ACS Publications. Most Trusted. Most Cited. Most Read
Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture
My Activity

    Letter

    Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture
    Click to copy article linkArticle link copied!

    View Author Information
    Institut de Chimie Physique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom, and Institut für Physikalische Chemie, Luxemburstrasse 116, 50939 Köln, Germany
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2007, 7, 11, 3372–3376
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl071656u
    Published October 5, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We compare a series of molecular sensitizers in dye-sensitized solar cells containing the organic hole transporter 2,2‘,7,7‘-tetrakis(N,N-di-p-methoxypheny-amine)-9,9‘-spirobifluorene (spiro-MeOTAD). Charge recombination is reduced by the presence of “ion-coordinating” moieties on the dye, with the longest electron lifetime and highest solar cell efficiency achieved using a novel sensitizer with diblock alkoxy-alkane pendent groups. By further increasing the optical path length in the active layer, we achieve a power conversion efficiency of over 5% under simulated sun light.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. E-mail:  [email protected].

     Institut de Chimie Physique, École Polytechnique Fédérale de Lausanne.

     Cavendish Laboratory.

    §

     Institut für Physikalische Chemie.

     Current address:  Department of Materials Science, UC Davis, Davis, CA 95616.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 349 publications.

    1. Nobuko Onozawa-Komatsuzaki, Daisuke Tsuchiya, Shinichi Inoue, Atsushi Kogo, Takurou N. Murakami. Short-Step Synthesized Dopant-Free Spiro-Type Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials 2024, 7 (8) , 3082-3090. https://doi.org/10.1021/acsaem.3c02972
    2. Nobuko Onozawa-Komatsuzaki, Daisuke Tsuchiya, Shinichi Inoue, Atsushi Kogo, Takashi Funaki, Masayuki Chikamatsu, Toshiya Ueno, Takurou N. Murakami. Highly Efficient Dopant-Free Cyano-Substituted Spiro-Type Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (6) , 6633-6641. https://doi.org/10.1021/acsaem.2c00078
    3. Amanda Victorious, Amanda Clifford, Sudip Saha, Igor Zhitomirsky, Leyla Soleymani. Integrating TiO2 Nanoparticles within a Catecholic Polymeric Network Enhances the Photoelectrochemical Response of Biosensors. The Journal of Physical Chemistry C 2019, 123 (26) , 16186-16193. https://doi.org/10.1021/acs.jpcc.9b02740
    4. Ruibin Liu, Brian P. Bloom, David H. Waldeck, Peng Zhang, David N. Beratan. Improving Solar Cell Performance Using Quantum Dot Triad Charge-Separation Engines. The Journal of Physical Chemistry C 2018, 122 (11) , 5924-5934. https://doi.org/10.1021/acs.jpcc.8b00010
    5. Bo Su, Herbert A. Caller-Guzman, Volker Körstgens, Yichuan Rui, Yuan Yao, Nitin Saxena, Gonzalo Santoro, Stephan V. Roth, and Peter Müller-Buschbaum . Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (50) , 43724-43732. https://doi.org/10.1021/acsami.7b14850
    6. Mojtaba Abdi-Jalebi, M. Ibrahim Dar, Aditya Sadhanala, Satyaprasad P. Senanayak, Fabrizio Giordano, Shaik Mohammed Zakeeruddin, Michael Grätzel, and Richard H. Friend . Impact of a Mesoporous Titania–Perovskite Interface on the Performance of Hybrid Organic–Inorganic Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (16) , 3264-3269. https://doi.org/10.1021/acs.jpclett.6b01617
    7. Benedikt Weiler, Alessio Gagliardi, and Paolo Lugli . Kinetic Monte Carlo Simulations of Defects in Anatase Titanium Dioxide. The Journal of Physical Chemistry C 2016, 120 (18) , 10062-10077. https://doi.org/10.1021/acs.jpcc.6b01687
    8. Kai Lv, Wei Zhang, Lu Zhang, and Zhong-Sheng Wang . POSS-Based Electrolyte for Efficient Solid-State Dye-Sensitized Solar Cells at Sub-Zero Temperatures. ACS Applied Materials & Interfaces 2016, 8 (8) , 5343-5350. https://doi.org/10.1021/acsami.5b12353
    9. Jihuai Wu, Zhang Lan, Jianming Lin, Miaoliang Huang, Yunfang Huang, Leqing Fan, and Genggeng Luo . Electrolytes in Dye-Sensitized Solar Cells. Chemical Reviews 2015, 115 (5) , 2136-2173. https://doi.org/10.1021/cr400675m
    10. Zafer Hawash, Luis K. Ono, Sonia R. Raga, Michael V. Lee, and Yabing Qi . Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chemistry of Materials 2015, 27 (2) , 562-569. https://doi.org/10.1021/cm504022q
    11. Cheng Cheng, Michael M. Lee, Nakita K. Noel, Gareth M. Hughes, James M. Ball, Hazel E. Assender, Henry J. Snaith, and Andrew A. R. Watt . Polystyrene Templated Porous Titania Wells for Quantum Dot Heterojunction Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (16) , 14247-14252. https://doi.org/10.1021/am503558q
    12. Feng Li, James Robert Jennings, Xingzhu Wang, Li Fan, Zhen Yu Koh, Hao Yu, Lei Yan, and Qing Wang . Influence of Ionic Liquid on Recombination and Regeneration Kinetics in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 17153-17159. https://doi.org/10.1021/jp502341a
    13. In Young Song, Young Soo Kwon, Jongchul Lim, and Taiho Park . Well-Defined All-Conducting Block Copolymer Bilayer Hybrid Nanostructure: Selective Positioning of Lithium Ions and Efficient Charge Collection. ACS Nano 2014, 8 (7) , 6893-6901. https://doi.org/10.1021/nn5016083
    14. Biao Kong, Jing Tang, Cordelia Selomulya, Wei Li, Jing Wei, Yin Fang, Yongcheng Wang, Gengfeng Zheng, and Dongyuan Zhao . Oriented Mesoporous Nanopyramids as Versatile Plasmon-Enhanced Interfaces. Journal of the American Chemical Society 2014, 136 (19) , 6822-6825. https://doi.org/10.1021/ja501517h
    15. Simona Urnikaite, Tadas Malinauskas, Ingmar Bruder, Robert Send, Valentas Gaidelis, Rüdiger Sens, and Vytautas Getautis . Organic Dyes with Hydrazone Moieties: A Study of Correlation between Structure and Performance in the Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (15) , 7832-7843. https://doi.org/10.1021/jp500527d
    16. Luis K. Ono, Philip Schulz, James J. Endres, Gueorgui O. Nikiforov, Yuichi Kato, Antoine Kahn, and Yabing Qi . Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films. The Journal of Physical Chemistry Letters 2014, 5 (8) , 1374-1379. https://doi.org/10.1021/jz500414m
    17. Yiming Wu, Xiaozhen Zhang, Jiansheng Jie, Chao Xie, Xiwei Zhang, Baoquan Sun, Yan Wang, and Peng Gao . Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells. The Journal of Physical Chemistry C 2013, 117 (23) , 11968-11976. https://doi.org/10.1021/jp402529c
    18. Feng Li, James Robert Jennings, and Qing Wang , Julianto Chua, Nripan Mathews, and Subodh G. Mhaisalkar , Soo-Jin Moon, Shaik M. Zakeeruddin, and Michael Grätzel . Determining the Conductivities of the Two Charge Transport Phases in Solid-State Dye-Sensitized Solar Cells by Impedance Spectroscopy. The Journal of Physical Chemistry C 2013, 117 (21) , 10980-10989. https://doi.org/10.1021/jp4030188
    19. Michael Meister, Björn Baumeier, Neil Pschirer, Rüdiger Sens, Ingmar Bruder, Frédéric Laquai, Denis Andrienko, and Ian A. Howard . Observing Charge Dynamics in Surface Reactions by Time-Resolved Stark Effects. The Journal of Physical Chemistry C 2013, 117 (18) , 9171-9177. https://doi.org/10.1021/jp403268c
    20. Fan Wu, Qi Cui, Zeliang Qiu, Changwen Liu, Hui Zhang, Wei Shen, and Mingtai Wang . Improved Open-Circuit Voltage in Polymer/Oxide-Nanoarray Hybrid Solar Cells by Formation of Homogeneous Metal Oxide Core/Shell Structures. ACS Applied Materials & Interfaces 2013, 5 (8) , 3246-3254. https://doi.org/10.1021/am400281s
    21. Qi Cui, Changwen Liu, Fan Wu, Wenjin Yue, Zeliang Qiu, Hui Zhang, Feng Gao, Wei Shen, and Mingtai Wang . Performance Improvement in Polymer/ZnO Nanoarray Hybrid Solar Cells by Formation of ZnO/CdS-Core/Shell Heterostructures. The Journal of Physical Chemistry C 2013, 117 (11) , 5626-5637. https://doi.org/10.1021/jp312728t
    22. Paolo Salvatori, Gabriele Marotta, Antonio Cinti, Chiara Anselmi, Edoardo Mosconi, and Filippo De Angelis . Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. The Journal of Physical Chemistry C 2013, 117 (8) , 3874-3887. https://doi.org/10.1021/jp4003577
    23. Liang Wang, Hong Zhang, Chaolei Wang, and Tingli Ma . Highly Stable Gel-State Dye-Sensitized Solar Cells Based on High Soluble Polyvinyl Acetate. ACS Sustainable Chemistry & Engineering 2013, 1 (2) , 205-208. https://doi.org/10.1021/sc300153b
    24. Alessio Gagliardi, Desiree Gentilini, and Aldo Di Carlo . Charge Transport in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (45) , 23882-23889. https://doi.org/10.1021/jp305655c
    25. Ute B. Cappel, Torben Daeneke, and Udo Bach . Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance. Nano Letters 2012, 12 (9) , 4925-4931. https://doi.org/10.1021/nl302509q
    26. Barbara Völker, Florian Wölzl, Thomas Bürgi, and Dominic Lingenfelser . Dye Bonding to TiO2: In Situ Attenuated Total Reflection Infrared Spectroscopy Study, Simulations, and Correlation with Dye-Sensitized Solar Cell Characteristics. Langmuir 2012, 28 (31) , 11354-11363. https://doi.org/10.1021/la302197z
    27. Gary Hodes and David Cahen . All-Solid-State, Semiconductor-Sensitized Nanoporous Solar Cells. Accounts of Chemical Research 2012, 45 (5) , 705-713. https://doi.org/10.1021/ar200219h
    28. Chengkun Xu, Jiamin Wu, Umang V. Desai, and Di Gao . High-Efficiency Solid-State Dye-Sensitized Solar Cells Based on TiO2-Coated ZnO Nanowire Arrays. Nano Letters 2012, 12 (5) , 2420-2424. https://doi.org/10.1021/nl3004144
    29. Yong-Gun Lee, Suil Park, Woohyung Cho, Taewook Son, P. Sudhagar, June Hyuk Jung, Sanghyuk Wooh, Kookheon Char, and Yong Soo Kang . Effective Passivation of Nanostructured TiO2 Interfaces with PEG-Based Oligomeric Coadsorbents To Improve the Performance of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (11) , 6770-6777. https://doi.org/10.1021/jp210360n
    30. Tomas Leijtens, I-Kang Ding, Tommaso Giovenzana, Jason T. Bloking, Michael D. McGehee, and Alan Sellinger . Hole Transport Materials with Low Glass Transition Temperatures and High Solubility for Application in Solid-State Dye-Sensitized Solar Cells. ACS Nano 2012, 6 (2) , 1455-1462. https://doi.org/10.1021/nn204296b
    31. Mingkui Wang, Jie Bai, Florian Le Formal, Soo-Jin Moon, Lê Cevey-Ha, Robin Humphry-Baker, Carole Grätzel, Shaik M. Zakeeruddin, and Michael Grätzel . Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes. The Journal of Physical Chemistry C 2012, 116 (5) , 3266-3273. https://doi.org/10.1021/jp209130x
    32. Noura Metri, Xavier Sallenave, Cédric Plesse, Layla Beouch, Pierre-Henri Aubert, Fabrice Goubard, Claude Chevrot, and Gjergji Sini . Processable Star-Shaped Molecules with Triphenylamine Core as Hole-Transporting Materials: Experimental and Theoretical Approach. The Journal of Physical Chemistry C 2012, 116 (5) , 3765-3772. https://doi.org/10.1021/jp2098872
    33. Xiaojuan Shen, Baoquan Sun, Dong Liu, and Shuit-Tong Lee . Hybrid Heterojunction Solar Cell Based on Organic–Inorganic Silicon Nanowire Array Architecture. Journal of the American Chemical Society 2011, 133 (48) , 19408-19415. https://doi.org/10.1021/ja205703c
    34. Simona Fantacci, Filippo De Angelis, Mohammad K. Nazeeruddin, and Michael Grätzel . Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation. The Journal of Physical Chemistry C 2011, 115 (46) , 23126-23133. https://doi.org/10.1021/jp207968b
    35. Julian Burschka, Amalie Dualeh, Florian Kessler, Etienne Baranoff, Ngoc-Lê Cevey-Ha, Chenyi Yi, Mohammad K. Nazeeruddin, and Michael Grätzel . Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2011, 133 (45) , 18042-18045. https://doi.org/10.1021/ja207367t
    36. Nicolas Tétreault, Éric Arsenault, Leo-Philipp Heiniger, Navid Soheilnia, Jérémie Brillet, Thomas Moehl, Shaik Zakeeruddin, Geoffrey A. Ozin, and Michael Grätzel . High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode. Nano Letters 2011, 11 (11) , 4579-4584. https://doi.org/10.1021/nl201792r
    37. Andrea Listorti, Brian O’Regan, and James R Durrant . Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials 2011, 23 (15) , 3381-3399. https://doi.org/10.1021/cm200651e
    38. Daesub Hwang, Seong Mu Jo, Dong Young Kim, Vanessa Armel, Douglas R. MacFarlane, and Sung-Yeon Jang . High-Efficiency, Solid-State, Dye-Sensitized Solar Cells Using Hierarchically Structured TiO2 Nanofibers. ACS Applied Materials & Interfaces 2011, 3 (5) , 1521-1527. https://doi.org/10.1021/am200092j
    39. Kai Zhu, Song-Rim Jang, and Arthur J. Frank . Impact of High Charge-Collection Efficiencies and Dark Energy-Loss Processes on Transport, Recombination, and Photovoltaic Properties of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2011, 2 (9) , 1070-1076. https://doi.org/10.1021/jz200290c
    40. Wei Zhang, Rui Zhu, Feng Li, Qing Wang, and Bin Liu . High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter. The Journal of Physical Chemistry C 2011, 115 (14) , 7038-7043. https://doi.org/10.1021/jp1118597
    41. Ute B. Cappel, Amanda L. Smeigh, Stefan Plogmaker, Erik M. J. Johansson, Håkan Rensmo, Leif Hammarström, Anders Hagfeldt, and Gerrit Boschloo . Characterization of the Interface Properties and Processes in Solid State Dye-Sensitized Solar Cells Employing a Perylene Sensitizer. The Journal of Physical Chemistry C 2011, 115 (10) , 4345-4358. https://doi.org/10.1021/jp111466h
    42. Dongqin Bi, Fan Wu, Qiyun Qu, Wenjin Yue, Qi Cui, Wei Shen, Ruiqiang Chen, Changwen Liu, Zeliang Qiu, and Mingtai Wang . Device Performance Related to Amphiphilic Modification at Charge Separation Interface in Hybrid Solar Cells with Vertically Aligned ZnO Nanorod Arrays. The Journal of Physical Chemistry C 2011, 115 (9) , 3745-3752. https://doi.org/10.1021/jp1111247
    43. Nicolas Tétreault, Endre Horváth, Thomas Moehl, Jérémie Brillet, Rita Smajda, Stéphane Bungener, Ning Cai, Peng Wang, Shaik M. Zakeeruddin, László Forró, Arnaud Magrez, and Michael Grätzel . High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO2 Nanowires. ACS Nano 2010, 4 (12) , 7644-7650. https://doi.org/10.1021/nn1024434
    44. Supan Yodyingyong, Xiaoyuan Zhou, Qifeng Zhang, Darapond Triampo, Junting Xi, Kwangsuk Park, Benjie Limketkai, and Guozhong Cao . Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes. The Journal of Physical Chemistry C 2010, 114 (49) , 21851-21855. https://doi.org/10.1021/jp1077888
    45. Vini Gautam, Monojit Bag, and K.S. Narayan. Dynamics of Bulk Polymer Heterostructure/Electrolyte Devices. The Journal of Physical Chemistry Letters 2010, 1 (22) , 3277-3282. https://doi.org/10.1021/jz101405v
    46. Chen Li, Miaoyin Liu, Neil G. Pschirer, Martin Baumgarten, and Klaus Müllen. Polyphenylene-Based Materials for Organic Photovoltaics. Chemical Reviews 2010, 110 (11) , 6817-6855. https://doi.org/10.1021/cr100052z
    47. Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson. Dye-Sensitized Solar Cells. Chemical Reviews 2010, 110 (11) , 6595-6663. https://doi.org/10.1021/cr900356p
    48. Eugenia Martínez-Ferrero, Josep Albero, and Emilio Palomares . Materials, Nanomorphology, and Interfacial Charge Transfer Reactions in Quantum Dot/Polymer Solar Cell Devices. The Journal of Physical Chemistry Letters 2010, 1 (20) , 3039-3045. https://doi.org/10.1021/jz101228z
    49. Seung-Hyun Anna Lee, Anne-Martine S. Jackson, Andrew Hess, Shih-To Fei, Sean M. Pursel, James Basham, Craig A. Grimes, Mark W. Horn, Harry R. Allcock and Thomas E. Mallouk. Influence of Different Iodide Salts on the Performance of Dye-Sensitized Solar Cells Containing Phosphazene-Based Nonvolatile Electrolytes. The Journal of Physical Chemistry C 2010, 114 (35) , 15234-15242. https://doi.org/10.1021/jp106033y
    50. Jiangbin Xia, Chaochen Yuan and Shozo Yanagida. Novel Counter Electrode V2O5/Al for Solid Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2010, 2 (7) , 2136-2139. https://doi.org/10.1021/am100380w
    51. Ni Zhao, Tim P. Osedach, Liang-Yi Chang, Scott M. Geyer, Darcy Wanger, Maddalena T. Binda, Alexi C. Arango, Moungi G. Bawendi and Vladimir Bulovic . Colloidal PbS Quantum Dot Solar Cells with High Fill Factor. ACS Nano 2010, 4 (7) , 3743-3752. https://doi.org/10.1021/nn100129j
    52. Gopal K. Mor, James Basham, Maggie Paulose, Sanghoon Kim, Oomman K. Varghese, Amit Vaish, Sorachon Yoriya and Craig A. Grimes . High-Efficiency Förster Resonance Energy Transfer in Solid-State Dye Sensitized Solar Cells. Nano Letters 2010, 10 (7) , 2387-2394. https://doi.org/10.1021/nl100415q
    53. Kevin M. Noone, Elisabeth Strein, Nicholas C. Anderson, Pei-Tzu Wu, Samson A. Jenekhe and David S. Ginger . Broadband Absorbing Bulk Heterojunction Photovoltaics Using Low-Bandgap Solution-Processed Quantum Dots. Nano Letters 2010, 10 (7) , 2635-2639. https://doi.org/10.1021/nl1013663
    54. Eva L. Unger, Emilie Ripaud, Philippe Leriche, Antonio Cravino, Jean Roncali, Erik M. J. Johansson, Anders Hagfeldt and Gerrit Boschloo. Bilayer Hybrid Solar Cells Based on Triphenylamine−Thienylenevinylene Dye and TiO2. The Journal of Physical Chemistry C 2010, 114 (26) , 11659-11664. https://doi.org/10.1021/jp102946z
    55. Henry J. Snaith and Caterina Ducati . SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Letters 2010, 10 (4) , 1259-1265. https://doi.org/10.1021/nl903809r
    56. Attila J. Mozer, Dillip Kumar Panda, Sanjeev Gambhir, Tony C. Romeo, Bjorn Winther-Jensen and Gordon G. Wallace . Flexible and Compressible Goretex−PEDOT Membrane Electrodes for Solid-State Dye-Sensitized Solar Cells. Langmuir 2010, 26 (3) , 1452-1455. https://doi.org/10.1021/la903507m
    57. Priti Tiwana, Patrick Parkinson, Michael B. Johnston, Henry J. Snaith and Laura M. Herz. Ultrafast Terahertz Conductivity Dynamics in Mesoporous TiO2: Influence of Dye Sensitization and Surface Treatment in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114 (2) , 1365-1371. https://doi.org/10.1021/jp908760r
    58. Gopal K. Mor, Sanghoon Kim, Maggie Paulose, Oomman K. Varghese, Karthik Shankar, James Basham and Craig A. Grimes. Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array−P3HT Based Heterojunction Solar Cells. Nano Letters 2009, 9 (12) , 4250-4257. https://doi.org/10.1021/nl9024853
    59. Kristofer Fredin, Kenrick F. Anderson, Noel W. Duffy, Gregory J. Wilson, Christopher J. Fell, Daniel P. Hagberg, Licheng Sun, Udo Bach and Sten-Eric Lindquist . Effect on Cell Efficiency following Thermal Degradation of Dye-Sensitized Mesoporous Electrodes Using N719 and D5 Sensitizers. The Journal of Physical Chemistry C 2009, 113 (43) , 18902-18906. https://doi.org/10.1021/jp9055208
    60. Chia-Yuan Chen, Mingkui Wang, Jheng-Ying Li, Nuttapol Pootrakulchote, Leila Alibabaei, Cevey-ha Ngoc-le, Jean-David Decoppet, Jia-Hung Tsai, Carole Grätzel, Chun-Guey Wu, Shaik M. Zakeeruddin and Michael Grätzel . Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3 (10) , 3103-3109. https://doi.org/10.1021/nn900756s
    61. Ute B. Cappel, Martin H. Karlsson, Neil G. Pschirer, Felix Eickemeyer, Jan Schöneboom, Peter Erk, Gerrit Boschloo and Anders Hagfeldt . A Broadly Absorbing Perylene Dye for Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2009, 113 (33) , 14595-14597. https://doi.org/10.1021/jp906409q
    62. Edward J. W. Crossland, Mihaela Nedelcu, Caterina Ducati, Sabine Ludwigs, Marc A. Hillmyer, Ullrich Steiner and Henry J. Snaith. Block Copolymer Morphologies in Dye-Sensitized Solar Cells: Probing the Photovoltaic Structure−Function Relation. Nano Letters 2009, 9 (8) , 2813-2819. https://doi.org/10.1021/nl800942c
    63. Peter Chen, Jun Ho Yum, Filippo De Angelis, Edoardo Mosconi, Simona Fantacci, Soo-Jin Moon, Robin Humphry Baker, Jaejung Ko, Md. K. Nazeeruddin and Michael Grätzel . High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Letters 2009, 9 (6) , 2487-2492. https://doi.org/10.1021/nl901246g
    64. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai and Tsutomu Miyasaka. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17) , 6050-6051. https://doi.org/10.1021/ja809598r
    65. Ute B. Cappel, Elizabeth A. Gibson, Anders Hagfeldt and Gerrit Boschloo. Dye Regeneration by Spiro-MeOTAD in Solid State Dye-Sensitized Solar Cells Studied by Photoinduced Absorption Spectroscopy and Spectroelectrochemistry. The Journal of Physical Chemistry C 2009, 113 (15) , 6275-6281. https://doi.org/10.1021/jp811196h
    66. Erik M. J. Johansson, Arkady Yartsev, Håkan Rensmo and Villy Sundström . Photocurrent Spectra and Fast Kinetic Studies of P3HT/PCBM Mixed with a Dye for Photoconversion in the Near-IR Region. The Journal of Physical Chemistry C 2009, 113 (7) , 3014-3020. https://doi.org/10.1021/jp808610f
    67. Francisco Fabregat-Santiago, Juan Bisquert, Le Cevey, Peter Chen, Mingkui Wang, Shaik M. Zakeeruddin and Michael Grätzel. Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society 2009, 131 (2) , 558-562. https://doi.org/10.1021/ja805850q
    68. Dong Shi, Nuttapol Pootrakulchote, Renzhi Li, Jin Guo, Yuan Wang, Shaik M. Zakeeruddin, Michael Grätzel and Peng Wang. New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes. The Journal of Physical Chemistry C 2008, 112 (44) , 17046-17050. https://doi.org/10.1021/jp808018h
    69. Yong Zhao, Jin Zhai, Jinling He, Xiao Chen, Li Chen, Libing Zhang, Yuxi Tian, Lei Jiang and Daoben Zhu. High-Performance All-Solid-State Dye-Sensitized Solar Cells Utilizing Imidazolium-Type Ionic Crystal as Charge Transfer Layer. Chemistry of Materials 2008, 20 (19) , 6022-6028. https://doi.org/10.1021/cm800673x
    70. Jiangbin Xia, Naruhiko Masaki, Monica Lira-Cantu, Yukyeong Kim, Kejian Jiang and Shozo Yanagida. Effect of Doping Anions’ Structures on Poly(3,4-ethylenedioxythiophene) as Hole Conductors in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2008, 112 (30) , 11569-11574. https://doi.org/10.1021/jp801878a
    71. Henry J. Snaith, C. S. Karthikeyan, Annamaria Petrozza, Joël Teuscher, Jacques E. Moser, Mohammad K. Nazeeruddin, Mukundan Thelakkat and Michael Grätzel . High Extinction Coefficient “Antenna” Dye in Solid-State Dye-Sensitized Solar Cells: A Photophysical and Electronic Study. The Journal of Physical Chemistry C 2008, 112 (20) , 7562-7566. https://doi.org/10.1021/jp801714u
    72. Vaishnavi A. Savekar, Aviraj M. Teli, Sonali A. Beknalkar, Vinayak V. Satale, Snehal S. More, Tejasvinee S. Bhat. Bridging energy harvesting and storage through self-charging photo-supercapacitors: Achievements, innovations, challenges, and future horizons. Journal of Energy Storage 2025, 111 , 115366. https://doi.org/10.1016/j.est.2025.115366
    73. Rongjun Zhao, Tai Wu, Rong Huang, Yude Wang, Yong Hua. A Universal and Versatile Hole Transport Layer “Activator” Enables Stable Perovskite Solar Cells with Efficiency Near 25%. Advanced Functional Materials 2024, 34 (30) https://doi.org/10.1002/adfm.202314758
    74. Abhirami Eattath Anil Kumar, Shantikumar Nair, Laxman Raju Thoutam. The Prospects and Challenges for Ambi‐polar Vacancy‐Ordered Double‐Perovskite Cs 2 SnI 6 Toward Realization of High‐Efficiency Air‐Stable Solar‐Cells. Solar RRL 2024, 8 (12) https://doi.org/10.1002/solr.202400275
    75. Wei Wei, Yun Hang Hu. Dye-sensitized materials. 2024https://doi.org/10.1016/B978-0-44-313219-3.00006-X
    76. Fahmid Kabir, Serajum Manir, Md. Mossaraf Hossain Bhuiyan, Sikandar Aftab, Hamidreza Ghanbari, Amirhossein Hasani, Mirette Fawzy, G.L. Thushani De Silva, Mohammad Reza Mohammadzadeh, Ribwar Ahmadi, Amin Abnavi, Abdelrahman M. Askar, Michael M. Adachi. Instability of dye-sensitized solar cells using natural dyes and approaches to improving stability – An overview. Sustainable Energy Technologies and Assessments 2022, 52 , 102196. https://doi.org/10.1016/j.seta.2022.102196
    77. T Shiyani, S Agrawal, J H Markna, I Banerjee, Charu Lata Dube. Biohybrid photoelectrodes for solar photovoltaic applications. Bulletin of Materials Science 2022, 45 (1) https://doi.org/10.1007/s12034-021-02598-w
    78. Alireza Ranjbari. Inorganic Photoelectrochemistry from Illumination Techniques to Energy Applications. 2022, 207-248. https://doi.org/10.1007/978-3-030-63713-2_9
    79. Kamal Kumar, Abhijit Das, Uttam Kumar Kumawat, Anuj Dhawan. Enhanced performance of triple‐junction tandem organic solar cells due to the presence of plasmonic nanoparticles. Energy Science & Engineering 2022, 10 (1) , 230-242. https://doi.org/10.1002/ese3.958
    80. Weihai Sun, Mingjing Zhang, Shibo Wang, Fengxian Cao, Jinjun Zou, Yitian Du, Zhang Lan, Jihuai Wu. Highly efficient and stable planar perovskite solar cells with K 3 [Fe(CN) 6 ]-doped spiro-OMeTAD. Journal of Materials Chemistry C 2021, 9 (24) , 7726-7733. https://doi.org/10.1039/D1TC01284C
    81. Weihai Sun, Pengqiang Yuan, Shibo Wang, Yitian Du, Jinjun Zou, Fengxian Cao, Zhang Lan, Jihuai Wu. Kalium persulfate as a low-cost and effective dopant for spiro-OMeTAD in high performance and stable planar perovskite solar cells. Electrochimica Acta 2021, 380 , 138233. https://doi.org/10.1016/j.electacta.2021.138233
    82. Mariam Fadzlina Ramli, Wen Huei Lim, Izwan Ishak, Mohd Sukor Su’ait, Seng Neon Gan, Sook-Wai Phang. Adhesion improvement of polyaniline counter electrode in dye-sensitized solar cell using bio-based alkyd. Applied Physics A 2021, 127 (5) https://doi.org/10.1007/s00339-021-04497-7
    83. Abdul Sami, Arsalan Ansari, Muhammad Dawood Idrees, Muhammad Musharraf Alam, Junaid Imtiaz. Solid-State Solar Cells Based on TiO2 Nanowires and CH3NH3PbI3 Perovskite. Coatings 2021, 11 (4) , 404. https://doi.org/10.3390/coatings11040404
    84. Chunfu Zhang, Jincheng Zhang, Xiaohua Ma, Qian Feng. Dye-Sensitized Solar Cell. 2021, 325-372. https://doi.org/10.1007/978-981-15-9480-9_8
    85. Naser Al-Shekaili, Suhairul Hashim, Fahmi F. Muhammadsharif, M.Z. Al-Abri, Khaulah Sulaiman, Mohd Y. Yahya, Mohd Ridzuan Ahmed. The impact of TiO2 nanostructures on the physical properties and electrical performance of organic solar cells based on PTB7:PC71BM bulk heterojunctions. Materials Today: Proceedings 2021, 42 , 1921-1927. https://doi.org/10.1016/j.matpr.2020.12.234
    86. Tulshi Shiyani, Sagar Agrawal, Indrani Banerjee. Natural-dye-sensitized photoelectrochemical cells for solar energy conversion. Nanomaterials and Energy 2020, 9 (2) , 215-226. https://doi.org/10.1680/jnaen.19.00059
    87. Shibo Wang, Weihai Sun, Mingjing Zhang, Huiying Yan, Guoxin Hua, Zhao Li, Ruowei He, Weidong Zeng, Zhang Lan, Jihuai Wu. Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells. RSC Advances 2020, 10 (64) , 38736-38745. https://doi.org/10.1039/D0RA07254K
    88. Kannadhasan Sundaramoorthy, Senthil Pandian Muthu, Ramasamy Perumalsamy. Effects of 2-Amino-4,6-Dimethoxypyrimidine on PVDF/KI/I2-Based Solid Polymer Electrolytes for Dye-Sensitized Solar Cell Application. Journal of Electronic Materials 2020, 49 (6) , 3728-3734. https://doi.org/10.1007/s11664-020-08070-5
    89. Viridiana Rondan-Gómez, F. Ayala-Mató, D. Seuret-Jiménez, G. Santana-Rodríguez, A. Zamudio-Lara, I. Montoya De Los Santos, H. Y. Seuret-Hernández. New architecture in dye sensitized solar cells: a SCAPS-1D simulation study. Optical and Quantum Electronics 2020, 52 (6) https://doi.org/10.1007/s11082-020-02437-y
    90. T Shiyani, T Bagchi. Hybrid nanostructures for solar-energy-conversion applications. Nanomaterials and Energy 2020, 9 (1) , 39-46. https://doi.org/10.1680/jnaen.19.00029
    91. Bakhytzhan Baptayev, Ainura Aukenova, Dias Mustazheb, Miras Kazaliyev, Mannix P. Balanay. Pt-free counter electrode based on orange fiber-derived carbon embedded cobalt sulfide nanoflakes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2019, 383 , 111977. https://doi.org/10.1016/j.jphotochem.2019.111977
    92. Xiangang Hu, Pengxiang Hou, Chang Liu, Huiming Cheng. Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Materials Science 2019, 1 (3) , 156-172. https://doi.org/10.1016/j.nanoms.2019.03.001
    93. Meigui Xu, Wei Wang, Yijun Zhong, Xiaomin Xu, Jun Wang, Wei Zhou, Zongping Shao. Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. Journal of Materials Chemistry A 2019, 7 (29) , 17489-17497. https://doi.org/10.1039/C9TA05005A
    94. Haider Iftikhar, Gabriela Gava Sonai, Syed Ghufran Hashmi, Ana Flávia Nogueira, Peter David Lund. Progress on Electrolytes Development in Dye-Sensitized Solar Cells. Materials 2019, 12 (12) , 1998. https://doi.org/10.3390/ma12121998
    95. Qiong Wang, Nga Phung, Diego Di Girolamo, Paola Vivo, Antonio Abate. Enhancement in lifespan of halide perovskite solar cells. Energy & Environmental Science 2019, 12 (3) , 865-886. https://doi.org/10.1039/C8EE02852D
    96. Amlan K. Pal, Hannah C. Potter. Advances in Solar Energy: Solar Cells and Their Applications. 2019, 75-127. https://doi.org/10.1007/978-981-13-3302-6_4
    97. Kenneth K.S. Lau, Masoud Soroush. Overview of Dye-Sensitized Solar Cells. 2019, 1-49. https://doi.org/10.1016/B978-0-12-814541-8.00001-X
    98. Tie Liu, Pengyu Su, Li Liu, Jun Wang, Shuang Feng, Jiejing Zhang, Ri Xu, Haibin Yang, Wuyou Fu. An ionic compensation strategy for high-performance mesoporous perovskite solar cells: healing defects with tri-iodide ions in a solvent vapor annealing process. Journal of Materials Chemistry A 2019, 7 (1) , 353-362. https://doi.org/10.1039/C8TA10094B
    99. Henry J. Snaith, Samuele Lilliu. The Path to Perovskite on Silicon PV. Scientific Video Protocols 2018, 1 (1) , 1-8. https://doi.org/10.32386/scivpro.000004
    100. Jialong Duan, Qunwei Tang. Metal and Alloy for CE Catalysts in Dye‐Sensitized Solar Cells. 2018, 47-69. https://doi.org/10.1002/9783527813636.ch3
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2007, 7, 11, 3372–3376
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl071656u
    Published October 5, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    6199

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.