizadeh, Mohammad Reza Golobostanfard. Hybrid 1D/2D Carbon Nanostructure-Incorporated Titania Photoanodes for Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (7) , 6195-6204. https://doi.org/10.1021/acsaem.0c00200
    3. Yanxiao Ma, Pravin S. Shinde, Xiao Li, Shanlin Pan. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. ACS Omega 2019, 4 (17) , 17257-17268. https://doi.org/10.1021/acsomega.9b01907
    4. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
    5. Dipayan Sen, Piotr Błoński, Michal Otyepka. Band-Edge Engineering at the Carbon Dot–TiO2 Interface by Substitutional Boron Doping. The Journal of Physical Chemistry C 2019, 123 (10) , 5980-5988. https://doi.org/10.1021/acs.jpcc.8b11554
    6. Brendan J. Gifford . Functionalized Carbon Nanotube Excited States and Optical Properties. 2019, 181-207. https://doi.org/10.1021/bk-2019-1331.ch008
    7. Balázs Endrődi, Egon Kecsenovity, Krishnan Rajeshwar, and Csaba Janáky . One-Step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage. ACS Applied Energy Materials 2018, 1 (2) , 851-858. https://doi.org/10.1021/acsaem.7b00289
    8. Egon Kecsenovity, Balázs Endrődi, Péter S. Tóth, Yuqin Zou, Robert A. W. Dryfe, Krishnan Rajeshwar, and Csaba Janáky . Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids. Journal of the American Chemical Society 2017, 139 (19) , 6682-6692. https://doi.org/10.1021/jacs.7b01820
    9. Kasinath Ojha, Tushar Debnath, Partha Maity, Mahima Makkar, Siamak Nejati, Kandalam V. Ramanujachary, Pramit Kumar Chowdhury, Hirendra N. Ghosh, and Ashok Kumar Ganguli . Exciton Separation in CdS Supraparticles upon Conjugation with Graphene Sheets. The Journal of Physical Chemistry C 2017, 121 (12) , 6581-6588. https://doi.org/10.1021/acs.jpcc.7b01150
    10. KunHo Yoon, Jae-Hyeok Lee, Joohoon Kang, Junmo Kang, Michael J. Moody, Mark C. Hersam, and Lincoln J. Lauhon . Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting. Nano Letters 2016, 16 (12) , 7370-7375. https://doi.org/10.1021/acs.nanolett.6b02691
    11. Jiazang Chen, Liping Zhang, Zhenhui Lam, Hua Bing Tao, Zhiping Zeng, Hong Bin Yang, Jianqiang Luo, Lin Ma, Bo Li, Jianfeng Zheng, Suping Jia, Zhijian Wang, Zhenping Zhu, and Bin Liu . Tunneling Interlayer for Efficient Transport of Charges in Metal Oxide Electrodes. Journal of the American Chemical Society 2016, 138 (9) , 3183-3189. https://doi.org/10.1021/jacs.5b13464
    12. Zhibin Yang, Jing Ren, Zhitao Zhang, Xuli Chen, Guozhen Guan, Longbin Qiu, Ye Zhang, and Huisheng Peng . Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews 2015, 115 (11) , 5159-5223. https://doi.org/10.1021/cr5006217
    13. Jie Huang, Yijie Wu, Dandan Wang, Yufei Ma, Zongkuan Yue, Yongtao Lu, Mengxin Zhang, Zhijun Zhang, and Ping Yang . Silicon Phthalocyanine Covalently Functionalized N-Doped Ultrasmall Reduced Graphene Oxide Decorated with Pt Nanoparticles for Hydrogen Evolution from Water. ACS Applied Materials & Interfaces 2015, 7 (6) , 3732-3741. https://doi.org/10.1021/am508476d
    14. Ana Stevanovic, Shiliang Ma, and John T. Yates, Jr. . Photoexcited Electron Hopping between TiO2 Particles: Effect of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2014, 118 (41) , 23614-23620. https://doi.org/10.1021/jp508061w
    15. Yajie Chen, Guohui Tian, Zhiyu Ren, Kai Pan, Yunhan Shi, Jiaqi Wang, and Honggang Fu . Hierarchical Core–Shell Carbon Nanofiber@ZnIn2S4 Composites for Enhanced Hydrogen Evolution Performance. ACS Applied Materials & Interfaces 2014, 6 (16) , 13841-13849. https://doi.org/10.1021/am5032083
    16. Yanyan Zhu, Xin Meng, Huijuan Cui, Suping Jia, Jianhui Dong, Jianfeng Zheng, Jianghong Zhao, Zhijian Wang, Li Li, Li Zhang, and Zhenping Zhu . Graphene Frameworks Promoted Electron Transport in Quantum Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (16) , 13833-13840. https://doi.org/10.1021/am503258x
    17. De Nyago Tafen, Run Long, and Oleg V. Prezhdo . Dimensionality of Nanoscale TiO2 Determines the Mechanism of Photoinduced Electron Injection from a CdSe Nanoparticle. Nano Letters 2014, 14 (4) , 1790-1796. https://doi.org/10.1021/nl404352a
    18. Nuri Yazdani, Deniz Bozyigit, Ivo Utke, Jakob Buchheim, Seul Ki Youn, Jörg Patscheider, Vanessa Wood, and Hyung Gyu Park . Enhanced Charge Transport Kinetics in Anisotropic, Stratified Photoanodes. ACS Applied Materials & Interfaces 2014, 6 (3) , 1389-1393. https://doi.org/10.1021/am405987t
    19. Jing Sun, Hui Zhang, Liang-Hong Guo, and Lixia Zhao . Two-Dimensional Interface Engineering of a Titania–Graphene Nanosheet Composite for Improved Photocatalytic Activity. ACS Applied Materials & Interfaces 2013, 5 (24) , 13035-13041. https://doi.org/10.1021/am403937y
    20. Chengwei Wang, Yuan Wang, Jake Graser, Ran Zhao, Fei Gao, and Michael J. O’Connell . Solution-Based Carbohydrate Synthesis of Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis. ACS Nano 2013, 7 (12) , 11156-11165. https://doi.org/10.1021/nn4048759
    21. Karla R. Reyes-Gil and David B. Robinson . WO3-Enhanced TiO2 Nanotube Photoanodes for Solar Water Splitting with Simultaneous Wastewater Treatment. ACS Applied Materials & Interfaces 2013, 5 (23) , 12400-12410. https://doi.org/10.1021/am403369p
    22. Surya Prakash Singh, K. S. V. Gupta, M. Chandrasekharam, Ashraful Islam, Liyuan Han, Shinpei Yoshikawa, Masa-aki Haga, M. S. Roy, and G. D. Sharma . 2,6-Bis(1-methylbenzimidazol-2-yl)pyridine: A New Ancillary Ligand for Efficient Thiocyanate-Free Ruthenium Sensitizer in Dye-Sensitized Solar Cell Applications. ACS Applied Materials & Interfaces 2013, 5 (22) , 11623-11630. https://doi.org/10.1021/am4030627
    23. M. A. Gialampouki and Ch. E. Lekka . Early Stages of Ti–O Cluster Growth on Carbon Nanotubes by ab Initio Calculations. The Journal of Physical Chemistry A 2013, 117 (40) , 10397-10406. https://doi.org/10.1021/jp401913d
    24. Huizhong Cui, Chenglin Hong, Andrew Ying, Xinmai Yang, and Shenqiang Ren . Ultrathin Gold Nanowire-Functionalized Carbon Nanotubes for Hybrid Molecular Sensing. ACS Nano 2013, 7 (9) , 7805-7811. https://doi.org/10.1021/nn4027323
    25. Chen Li, Jun Xia, Qilong Wang, Jing Chen, Chi Li, Wei Lei, and Xiaobing Zhang . Photovoltaic Property of a Vertically Aligned Carbon Nanotube Hexagonal Network Assembled with CdS Quantum Dots. ACS Applied Materials & Interfaces 2013, 5 (15) , 7400-7404. https://doi.org/10.1021/am401725x
    26. Karla R. Reyes-Gil, Craig Wiggenhorn, Bruce S. Brunschwig, and Nathan S. Lewis . Comparison between the Quantum Yields of Compact and Porous WO3 Photoanodes. The Journal of Physical Chemistry C 2013, 117 (29) , 14947-14957. https://doi.org/10.1021/jp4025624
    27. Gang Cheng, M. Shaheer Akhtar, O-Bong Yang, and Florian J. Stadler . Novel Preparation of Anatase TiO2@Reduced Graphene Oxide Hybrids for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (14) , 6635-6642. https://doi.org/10.1021/am4013374
    28. Kadiatou Therese Dembele, Gurpreet Singh Selopal, Caterina Soldano, Riad Nechache, Julio Cesar Rimada, Isabella Concina, Giorgio Sberveglieri, Federico Rosei, and Alberto Vomiero . Hybrid Carbon Nanotubes–TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (28) , 14510-14517. https://doi.org/10.1021/jp403553t
    29. Julia Schornbaum, Benjamin Winter, Stefan P. Schießl, Benjamin Butz, Erdmann Spiecker, and Jana Zaumseil . Controlled In Situ PbSe Quantum Dot Growth around Single-Walled Carbon Nanotubes: A Noncovalent PbSe-SWNT Hybrid Structure. Chemistry of Materials 2013, 25 (13) , 2663-2669. https://doi.org/10.1021/cm401202t
    30. Run Long, Ying Dai, and Baibiao Huang . Fullerene Interfaced with a TiO2(110) Surface May Not Form an Efficient Photovoltaic Heterojunction: First-Principles Investigation of Electronic Structures. The Journal of Physical Chemistry Letters 2013, 4 (13) , 2223-2229. https://doi.org/10.1021/jz401124w
    31. Hema Ramsurn and Ram B. Gupta . Nanotechnology in Solar and Biofuels. ACS Sustainable Chemistry & Engineering 2013, 1 (7) , 779-797. https://doi.org/10.1021/sc400046y
    32. Mengning Ding, Dan C. Sorescu, and Alexander Star . Photoinduced Charge Transfer and Acetone Sensitivity of Single-Walled Carbon Nanotube–Titanium Dioxide Hybrids. Journal of the American Chemical Society 2013, 135 (24) , 9015-9022. https://doi.org/10.1021/ja402887v
    33. Feng Xu, Jing Chen, Xing Wu, Yi Zhang, Yuxi Wang, Jun Sun, Hengchang Bi, Wei Lei, Yaru Ni, and Litao Sun . Graphene Scaffolds Enhanced Photogenerated Electron Transport in ZnO Photoanodes for High-Efficiency Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (17) , 8619-8627. https://doi.org/10.1021/jp312379b
    34. Run Long . Electronic Structure of Semiconducting and Metallic Tubes in TiO2/Carbon Nanotube Heterojunctions: Density Functional Theory Calculations. The Journal of Physical Chemistry Letters 2013, 4 (8) , 1340-1346. https://doi.org/10.1021/jz400589v
    35. Qing Peng, Berç Kalanyan, Paul G. Hoertz, Andrew Miller, Do Han Kim, Kenneth Hanson, Leila Alibabaei, Jie Liu, Thomas J. Meyer, Gregory N. Parsons, and Jeffrey T. Glass . Solution-Processed, Antimony-Doped Tin Oxide Colloid Films Enable High-Performance TiO2 Photoanodes for Water Splitting. Nano Letters 2013, 13 (4) , 1481-1488. https://doi.org/10.1021/nl3045525
    36. Yu Jin Jang, Yoon Hee Jang, Sang-Beom Han, Dibyendu Khatua, Claudia Hess, Hyungju Ahn, Du Yeol Ryu, Kwanwoo Shin, Kyung-Won Park, Martin Steinhart, and Dong Ha Kim . Nanostructured Metal/Carbon Hybrids for Electrocatalysis by Direct Carbonization of Inverse Micelle Multilayers. ACS Nano 2013, 7 (2) , 1573-1582. https://doi.org/10.1021/nn3056115
    37. Chia-Ying Chiang, Jillian Epstein, Adam Brown, Jeremy N. Munday, James N. Culver, and Sheryl Ehrman . Biological Templates for Antireflective Current Collectors for Photoelectrochemical Cell Applications. Nano Letters 2012, 12 (11) , 6005-6011. https://doi.org/10.1021/nl303579z
    38. Wan-Sheng Wang, Dong-Hong Wang, Wen-Gang Qu, Li-Qiang Lu, and An-Wu Xu . Large Ultrathin Anatase TiO2 Nanosheets with Exposed {001} Facets on Graphene for Enhanced Visible Light Photocatalytic Activity. The Journal of Physical Chemistry C 2012, 116 (37) , 19893-19901. https://doi.org/10.1021/jp306498b
    39. Run Long, Niall J. English, and Oleg V. Prezhdo . Photo-induced Charge Separation across the Graphene–TiO2 Interface Is Faster than Energy Losses: A Time-Domain ab Initio Analysis. Journal of the American Chemical Society 2012, 134 (34) , 14238-14248. https://doi.org/10.1021/ja3063953
    40. Byumseok Koh, Gwangseong Kim, Hyung Ki Yoon, Jong Bae Park, Raoul Kopelman, and Wei Cheng . Fluorophore and Dye-Assisted Dispersion of Carbon Nanotubes in Aqueous Solution. Langmuir 2012, 28 (32) , 11676-11686. https://doi.org/10.1021/la302004p
    41. Sreejith Kaniyankandy, Sachin Rawalekar, and Hirendra N. Ghosh . Ultrafast Charge Transfer Dynamics in Photoexcited CdTe Quantum Dot Decorated on Graphene. The Journal of Physical Chemistry C 2012, 116 (30) , 16271-16275. https://doi.org/10.1021/jp303712y
    42. Jiazang Chen, Bo Li, Jianfeng Zheng, Jianghong Zhao, and Zhenping Zhu . Role of Carbon Nanotubes in Dye-Sensitized TiO2-Based Solar Cells. The Journal of Physical Chemistry C 2012, 116 (28) , 14848-14856. https://doi.org/10.1021/jp304845t
    43. Manu D. Tiwari, Giddi Hema Sagar, and Jayesh R. Bellare . Flow Cytometry-Based Evaluation and Enrichment of Multiwalled Carbon Nanotube Dispersions. Langmuir 2012, 28 (11) , 4939-4947. https://doi.org/10.1021/la300107t
    44. Xiaokai Li, Forrest Gittleson, Marcelo Carmo, Ryan C. Sekol, and André D. Taylor . Scalable Fabrication of Multifunctional Freestanding Carbon Nanotube/Polymer Composite Thin Films for Energy Conversion. ACS Nano 2012, 6 (2) , 1347-1356. https://doi.org/10.1021/nn2041544
    45. Md. Saifur Rahaman, Chad D. Vecitis, and Menachem Elimelech . Electrochemical Carbon-Nanotube Filter Performance toward Virus Removal and Inactivation in the Presence of Natural Organic Matter. Environmental Science & Technology 2012, 46 (3) , 1556-1564. https://doi.org/10.1021/es203607d
    46. Hongguang Liu and Jin Yong Lee . Electric Field Effects on the Adsorption of CO on a Graphene Nanodot and the Healing Mechanism of a Vacancy in a Graphene Nanodot. The Journal of Physical Chemistry C 2012, 116 (4) , 3034-3041. https://doi.org/10.1021/jp210719r
    47. Won Jun Lee, Ju Min Lee, Saji Thomas Kochuveedu, Tae Hee Han, Hu Young Jeong, Moonkyu Park, Je Moon Yun, Joon Kwon, Kwangsoo No, Dong Ha Kim, and Sang Ouk Kim . Biomineralized N-Doped CNT/TiO2 Core/Shell Nanowires for Visible Light Photocatalysis. ACS Nano 2012, 6 (1) , 935-943. https://doi.org/10.1021/nn204504h
    48. Medini Padmanabhan, Kallol Roy, Gopalakrishnan Ramalingam, Srinivasan Raghavan, and Arindam Ghosh . Electrochemical Integration of Graphene with Light-Absorbing Copper-Based Thin Films. The Journal of Physical Chemistry C 2012, 116 (1) , 1200-1204. https://doi.org/10.1021/jp208120u
    49. Xin Wang, Peter J. Krommenhoek, Philip D. Bradford, Bo Gong, Joseph B. Tracy, Gregory N. Parsons, Tzy-Jiun M. Luo, and Yuntian T. Zhu . Coating Alumina on Catalytic Iron Oxide Nanoparticles for Synthesizing Vertically Aligned Carbon Nanotube Arrays. ACS Applied Materials & Interfaces 2011, 3 (11) , 4180-4184. https://doi.org/10.1021/am201082m
    50. Shouwei Zhang, Haihong Niu, Yan Lan, Cheng Cheng, Jinzhang Xu, and Xiangke Wang . Synthesis of TiO2 Nanoparticles on Plasma-Treated Carbon Nanotubes and Its Application in Photoanodes of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2011, 115 (44) , 22025-22034. https://doi.org/10.1021/jp206267x
    51. Sharon Xiaodai Lim, Yong Hui Lim, Chang Le Charlotte Loh, Ying Yi Wendy Yap, Guo Hao Chia, and Chorng-Haur Sow . Directed Crystallization of CuSO4·5H2O onto Carbon Nanotube Microarchitectures. The Journal of Physical Chemistry C 2011, 115 (43) , 20964-20969. https://doi.org/10.1021/jp2062805
    52. David F. Dye, Tillmann Köpke, Raghunath O. Ramabhadran, Krishnan Raghavachari, and Jeffrey M. Zaleski . Gating the Mechanistic Pathway to the Elusive 4-Membered Ring Azeteoporphyrin. Journal of the American Chemical Society 2011, 133 (33) , 13110-13120. https://doi.org/10.1021/ja203451k
    53. Peter J. Boul, Pavel Nikolaev, Edward Sosa, and Sivaram Arepalli . Potentially Scalable Conductive-Type Nanotube Enrichment Through Covalent Chemistry. The Journal of Physical Chemistry C 2011, 115 (28) , 13592-13596. https://doi.org/10.1021/jp202251r
    54. Li Jia, Dong-Hong Wang, Yu-Xi Huang, An-Wu Xu, and Han-Qin Yu . Highly Durable N-Doped Graphene/CdS Nanocomposites with Enhanced Photocatalytic Hydrogen Evolution from Water under Visible Light Irradiation. The Journal of Physical Chemistry C 2011, 115 (23) , 11466-11473. https://doi.org/10.1021/jp2023617
    55. Daesub Hwang, Seong Mu Jo, Dong Young Kim, Vanessa Armel, Douglas R. MacFarlane, and Sung-Yeon Jang . High-Efficiency, Solid-State, Dye-Sensitized Solar Cells Using Hierarchically Structured TiO2 Nanofibers. ACS Applied Materials & Interfaces 2011, 3 (5) , 1521-1527. https://doi.org/10.1021/am200092j
    56. Hui Wang and Yun Hang Hu . Effect of Oxygen Content on Structures of Graphite Oxides. Industrial & Engineering Chemistry Research 2011, 50 (10) , 6132-6137. https://doi.org/10.1021/ie102572q
    57. George E. Romanos, Vlassis Likodimos, Rita R. N. Marques, Theodore A. Steriotis, Sergios K. Papageorgiou, Joaquim L. Faria, José L. Figueiredo, Adrián M. T. Silva, and Polycarpos Falaras . Controlling and Quantifying Oxygen Functionalities on Hydrothermally and Thermally Treated Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C 2011, 115 (17) , 8534-8546. https://doi.org/10.1021/jp200464d
    58. Aijun Du, Yun Hau Ng, Nicholas J. Bell, Zhonghua Zhu, Rose Amal, and Sean C. Smith . Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response. The Journal of Physical Chemistry Letters 2011, 2 (8) , 894-899. https://doi.org/10.1021/jz2002698
    59. Chad D. Vecitis, Mary H. Schnoor, Md. Saifur Rahaman, Jessica D. Schiffman, and Menachem Elimelech . Electrochemical Multiwalled Carbon Nanotube Filter for Viral and Bacterial Removal and Inactivation. Environmental Science & Technology 2011, 45 (8) , 3672-3679. https://doi.org/10.1021/es2000062
    60. Nicholas J. Bell, Yun Hau Ng, Aijun Du, Hans Coster, Sean C. Smith, and Rose Amal . Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite. The Journal of Physical Chemistry C 2011, 115 (13) , 6004-6009. https://doi.org/10.1021/jp1113575
    61. Chad D. Vecitis, Guandao Gao, and Han Liu . Electrochemical Carbon Nanotube Filter for Adsorption, Desorption, and Oxidation of Aqueous Dyes and Anions. The Journal of Physical Chemistry C 2011, 115 (9) , 3621-3629. https://doi.org/10.1021/jp111844j
    62. Baochang Cheng, Liting Fang, Zhaodong Zhang, Yanhe Xiao, and Shuijin Lei . BaAl2O4:Eu2+, Dy3+ Nanotube Synthesis by Heating Conversion of Homogeneous Coprecipitates and Afterglow Characteristics. The Journal of Physical Chemistry C 2011, 115 (5) , 1708-1713. https://doi.org/10.1021/jp109796u
    63. Giovanni Bottari, Gema de la Torre, Dirk M. Guldi, and Tomás Torres. Covalent and Noncovalent Phthalocyanine−Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chemical Reviews 2010, 110 (11) , 6768-6816. https://doi.org/10.1021/cr900254z
    64. Prashant V. Kamat, Kevin Tvrdy, David R. Baker, Emmy J. Radich. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews 2010, 110 (11) , 6664-6688. https://doi.org/10.1021/cr100243p
    65. Yanyu Liang, Matthias Georg Schwab, Linjie Zhi, Enrico Mugnaioli, Ute Kolb, Xinliang Feng, and Klaus Müllen . Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage. Journal of the American Chemical Society 2010, 132 (42) , 15030-15037. https://doi.org/10.1021/ja106612d
    66. Chad D. Vecitis, Katherine R. Zodrow, Seoktae Kang, and Menachem Elimelech. Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Nano 2010, 4 (9) , 5471-5479. https://doi.org/10.1021/nn101558x
    67. Kwadwo E. Tettey, Michael Q. Yee, and Daeyeon Lee. Photocatalytic and Conductive MWCNT/TiO2 Nanocomposite Thin Films. ACS Applied Materials & Interfaces 2010, 2 (9) , 2646-2652. https://doi.org/10.1021/am1004656
    68. Yun Hau Ng, Ian V. Lightcap, Kevin Goodwin, Michio Matsumura and Prashant V. Kamat . To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films?. The Journal of Physical Chemistry Letters 2010, 1 (15) , 2222-2227. https://doi.org/10.1021/jz100728z
    69. Yong-Bing Tang, Chun-Sing Lee, Jun Xu, Zeng-Tao Liu, Zhen-Hua Chen, Zhubing He, Yu-Lin Cao, Guodong Yuan, Haisheng Song, Limiao Chen, Linbao Luo, Hui-Ming Cheng, Wen-Jun Zhang, Igor Bello and Shuit-Tong Lee . Incorporation of Graphenes in Nanostructured TiO2 Films via Molecular Grafting for Dye-Sensitized Solar Cell Application. ACS Nano 2010, 4 (6) , 3482-3488. https://doi.org/10.1021/nn100449w
    70. Mark A. Bissett and Joseph G. Shapter. Photocurrent Response from Vertically Aligned Single-Walled Carbon Nanotube Arrays. The Journal of Physical Chemistry C 2010, 114 (14) , 6778-6783. https://doi.org/10.1021/jp1003193
    71. Tammie R. Nelson, Vitaly V. Chaban, Oleg N. Kalugin and Oleg V. Prezhdo . Vibrational Energy Transfer between Carbon Nanotubes and Liquid Water: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2010, 114 (13) , 4609-4614. https://doi.org/10.1021/jp912233e
    72. Alexandra H. Brozena, Jessica Moskowitz, Beiyue Shao, Shunliu Deng, Hongwei Liao, Karen J. Gaskell and YuHuang Wang . Outer Wall Selectively Oxidized, Water-Soluble Double-Walled Carbon Nanotubes. Journal of the American Chemical Society 2010, 132 (11) , 3932-3938. https://doi.org/10.1021/ja910626u
    73. Dominik Eder. Carbon Nanotube−Inorganic Hybrids. Chemical Reviews 2010, 110 (3) , 1348-1385. https://doi.org/10.1021/cr800433k
    74. Nailiang Yang, Jin Zhai, Dan Wang, Yongsheng Chen and Lei Jiang . Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells. ACS Nano 2010, 4 (2) , 887-894. https://doi.org/10.1021/nn901660v
    75. David J. Cooke, Dominik Eder and James A. Elliott . Role of Benzyl Alcohol in Controlling the Growth of TiO2 on Carbon Nanotubes. The Journal of Physical Chemistry C 2010, 114 (6) , 2462-2470. https://doi.org/10.1021/jp909117x
    76. Jun Zhang, Jin Ho Bang, Cencun Tang and Prashant V. Kamat . Tailored TiO2−SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance. ACS Nano 2010, 4 (1) , 387-395. https://doi.org/10.1021/nn901087c
    77. Graeme Williams and Prashant V. Kamat. Graphene−Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009, 25 (24) , 13869-13873. https://doi.org/10.1021/la900905h
    78. Jihee Park and Wonyong Choi. TiO2−Nafion Photoelectrode Hybridized with Carbon Nanotubes for Sensitized Photochemical Activity. The Journal of Physical Chemistry C 2009, 113 (49) , 20974-20979. https://doi.org/10.1021/jp9011608
    79. Qinke Shu, Jinquan Wei, Kunlin Wang, Hongwei Zhu, Zhen Li, Yi Jia, Xuchun Gui, Ning Guo, Xinming Li, Chaoran Ma and Dehai Wu. Hybrid Heterojunction and Photoelectrochemistry Solar Cell Based on Silicon Nanowires and Double-Walled Carbon Nanotubes. Nano Letters 2009, 9 (12) , 4338-4342. https://doi.org/10.1021/nl902581k
    80. Subas Muduli, Wonjoo Lee, Vivek Dhas, Sarfraj Mujawar, Megha Dubey, K. Vijayamohanan, Sung-Hwan Han and Satishchandra Ogale. Enhanced Conversion Efficiency in Dye-Sensitized Solar Cells Based on Hydrothermally Synthesized TiO2−MWCNT Nanocomposites. ACS Applied Materials & Interfaces 2009, 1 (9) , 2030-2035. https://doi.org/10.1021/am900396m
    81. Jianwei Liu, Yen-Ting Kuo, Kenneth J. Klabunde, Caitlin Rochford, Judy Wu and Jun Li. Novel Dye-Sensitized Solar Cell Architecture Using TiO2-Coated Vertically Aligned Carbon Nanofiber Arrays. ACS Applied Materials & Interfaces 2009, 1 (8) , 1645-1649. https://doi.org/10.1021/am900316f
    82. Keyou Yan, Qingzhong Xue, Dan Xia, Huijuan Chen, Jie Xie and Mingdong Dong . The Core/Shell Composite Nanowires Produced by Self-Scrolling Carbon Nanotubes onto Copper Nanowires. ACS Nano 2009, 3 (8) , 2235-2240. https://doi.org/10.1021/nn9005818
    83. Blake Farrow and Prashant V. Kamat. CdSe Quantum Dot Sensitized Solar Cells. Shuttling Electrons Through Stacked Carbon Nanocups. Journal of the American Chemical Society 2009, 131 (31) , 11124-11131. https://doi.org/10.1021/ja903337c
    84. Xiaohui Peng and Stanislaus S. Wong . Controlling Nanocrystal Density and Location on Carbon Nanotube Templates. Chemistry of Materials 2009, 21 (4) , 682-694. https://doi.org/10.1021/cm802648m
    85. Prashant V. Kamat. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. The Journal of Physical Chemistry C 2008, 112 (48) , 18737-18753. https://doi.org/10.1021/jp806791s
    86. Jianwei Liu, Jun Li, Ashok Sedhain, Jingyu Lin and Hongxing Jiang. Structure and Photoluminescence Study of TiO2 Nanoneedle Texture along Vertically Aligned Carbon Nanofiber Arrays. The Journal of Physical Chemistry C 2008, 112 (44) , 17127-17132. https://doi.org/10.1021/jp8060653
    87. Gordana N. Ostojic, John R. Ireland and Mark C. Hersam. Noncovalent Functionalization of DNA-Wrapped Single-Walled Carbon Nanotubes with Platinum-Based DNA Cross-Linkers. Langmuir 2008, 24 (17) , 9784-9789. https://doi.org/10.1021/la801311j
    88. Yuan Yao, Gonghu Li, Shannon Ciston, Richard M. Lueptow and Kimberly A. Gray. Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity. Environmental Science & Technology 2008, 42 (13) , 4952-4957. https://doi.org/10.1021/es800191n
    89. Jessika E. Trancik, Scott Calabrese Barton and James Hone. Transparent and Catalytic Carbon Nanotube Films. Nano Letters 2008, 8 (4) , 982-987. https://doi.org/10.1021/nl071945i
    90. Anusorn Kongkanand,, Kevin Tvrdy,, Kensuke Takechi,, Masaru Kuno, and, Prashant V. Kamat. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture. Journal of the American Chemical Society 2008, 130 (12) , 4007-4015. https://doi.org/10.1021/ja0782706
    91. Patrick Brown,, Kensuke Takechi, and, Prashant V. Kamat. Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2008, 112 (12) , 4776-4782. https://doi.org/10.1021/jp7107472
    92. Taku Hasobe,, Hideyuki Murata, and, Prashant V. Kamat. Photoelectrochemistry of Stacked-Cup Carbon Nanotube Films. Tube-Length Dependence and Charge Transfer with Excited Porphyrin. The Journal of Physical Chemistry C 2007, 111 (44) , 16626-16634. https://doi.org/10.1021/jp074995k
    93. Bradley F. Habenicht,, Hideyuki Kamisaka,, Koichi Yamashita, and, Oleg V. Prezhdo. Ab Initio Study of Vibrational Dephasing of Electronic Excitations in Semiconducting Carbon Nanotubes. Nano Letters 2007, 7 (11) , 3260-3265. https://doi.org/10.1021/nl0710699
    94. Anusorn Kongkanand and Prashant V. Kamat. Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor–SWCNT Suspensions. ACS Nano 2007, 1 (1) , 13-21. https://doi.org/10.1021/nn700036f
    95. Anusorn Kongkanand and, Prashant V. Kamat. Interactions of Single Wall Carbon Nanotubes with Methyl Viologen Radicals. Quantitative Estimation of Stored Electrons. The Journal of Physical Chemistry C 2007, 111 (26) , 9012-9015. https://doi.org/10.1021/jp0726541
    96. Samantha Ndlovu, Edigar Muchuweni, Moses A. Ollengo, Vincent O. Nyamori. Tuning the Properties of Reduced Graphene Oxide-Sr0.7Sm0.3Fe0.4Co0.6O3 Nanocomposites as Potential Photoanodes for Dye-Sensitized Solar Cells. Journal of Electronic Materials 2023, 52 (9) , 5843-5860. https://doi.org/10.1007/s11664-023-10526-3
    97. Fahad A. Alharthi, Alanood Sulaiman Ababtain, Hamdah S. Alanazi, Alanoud Abdullah Alshayiqi, Imran Hasan. Zinc Vanadate (Zn3V2O8) Immobilized Multiwall Carbon Nanotube (MWCNT) Heterojunction as an Efficient Photocatalyst for Visible Light Driven Hydrogen Production. Molecules 2023, 28 (3) , 1362. https://doi.org/10.3390/molecules28031362
    98. Rashi Nathawat, Satyapal S. Rathore, Poonam R. Kharangarh, Reena Devi, Anita Kumari. Synthesis and application of carbon-based nanocomposite. 2023, 169-203. https://doi.org/10.1016/B978-0-12-822837-1.00005-8
    99. Nitin Kumar, S. Lenita, G.K. Parvathi, Isabell R. Rupa, Mohiraa Shafreen, Mohammad Danish. Developments of nanocomposites in dye-sensitized solar cells. 2023, 225-253. https://doi.org/10.1016/B978-0-323-99704-1.00004-7
    100. Nandhakumar Eswaramoorthy, Ravuri Syamsai, Senthilkumar Nallusamy, Selvakumar Pitchaiya, M. R. Venkatraman. Recent Progress of Carbonaceous Materials in Third Generation Solar Cells: DSSCs. 2023, 165-188. https://doi.org/10.1007/978-981-19-7188-4_7
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect