ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Persistence Length Measurements from Stochastic Single-Microtubule Trajectories

View Author Information
Kavli Institute of Nanoscience, Section Molecular Biophysics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Cite this: Nano Lett. 2007, 7, 10, 3138–3144
Publication Date (Web):September 21, 2007
https://doi.org/10.1021/nl071696y
Copyright © 2007 American Chemical Society

    Article Views

    977

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We present a simple method to determine the persistence length of short submicrometer microtubule ends from their stochastic trajectories on kinesin-coated surfaces. The tangent angle of a microtubule trajectory is similar to a random walk, which is solely determined by the stiffness of the leading tip and the velocity of the microtubule. We demonstrate that even a single-microtubule trajectory suffices to obtain a reliable value of the persistence length. We do this by calculating the variance in the tangent trajectory angle of an individual microtubule. By averaging over many individual microtubule trajectories, we find that the persistence length of microtubule tips is 0.24 ± 0.03 mm.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 41 publications.

    1. Hang Zhou, Wonyeong Jung, Tamanna Ishrat Farhana, Kazuya Fujimoto, Taeyoon Kim, Ryuji Yokokawa. Durability of Aligned Microtubules Dependent on Persistence Length Determines Phase Transition and Pattern Formation in Collective Motion. ACS Nano 2022, 16 (9) , 14765-14778. https://doi.org/10.1021/acsnano.2c05593
    2. David A. Gregory, Andrew I. Campbell, and Stephen J. Ebbens . Effect of Catalyst Distribution on Spherical Bubble Swimmer Trajectories. The Journal of Physical Chemistry C 2015, 119 (27) , 15339-15348. https://doi.org/10.1021/acs.jpcc.5b03773
    3. Abhiram Muralidhar, Douglas R. Tree, and Kevin D. Dorfman . Backfolding of Wormlike Chains Confined in Nanochannels. Macromolecules 2014, 47 (23) , 8446-8458. https://doi.org/10.1021/ma501687k
    4. Joost van Mameren, Karen C. Vermeulen, Fred Gittes and Christoph F. Schmidt . Leveraging Single Protein Polymers To Measure Flexural Rigidity. The Journal of Physical Chemistry B 2009, 113 (12) , 3837-3844. https://doi.org/10.1021/jp808328a
    5. Petr G. Vikhorev, Natalia N. Vikhoreva, Mark Sundberg, Martina Balaz, Nuria Albet-Torres, Richard Bunk, Anders Kvennefors, Kenneth Liljesson, Ian A. Nicholls, Leif Nilsson, Pär Omling, Sven Tågerud, Lars Montelius and Alf Månsson . Diffusion Dynamics of Motor-Driven Transport: Gradient Production and Self-Organization of Surfaces. Langmuir 2008, 24 (23) , 13509-13517. https://doi.org/10.1021/la8016112
    6. Takahiro Nitta, Akihito Tanahashi, Yu Obara, Motohisa Hirano, Maria Razumova, Michael Regnier and Henry Hess . Comparing Guiding Track Requirements for Myosin- and Kinesin-Powered Molecular Shuttles. Nano Letters 2008, 8 (8) , 2305-2309. https://doi.org/10.1021/nl8010885
    7. Nicholas J. Mennona, Anna Sedelnikova, Ibtissam Echchgadda, Wolfgang Losert. Filament displacement image analytics tool for use in investigating dynamics of dense microtubule networks. Physical Review E 2023, 108 (3) https://doi.org/10.1103/PhysRevE.108.034411
    8. May Sweet, Samuel Macharia Kang’iri, Takahiro Nitta. Linking path and filament persistence lengths of microtubules gliding over kinesin. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-06941-x
    9. Paolo M Marchi, Lara Marrone, Laurent Brasseur, Audrey Coens, Christopher P Webster, Luc Bousset, Marco Destro, Emma F Smith, Christa G Walther, Victor Alfred, Raffaele Marroccella, Emily J Graves, Darren Robinson, Allan C Shaw, Lai Mei Wan, Andrew J Grierson, Stephen J Ebbens, Kurt J De Vos, Guillaume M Hautbergue, Laura Ferraiuolo, Ronald Melki, Mimoun Azzouz. C9ORF72 -derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance 2022, 5 (9) , e202101276. https://doi.org/10.26508/lsa.202101276
    10. Pattipong Wisanpitayakorn, Keith J. Mickolajczyk, William O. Hancock, Luis Vidali, Erkan Tüzel. Measurement of the persistence length of cytoskeletal filaments using curvature distributions. Biophysical Journal 2022, 121 (10) , 1813-1822. https://doi.org/10.1016/j.bpj.2022.04.020
    11. Hang Zhou, Naoto Isozaki, Kazuya Fujimoto, Ryuji Yokokawa. Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion. Journal of Nanobiotechnology 2021, 19 (1) https://doi.org/10.1186/s12951-021-00960-y
    12. Jinyin Zha, Yuwei Zhang, Kelin Xia, Frauke Gräter, Fei Xia. Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Frontiers in Molecular Biosciences 2021, 7 https://doi.org/10.3389/fmolb.2020.632122
    13. Mousumi Akter, Jakia Jannat Keya, Arif Md. Rashedul Kabir, Hiroyuki Asanuma, Keiji Murayama, Kazuki Sada, Akira Kakugo. Photo-regulated trajectories of gliding microtubules conjugated with DNA. Chemical Communications 2020, 56 (57) , 7953-7956. https://doi.org/10.1039/D0CC03124K
    14. Hyungsik Lim. Harmonic Generation Microscopy 2.0: New Tricks Empowering Intravital Imaging for Neuroscience. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00099
    15. Leila Farhadi, Carline Fermino Do Rosario, Edward P. Debold, Aparna Baskaran, Jennifer L. Ross. Active Self-Organization of Actin-Microtubule Composite Self-Propelled Rods. Frontiers in Physics 2018, 6 https://doi.org/10.3389/fphy.2018.00075
    16. Mark J. Stevens. The long persistence length of model tubules. The Journal of Chemical Physics 2017, 147 (4) https://doi.org/10.1063/1.4994913
    17. Venkaiah Betapudi. Non-muscle Myosin II Motor Proteins in Human Health and Diseases. 2017, 79-107. https://doi.org/10.1007/978-981-10-4298-0_5
    18. D. Stein, M. G. L. van den Heuvel, C. Dekker. Transport of Ions, DNA Polymers, and Microtubules in the Nanofluidic Regime. 2016, 1-36. https://doi.org/10.1039/9781849735230-00001
    19. Pierre Gosselin, Hervé Mohrbach, Igor M. Kulić, Falko Ziebert. On complex, curved trajectories in microtubule gliding. Physica D: Nonlinear Phenomena 2016, 318-319 , 105-111. https://doi.org/10.1016/j.physd.2015.10.022
    20. Falko Ziebert, Hervé Mohrbach, Igor M. Kulić. A nonequilibrium power balance relation for analyzing dissipative filament dynamics. The European Physical Journal E 2015, 38 (12) https://doi.org/10.1140/epje/i2015-15129-9
    21. Christopher Battle, Carolyn M. Ott, Dylan T. Burnette, Jennifer Lippincott-Schwartz, Christoph F. Schmidt. Intracellular and extracellular forces drive primary cilia movement. Proceedings of the National Academy of Sciences 2015, 112 (5) , 1410-1415. https://doi.org/10.1073/pnas.1421845112
    22. Yuki Ishigure, Takahiro Nitta. Understanding the Guiding of Kinesin/Microtubule-Based Microtransporters in Microfabricated Tracks. Langmuir 2014, 30 (40) , 12089-12096. https://doi.org/10.1021/la5021884
    23. Venkaiah Betapudi. Life without double-headed non-muscle myosin II motor proteins. Frontiers in Chemistry 2014, 2 https://doi.org/10.3389/fchem.2014.00045
    24. Wim Bras, James Torbet, Gregory P. Diakun, Geert L. J. A. Rikken, J. Fernando Diaz. The Diamagnetic Susceptibility of the Tubulin Dimer. Journal of Biophysics 2014, 2014 , 1-5. https://doi.org/10.1155/2014/985082
    25. Douglas S. Martin. Measuring Microtubule Persistence Length Using a Microtubule Gliding Assay. 2013, 13-25. https://doi.org/10.1016/B978-0-12-407757-7.00002-5
    26. Alf Månsson. Translational actomyosin research: fundamental insights and applications hand in hand. Journal of Muscle Research and Cell Motility 2012, 33 (3-4) , 219-233. https://doi.org/10.1007/s10974-012-9298-5
    27. David Valdman, Paul J. Atzberger, Dezhi Yu, Steve Kuei, Megan T. Valentine. Spectral Analysis Methods for the Robust Measurement of the Flexural Rigidity of Biopolymers. Biophysical Journal 2012, 102 (5) , 1144-1153. https://doi.org/10.1016/j.bpj.2012.01.045
    28. Hervé Mohrbach, Albert Johner, Igor M. Kulić. Cooperative lattice dynamics and anomalous fluctuations of microtubules. European Biophysics Journal 2012, 41 (2) , 217-239. https://doi.org/10.1007/s00249-011-0778-0
    29. Arif Md. Rashedul Kabir, Shoki Wada, Daisuke Inoue, Yoshiki Tamura, Tamaki Kajihara, Hiroyuki Mayama, Kazuki Sada, Akira Kakugo, Jian Ping Gong. Formation of ring-shaped assembly of microtubules with a narrow size distribution at an air–buffer interface. Soft Matter 2012, 8 (42) , 10863. https://doi.org/10.1039/c2sm26441b
    30. Henry Hess. Engineering Applications of Biomolecular Motors. Annual Review of Biomedical Engineering 2011, 13 (1) , 429-450. https://doi.org/10.1146/annurev-bioeng-071910-124644
    31. Dong Shin Choi, Kyung‐Eun Byun, Seunghun Hong. Dual Transport Systems Based on Hybrid Nanostructures of Microtubules and Actin Filaments. Small 2011, 7 (13) , 1755-1760. https://doi.org/10.1002/smll.201002267
    32. Isaac Luria, Jasmine Crenshaw, Matthew Downs, Ashutosh Agarwal, Shruti Banavara Seshadri, John Gonzales, Ofer Idan, Jovan Kamcev, Parag Katira, Shivendra Pandey, Takahiro Nitta, Simon R. Phillpot, Henry Hess. Microtubule nanospool formation by active self-assembly is not initiated by thermal activation. Soft Matter 2011, 7 (7) , 3108-3115. https://doi.org/10.1039/C0SM00802H
    33. Austin Peck, M. Emre Sargin, Nichole E. LaPointe, Kenneth Rose, B. S. Manjunath, Stuart C. Feinstein, Leslie Wilson. Tau isoform‐specific modulation of kinesin‐driven microtubule gliding rates and trajectories as determined with tau‐stabilized microtubules. Cytoskeleton 2011, 68 (1) , 44-55. https://doi.org/10.1002/cm.20494
    34. Hervé Mohrbach, Albert Johner, Igor M. Kulić. Tubulin Bistability and Polymorphic Dynamics of Microtubules. Physical Review Letters 2010, 105 (26) https://doi.org/10.1103/PhysRevLett.105.268102
    35. Claus Heussinger, Felix Schüller, Erwin Frey. Statics and dynamics of the wormlike bundle model. Physical Review E 2010, 81 (2) https://doi.org/10.1103/PhysRevE.81.021904
    36. Taviare Hawkins, Matthew Mirigian, M. Selcuk Yasar, Jennifer L. Ross. Mechanics of microtubules. Journal of Biomechanics 2010, 43 (1) , 23-30. https://doi.org/10.1016/j.jbiomech.2009.09.005
    37. Yolaine Jeune-Smith, Henry Hess. Engineering the length distribution of microtubules polymerized in vitro. Soft Matter 2010, 6 (8) , 1778. https://doi.org/10.1039/b919488f
    38. Harsha V. Mudrakola, Kai Zhang, Bianxiao Cui. Optically Resolving Individual Microtubules in Live Axons. Structure 2009, 17 (11) , 1433-1441. https://doi.org/10.1016/j.str.2009.09.008
    39. Florin Fulga, Dan V. Nicolau, Jr, Dan V. Nicolau. Models of protein linear molecular motors for dynamic nanodevices. Integr. Biol. 2009, 1 (2) , 150-169. https://doi.org/10.1039/B814985B
    40. Petr G. Vikhorev, Natalia N. Vikhoreva, Alf Månsson. Bending Flexibility of Actin Filaments during Motor-Induced Sliding. Biophysical Journal 2008, 95 (12) , 5809-5819. https://doi.org/10.1529/biophysj.108.140335
    41. M. G. L. Van den Heuvel, M. P. de Graaff, C. Dekker. Microtubule curvatures under perpendicular electric forces reveal a low persistence length. Proceedings of the National Academy of Sciences 2008, 105 (23) , 7941-7946. https://doi.org/10.1073/pnas.0704169105

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect