ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Toward Reliable Algorithmic Self-Assembly of DNA Tiles: A Fixed-Width Cellular Automaton Pattern

View Author Information
Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Japan, and Department of Applied Physics, Center for the Physics of Information, Department of Computation and Neural Systems, Department of Computer Science, California Institute of Technology, Pasadena, California 91125
* To whom correspondence should be addressed. E-mail: [email protected]
†Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology.
‡Department of Applied Physics, California Institute of Technology.
§Center for the Physics of Information, California Institute of Technology.
∥Department of Computation and Neural Systems, California Institute of Technology.
⊥Department of Computer Science, California Institute of Technology.
Cite this: Nano Lett. 2008, 8, 7, 1791–1797
Publication Date (Web):December 28, 2007
https://doi.org/10.1021/nl0722830
Copyright © 2008 American Chemical Society

    Article Views

    1884

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (884 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Bottom-up fabrication of nanoscale structures relies on chemical processes to direct self-assembly. The complexity, precision, and yield achievable by a one-pot reaction are limited by our ability to encode assembly instructions into the molecules themselves. Nucleic acids provide a platform for investigating these issues, as molecular structure and intramolecular interactions can encode growth rules. Here, we use DNA tiles and DNA origami to grow crystals containing a cellular automaton pattern. In a one-pot annealing reaction, 250 DNA strands first assemble into a set of 10 free tile types and a seed structure, then the free tiles grow algorithmically from the seed according to the automaton rules. In our experiments, crystals grew to ∼300 nm long, containing ∼300 tiles with an initial assembly error rate of ∼1.4% per tile. This work provides evidence that programmable molecular self-assembly may be sufficient to create a wide range of complex objects in one-pot reactions.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supplementary notes, methods, and figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 157 publications.

    1. Pengfei Zhan, Andreas Peil, Qiao Jiang, Dongfang Wang, Shikufa Mousavi, Qiancheng Xiong, Qi Shen, Yingxu Shang, Baoquan Ding, Chenxiang Lin, Yonggang Ke, Na Liu. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chemical Reviews 2023, 123 (7) , 3976-4050. https://doi.org/10.1021/acs.chemrev.3c00028
    2. Marcello DeLuca, Sebastian Sensale, Po-An Lin, Gaurav Arya. Prediction and Control in DNA Nanotechnology. ACS Applied Bio Materials 2023, Article ASAP.
    3. Sungjin Lee, Suyoun Park, Muhammad Tayyab Raza, Thi Bich Ngoc Nguyen, Thi Hong Nhung Vu, Anshula Tandon, Sung Ha Park. Multirule-Combined Algorithmic Assembly Demonstrated by DNA Tiles. ACS Applied Polymer Materials 2022, 4 (8) , 5441-5448. https://doi.org/10.1021/acsapm.2c00528
    4. Soojin Jo, Sungjin Lee, Suyoun Park, Anshula Tandon, Thi Bich Ngoc Nguyen, Thi Hong Nhung Vu, Muhammad Tayyab Raza, Sung Ha Park. Multi-Domains in a Single Lattice Formed by DNA Self-Assembly. ACS Omega 2022, 7 (30) , 26514-26522. https://doi.org/10.1021/acsomega.2c02556
    5. Jin Xu, Congzhou Chen, Xiaolong Shi. Graph Computation Using Algorithmic Self-Assembly of DNA Molecules. ACS Synthetic Biology 2022, 11 (7) , 2456-2463. https://doi.org/10.1021/acssynbio.2c00120
    6. Suyoun Park, Anshula Tandon, Muhammad Tayyab Raza, Sungjin Lee, Thi Bich Ngoc Nguyen, Thi Hong Nhung Vu, Tai Hwan Ha, Sung Ha Park. Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly. ACS Applied Bio Materials 2022, 5 (1) , 97-104. https://doi.org/10.1021/acsabm.1c00455
    7. Chao Li, Ruoning Li, Zhen Xu, Jie Li, Xue Zhang, Na Li, Yajie Zhang, Ziyong Shen, Hao Tang, Yongfeng Wang. Packing Biomolecules into Sierpiński Triangles with Global Organizational Chirality. Journal of the American Chemical Society 2021, 143 (36) , 14417-14421. https://doi.org/10.1021/jacs.1c05949
    8. Shuoxing Jiang, Nibedita Pal, Fan Hong, Nour Eddine Fahmi, Huiyu Hu, Matthew Vrbanac, Hao Yan, Nils G. Walter, Yan Liu. Regulating DNA Self-Assembly Dynamics with Controlled Nucleation. ACS Nano 2021, 15 (3) , 5384-5396. https://doi.org/10.1021/acsnano.1c00027
    9. Ruoning Li, Na Xue, Xue Zhang, Mingjun Zhong, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Chemical Way to Tune Spin Excitation of Magnetic Atoms in Sierpiński Triangles. The Journal of Physical Chemistry C 2021, 125 (10) , 5581-5586. https://doi.org/10.1021/acs.jpcc.0c11113
    10. Yajie Zhang, Xue Zhang, Yaru Li, Shuting Zhao, Shimin Hou, Kai Wu, Yongfeng Wang. Packing Sierpiński Triangles into Two-Dimensional Crystals. Journal of the American Chemical Society 2020, 142 (42) , 17928-17932. https://doi.org/10.1021/jacs.0c08979
    11. Yiping Mo, Ting Chen, Jingxin Dai, Kai Wu, Dong Wang. On-Surface Synthesis of Highly Ordered Covalent Sierpiński Triangle Fractals. Journal of the American Chemical Society 2019, 141 (29) , 11378-11382. https://doi.org/10.1021/jacs.9b04815
    12. Qinqin Hu, Hua Li, Lihua Wang, Hongzhou Gu, Chunhai Fan. DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews 2019, 119 (10) , 6459-6506. https://doi.org/10.1021/acs.chemrev.7b00663
    13. Sanghyun Yoo, Sreekantha Reddy Dugasani, Prathamesh Chopade, Mallikarjuna Reddy Kesama, Bramaramba Gnapareddy, Sung Ha Park. Metal and Lanthanide Ion-Co-doped Synthetic and Salmon DNA Thin Films. ACS Omega 2019, 4 (4) , 6530-6537. https://doi.org/10.1021/acsomega.9b00319
    14. Sekhar Babu Mitta, Sungguk Han, Srivithya Vellampatti, Anshula Tandon, Jihoon Shin, Tai Hwan Ha, Sung Ha Park. Streptavidin-Decorated Algorithmic DNA Lattices Constructed by Substrate-Assisted Growth Method. ACS Biomaterials Science & Engineering 2018, 4 (10) , 3617-3623. https://doi.org/10.1021/acsbiomaterials.8b00950
    15. Hyunjae Cho, Sekhar Babu Mitta, Yongwoo Song, Junyoung Son, Suyoun Park, Tai Hwan Ha, Sung Ha Park. 3-Input/1-Output Logic Implementation Demonstrated by DNA Algorithmic Self-Assembly. ACS Nano 2018, 12 (5) , 4369-4377. https://doi.org/10.1021/acsnano.8b00068
    16. Chao Li, Xue Zhang, Na Li, Yawei Wang, Jiajia Yang, Gaochen Gu, Yajie Zhang, Shimin Hou, Lianmao Peng, Kai Wu, Damian Nieckarz, Paweł Szabelski, Hao Tang, and Yongfeng Wang . Construction of Sierpiński Triangles up to the Fifth Order. Journal of the American Chemical Society 2017, 139 (39) , 13749-13753. https://doi.org/10.1021/jacs.7b05720
    17. Shuoxing Jiang, Fan Hong, Huiyu Hu, Hao Yan, and Yan Liu . Understanding the Elementary Steps in DNA Tile-Based Self-Assembly. ACS Nano 2017, 11 (9) , 9370-9381. https://doi.org/10.1021/acsnano.7b04845
    18. Chunxi Hou, Shuwen Guan, Ruidi Wang, Wei Zhang, Fanchao Meng, Linlu Zhao, Jiayun Xu, and Junqiu Liu . Supramolecular Protein Assemblies Based on DNA Templates. The Journal of Physical Chemistry Letters 2017, 8 (17) , 3970-3979. https://doi.org/10.1021/acs.jpclett.7b01564
    19. Joshua Fern, Jennifer Lu, and Rebecca Schulman . The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex. ACS Nano 2016, 10 (2) , 1836-1844. https://doi.org/10.1021/acsnano.5b05309
    20. Xue Zhang, Na Li, Gao-Chen Gu, Hao Wang, Damian Nieckarz, Paweł Szabelski, Yang He, Yu Wang, Chao Xie, Zi-Yong Shen, Jing-Tao Lü, Hao Tang, Lian-Mao Peng, Shi-Min Hou, Kai Wu, and Yong-Feng Wang . Controlling Molecular Growth between Fractals and Crystals on Surfaces. ACS Nano 2015, 9 (12) , 11909-11915. https://doi.org/10.1021/acsnano.5b04427
    21. Sudhanshu Garg, Harish Chandran, Nikhil Gopalkrishnan, Thomas H. LaBean, and John Reif . Directed Enzymatic Activation of 1-D DNA Tiles. ACS Nano 2015, 9 (2) , 1072-1079. https://doi.org/10.1021/nn504556v
    22. Sagi Eppel and Moshe Portnoy . Reversible Multistep Synthesis with Equilibrium Properties Based on a Selection-Oriented Process with a Repetitive Sequence of Steps. The Journal of Physical Chemistry B 2014, 118 (32) , 9733-9744. https://doi.org/10.1021/jp5051645
    23. Stefan Howorka . DNA Nanoarchitectonics: Assembled DNA at Interfaces. Langmuir 2013, 29 (24) , 7344-7353. https://doi.org/10.1021/la3045785
    24. Constantine G. Evans, Rizal F. Hariadi, and Erik Winfree . Direct Atomic Force Microscopy Observation of DNA Tile Crystal Growth at the Single-Molecule Level. Journal of the American Chemical Society 2012, 134 (25) , 10485-10492. https://doi.org/10.1021/ja301026z
    25. Vanesa Sanz Jesus M. de la Fuente . Nanostructures Conjugated to Nucleic Acids and Their Applications. 2012, 259-288. https://doi.org/10.1021/bk-2012-1119.ch012
    26. Sagi Eppel and Eran Rabani . Errors and Error Tolerance in Irreversible Multistep Growth of Nanostructures. The Journal of Physical Chemistry C 2011, 115 (13) , 5181-5198. https://doi.org/10.1021/jp106657a
    27. Nadrian C. Seeman. Structural DNA Nanotechnology: Growing Along with Nano Letters. Nano Letters 2010, 10 (6) , 1971-1978. https://doi.org/10.1021/nl101262u
    28. Chenxiang Lin, Yan Liu and Hao Yan. Designer DNA Nanoarchitectures. Biochemistry 2009, 48 (8) , 1663-1674. https://doi.org/10.1021/bi802324w
    29. Ebbe S. Andersen, Mingdong Dong, Morten M. Nielsen, Kasper Jahn, Allan Lind-Thomsen, Wael Mamdouh, Kurt V. Gothelf, Flemming Besenbacher and Jørgen Kjems . DNA Origami Design of Dolphin-Shaped Structures with Flexible Tails. ACS Nano 2008, 2 (6) , 1213-1218. https://doi.org/10.1021/nn800215j
    30. Ruixin Li, Anirudh S. Madhvacharyula, Yancheng Du, Harshith K. Adepu, Jong Hyun Choi. Mechanics of dynamic and deformable DNA nanostructures. Chemical Science 2023, 14 (30) , 8018-8046. https://doi.org/10.1039/D3SC01793A
    31. Cuizheng Zhang, Victoria E. Paluzzi, Ruojie Sha, Natasha Jonoska, Chengde Mao. Implementing Logic Gates by DNA Crystal Engineering. Advanced Materials 2023, 67 https://doi.org/10.1002/adma.202302345
    32. Muhammad Tayyab Raza, Anshula Tandon, Suyoun Park, Sungjin Lee, Thi Bich Ngoc Nguyen, Thi Hong Nhung Vu, Sung Ha Park. DNA lattice growth with single, double, and triple double-crossover boundaries by stepwise self-assembly. Nanotechnology 2023, 34 (24) , 245603. https://doi.org/10.1088/1361-6528/acc1ed
    33. Yinan Zhang, Xiaoyao Yin, Chengjun Cui, Kun He, Fei Wang, Jie Chao, Tao Li, Xiaolei Zuo, Ailing Li, Lihua Wang, Na Wang, Xiaochen Bo, Chunhai Fan. Prime factorization via localized tile assembly in a DNA origami framework. Science Advances 2023, 9 (13) https://doi.org/10.1126/sciadv.adf8263
    34. Jun Wang, Zhilong Jiang, Weiya Liu, Zihao Wu, Rui Miao, Fan Fu, Jia‐Fu Yin, Bangtang Chen, Qiangqiang Dong, He Zhao, Kaixiu Li, Guotao Wang, Die Liu, Panchao Yin, Yiming Li, Mingzhao Chen, Pingshan Wang. The Marriage of Sierpiński Triangles and Platonic Polyhedra. Angewandte Chemie International Edition 2023, 62 (1) https://doi.org/10.1002/anie.202214237
    35. Jun Wang, Zhilong Jiang, Weiya Liu, Zihao Wu, Rui Miao, Fan Fu, Jia‐Fu Yin, Bangtang Chen, Qiangqiang Dong, He Zhao, Kaixiu Li, Guotao Wang, Die Liu, Panchao Yin, Yiming Li, Mingzhao Chen, Pingshan Wang. The Marriage of Sierpiński Triangles and Platonic Polyhedra. Angewandte Chemie 2023, 135 (1) https://doi.org/10.1002/ange.202214237
    36. Satoshi Murata. DNA Nanotechnology Research in Japan. 2023, 47-57. https://doi.org/10.1007/978-981-19-9891-1_4
    37. Masami Hagiya, Taiga Hongu. Models of Gellular Automata. 2023, 397-410. https://doi.org/10.1007/978-981-19-9891-1_21
    38. Yahong Chen, Chaoyong Yang, Zhi Zhu, Wei Sun. Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30441-1
    39. Ken Komiya, Ryuma Shineha, Naoto Kawahara. Practice of responsible research and innovation in the formulation and revision of ethical principles of molecular robotics in Japan. SN Applied Sciences 2022, 4 (11) https://doi.org/10.1007/s42452-022-05164-z
    40. Suyoun Park, Sung Ha Park. Demonstration of Big Bang-like patterns through logic-implemented DNA algorithmic assembly. AIP Advances 2022, 12 (7) https://doi.org/10.1063/5.0093198
    41. Muhammad Tayyab Raza, Anshula Tandon, Suyoun Park, Sungjin Lee, Thi Bich Ngoc Nguyen, Thi Hong Nhung Vu, Soojin Jo, Yeonju Nam, Sohee Jeon, Jun-Ho Jeong, Sung Ha Park. Demonstration of elementary functions via DNA algorithmic self-assembly. Nanoscale 2021, 13 (46) , 19376-19384. https://doi.org/10.1039/D1NR05055A
    42. Bo Chen, Lan Mei, Yuelong Wang, Gang Guo. Advances in intelligent DNA nanomachines for targeted cancer therapy. Drug Discovery Today 2020, 31 https://doi.org/10.1016/j.drudis.2020.11.006
    43. Pierre-Étienne Meunier, Damien Regnault, Damien Woods. The program-size complexity of self-assembled paths. 2020, 727-737. https://doi.org/10.1145/3357713.3384263
    44. Jacob Hendricks, Joseph Opseth, Matthew J. Patitz, Scott M. Summers. Hierarchical growth is necessary and (sometimes) sufficient to self-assemble discrete self-similar fractals. Natural Computing 2020, 19 (2) , 357-374. https://doi.org/10.1007/s11047-019-09777-z
    45. Muhammad Tayyab Raza, Anshula Tandon, Junyoung Son, Suyoun Park, Sungjin Lee, Hyunjae Cho, Tai Hwan Ha, Sung Ha Park. Construction of one-dimensional random walk lattices using DNA algorithmic self-assembly. AIP Advances 2020, 10 (6) https://doi.org/10.1063/1.5121827
    46. Suyoun Park, Anshula Tandon, Hyun Jae Cho, Muhammad Tayyab Raza, Sung Jin Lee, Prathamesh Chopade, Tai Hwan Ha, Sung Ha Park. Ternary representation of N ( N = 1 or 2)-input and 1-output algorithmic self-assembly demonstrated by DNA. Nanotechnology 2020, 31 (8) , 085604. https://doi.org/10.1088/1361-6528/ab5472
    47. Anna Graczyk, Roza Pawlowska, Dominika Jedrzejczyk, Arkadiusz Chworos. Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules 2020, 25 (1) , 204. https://doi.org/10.3390/molecules25010204
    48. Wen-Jing Liu, Ping Zhang, Tong Sun, Lin Li, Yu-Hui Wei, Kai-Zhe Wang, Lin Liu, Bin Li. Effect of concentration and adsorption time on the formation of a large-scale origami pattern. Nuclear Science and Techniques 2019, 30 (7) https://doi.org/10.1007/s41365-019-0639-6
    49. Xuehe Lu, Jianbing Liu, Xiaohui Wu, Baoquan Ding. Multifunctional DNA Origami Nanoplatforms for Drug Delivery. Chemistry – An Asian Journal 2019, 14 (13) , 2193-2202. https://doi.org/10.1002/asia.201900574
    50. Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel, Shinnosuke Seki. Oritatami: A Computational Model for Molecular Co-Transcriptional Folding. International Journal of Molecular Sciences 2019, 20 (9) , 2259. https://doi.org/10.3390/ijms20092259
    51. Jacob Hendricks, Joseph Opseth. Self-assembly of 4-sided fractals in the Two-Handed Tile Assembly Model. Natural Computing 2019, 18 (1) , 75-92. https://doi.org/10.1007/s11047-018-9718-6
    52. Qinqin Hu, Sheng Wang, Lihua Wang, Hongzhou Gu, Chunhai Fan. DNA Nanostructure‐Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Advanced Healthcare Materials 2018, 7 (20) https://doi.org/10.1002/adhm.201701153
    53. David Furcy, Scott M. Summers. Optimal Self-Assembly of Finite Shapes at Temperature 1 in 3D. Algorithmica 2018, 80 (6) , 1909-1963. https://doi.org/10.1007/s00453-016-0260-6
    54. Xue Zhang, Ruoning Li, Na Li, Gaochen Gu, Yajie Zhang, Shimin Hou, Yongfeng Wang. Sierpiński triangles formed by molecules with linear backbones on Au(111). Chinese Chemical Letters 2018, 29 (6) , 967-969. https://doi.org/10.1016/j.cclet.2017.09.041
    55. Sami Nummelin, Juhana Kommeri, Mauri A. Kostiainen, Veikko Linko. Evolution of Structural DNA Nanotechnology. Advanced Materials 2018, 30 (24) https://doi.org/10.1002/adma.201703721
    56. Yuezhou Zhang, Jing Tu, Dongqing Wang, Haitao Zhu, Sajal Kumar Maity, Xiangmeng Qu, Bram Bogaert, Hao Pei, Hongbo Zhang. Programmable and Multifunctional DNA‐Based Materials for Biomedical Applications. Advanced Materials 2018, 30 (24) https://doi.org/10.1002/adma.201703658
    57. Constantine G. Evans, Erik Winfree. Optimizing Tile Set Size While Preserving Proofreading with a DNA Self-assembly Compiler. 2018, 37-54. https://doi.org/10.1007/978-3-030-00030-1_3
    58. Jacob Hendricks, Joseph Opseth, Matthew J. Patitz, Scott M. Summers. Hierarchical Growth Is Necessary and (Sometimes) Sufficient to Self-assemble Discrete Self-similar Fractals. 2018, 87-104. https://doi.org/10.1007/978-3-030-00030-1_6
    59. Mohsen Mohammadniaei, Chulhwan Park, Junhong Min, Hiesang Sohn, Taek Lee. Fabrication of Electrochemical-Based Bioelectronic Device and Biosensor Composed of Biomaterial-Nanomaterial Hybrid. 2018, 263-296. https://doi.org/10.1007/978-981-13-0445-3_17
    60. Yanfeng Wang, Guodong Yuan, Chun Huang, Junwei Sun. Complex Logic Circuit of Three-Input and Nine-Output by DNA Strand Displacement. 2018, 287-295. https://doi.org/10.1007/978-981-13-2829-9_26
    61. Xue Zhang, Gaochen Gu, Na Li, Hao Wang, Hao Tang, Yajie Zhang, Shimin Hou, Yongfeng Wang. One-dimensional molecular chains formed by Sierpiński triangles on Au(111). RSC Advances 2018, 8 (4) , 1852-1856. https://doi.org/10.1039/C7RA11825B
    62. Robert Penchovsky. Nucleic Acids-Based Nanotechnology. 2018, 155-171. https://doi.org/10.4018/978-1-5225-3158-6.ch006
    63. Abdulmelik Mohammed, Elena Czeizler, Eugen Czeizler. Computational modelling of the kinetic Tile Assembly Model using a rule-based approach. Theoretical Computer Science 2017, 701 , 203-215. https://doi.org/10.1016/j.tcs.2017.07.014
    64. Lila Kari, Steffen Kopecki, Pierre-Étienne Meunier, Matthew J. Patitz, Shinnosuke Seki. Binary Pattern Tile Set Synthesis Is NP-Hard. Algorithmica 2017, 78 (1) , 1-46. https://doi.org/10.1007/s00453-016-0154-7
    65. Dipak Gorakh Babar, Sabyasachi Sarkar. Self-assembled nanotubes from single fluorescent amino acid. Applied Nanoscience 2017, 7 (3-4) , 101-107. https://doi.org/10.1007/s13204-017-0551-5
    66. Jacob Hendricks, Joseph Opseth. Self-Assembly of 4-Sided Fractals in the Two-Handed Tile Assembly Model. 2017, 113-128. https://doi.org/10.1007/978-3-319-58187-3_9
    67. Constantine G. Evans, Erik Winfree. Physical principles for DNA tile self-assembly. Chemical Society Reviews 2017, 46 (12) , 3808-3829. https://doi.org/10.1039/C6CS00745G
    68. Na Li, Gaochen Gu, Xue Zhang, Daoliang Song, Yajie Zhang, Boon K. Teo, Lian-mao Peng, Shimin Hou, Yongfeng Wang. Packing fractal Sierpiński triangles into one-dimensional crystals via a templating method. Chemical Communications 2017, 53 (24) , 3469-3472. https://doi.org/10.1039/C7CC00566K
    69. Tun Wu, Jie Yuan, Bo Song, Yu-Sheng Chen, Mingzhao Chen, Xiaobo Xue, Qianqian Liu, Jun Wang, Yi-Tsu Chan, Pingshan Wang. Stepwise self-assembly of a discrete molecular honeycomb using a multitopic metallo-organic ligand. Chemical Communications 2017, 53 (50) , 6732-6735. https://doi.org/10.1039/C7CC03715E
    70. Xue Zhang, Na Li, Gaochen Gu, Yajie Zhang, Shimin Hou, Yongfeng Wang. Construction of Sierpiński triangles with the coexistence of C 60 or MnPc molecules. Chem. Commun. 2017, 53 (86) , 11826-11829. https://doi.org/10.1039/C7CC06179J
    71. Emad Alkhazraji, A. Ghalib, K. Manzoor, M. A. Alsunaidi, . Plasmonic Nanostructured Cellular Automata. EPJ Web of Conferences 2017, 139 , 00001. https://doi.org/10.1051/epjconf/201713900001
    72. Ho-Lin Chen, David Doty. Parallelism and Time in Hierarchical Self-Assembly. SIAM Journal on Computing 2017, 46 (2) , 661-709. https://doi.org/10.1137/151004161
    73. Aurel Jurjiu, Mircea Galiceanu, Alexandru Farcasanu, Liviu Chiriac, Flaviu Turcu. Relaxation dynamics of Sierpinski hexagon fractal polymer: Exact analytical results in the Rouse-type approach and numerical results in the Zimm-type approach. The Journal of Chemical Physics 2016, 145 (21) https://doi.org/10.1063/1.4968209
    74. Urmi Majumder, Sudhanshu Garg, Thomas H. LaBean, John H. Reif. Activatable tiles for compact robust programmable molecular assembly and other applications. Natural Computing 2016, 15 (4) , 611-634. https://doi.org/10.1007/s11047-015-9532-3
    75. Dominic Scalise, Rebecca Schulman. Emulating cellular automata in chemical reaction–diffusion networks. Natural Computing 2016, 15 (2) , 197-214. https://doi.org/10.1007/s11047-015-9503-8
    76. Chao Xie, Qi-Meng Wu, Ruo-Ning Li, Gao-Chen Gu, Xue Zhang, Na Li, Richard Berndt, Jörg Kröger, Zi-Yong Shen, Shi-Min Hou, Yong-Feng Wang. Isolated supramolecules on surfaces studied with scanning tunneling microscopy. Chinese Chemical Letters 2016, 27 (6) , 807-812. https://doi.org/10.1016/j.cclet.2016.03.022
    77. S. Tesoro, S. E. Ahnert. Nondeterministic self-assembly of two tile types on a lattice. Physical Review E 2016, 93 (4) https://doi.org/10.1103/PhysRevE.93.042412
    78. Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers, Damien Woods. The Two-Handed Tile Assembly Model is not Intrinsically Universal. Algorithmica 2016, 74 (2) , 812-850. https://doi.org/10.1007/s00453-015-9976-y
    79. Constantine G. Evans. Experimental Implementation of Tile Assembly. 2016, 698-702. https://doi.org/10.1007/978-1-4939-2864-4_674
    80. Xue Zhang, Na Li, Liwei Liu, Gaochen Gu, Chao Li, Hao Tang, Lianmao Peng, Shimin Hou, Yongfeng Wang. Robust Sierpiński triangle fractals on symmetry-mismatched Ag(100). Chemical Communications 2016, 52 (69) , 10578-10581. https://doi.org/10.1039/C6CC04879J
    81. Jaimie Marie Stewart, Mathias Viard, Hari K. K. Subramanian, Brandon K. Roark, Kirill A. Afonin, Elisa Franco. Programmable RNA microstructures for coordinated delivery of siRNAs. Nanoscale 2016, 8 (40) , 17542-17550. https://doi.org/10.1039/C6NR05085A
    82. Gaochen Gu, Na Li, Liwei Liu, Xue Zhang, Qimeng Wu, Damian Nieckarz, Pawel Szabelski, Lianmao Peng, Boon K. Teo, Shimin Hou, Yongfeng Wang. Growth of covalently bonded Sierpiński triangles up to the second generation. RSC Advances 2016, 6 (71) , 66548-66552. https://doi.org/10.1039/C6RA13627C
    83. Michael J. Fox, Jeff S. Shamma. Probabilistic Performance Guarantees for Distributed Self-Assembly. IEEE Transactions on Automatic Control 2015, 60 (12) , 3180-3194. https://doi.org/10.1109/TAC.2015.2418673
    84. Na Li, Xue Zhang, Gao-Chen Gu, Hao Wang, Damian Nieckarz, Paweł Szabelski, Yang He, Yu Wang, Jing-Tao Lü, Hao Tang, Lian-Mao Peng, Shi-Min Hou, Kai Wu, Yong-Feng Wang. Sierpiński-triangle fractal crystals with the C3v point group. Chinese Chemical Letters 2015, 26 (10) , 1198-1202. https://doi.org/10.1016/j.cclet.2015.08.006
    85. Hui Li, Taek Lee, Thomas Dziubla, Fengmei Pi, Sijin Guo, Jing Xu, Chan Li, Farzin Haque, Xing-Jie Liang, Peixuan Guo. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10 (5) , 631-655. https://doi.org/10.1016/j.nantod.2015.09.003
    86. Damien Woods. Intrinsic universality and the computational power of self-assembly. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373 (2046) , 20140214. https://doi.org/10.1098/rsta.2014.0214
    87. N. Jonoska, N. C. Seeman. Molecular ping-pong Game of Life on a two-dimensional DNA origami array. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373 (2046) , 20140215. https://doi.org/10.1098/rsta.2014.0215
    88. Nataša Jonoska, Daria Karpenko, Shinnosuke Seki. Dynamic Simulation of 1D Cellular Automata in the Active aTAM. New Generation Computing 2015, 33 (3) , 271-295. https://doi.org/10.1007/s00354-015-0302-7
    89. Ho-Lin Chen, David Doty, Shinnosuke Seki. Program Size and Temperature in Self-Assembly. Algorithmica 2015, 72 (3) , 884-899. https://doi.org/10.1007/s00453-014-9879-3
    90. Jennifer E. Padilla, Ruojie Sha, Martin Kristiansen, Junghuei Chen, Natasha Jonoska, Nadrian C. Seeman. A Signal-Passing DNA-Strand-Exchange Mechanism for Active Self-Assembly of DNA Nanostructures. Angewandte Chemie International Edition 2015, 54 (20) , 5939-5942. https://doi.org/10.1002/anie.201500252
    91. Jennifer E. Padilla, Ruojie Sha, Martin Kristiansen, Junghuei Chen, Natasha Jonoska, Nadrian C. Seeman. A Signal‐Passing DNA‐Strand‐Exchange Mechanism for Active Self‐Assembly of DNA Nanostructures. Angewandte Chemie 2015, 127 (20) , 6037-6040. https://doi.org/10.1002/ange.201500252
    92. Jian Shang, Yongfeng Wang, Min Chen, Jingxin Dai, Xiong Zhou, Julian Kuttner, Gerhard Hilt, Xiang Shao, J. Michael Gottfried, Kai Wu. Assembling molecular Sierpiński triangle fractals. Nature Chemistry 2015, 7 (5) , 389-393. https://doi.org/10.1038/nchem.2211
    93. David Furcy, Scott M. Summers. Optimal Self-assembly of Finite Shapes at Temperature 1 in 3D. 2015, 138-151. https://doi.org/10.1007/978-3-319-26626-8_11
    94. Rizal F. Hariadi, Bernard Yurke, Erik Winfree. Thermodynamics and kinetics of DNA nanotube polymerization from single-filament measurements. Chemical Science 2015, 6 (4) , 2252-2267. https://doi.org/10.1039/C3SC53331J
    95. George R. Newkome, Charles N. Moorefield. From 1 → 3 dendritic designs to fractal supramacromolecular constructs: understanding the pathway to the Sierpiński gasket. Chemical Society Reviews 2015, 44 (12) , 3954-3967. https://doi.org/10.1039/C4CS00234B
    96. Aizhu Wang, Mingwen Zhao. Intrinsic half-metallicity in fractal carbon nitride honeycomb lattices. Physical Chemistry Chemical Physics 2015, 17 (34) , 21837-21844. https://doi.org/10.1039/C5CP03060A
    97. Junghoon Kim, Tai Hwan Ha, Sung Ha Park. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles. Nanoscale 2015, 7 (29) , 12336-12342. https://doi.org/10.1039/C5NR03088A
    98. Stephen Whitelam. Hierarchical assembly may be a way to make large information-rich structures. Soft Matter 2015, 11 (42) , 8225-8235. https://doi.org/10.1039/C5SM01375E
    99. Jean-Pierre Aimé, Juan Elezgaray. DNA Nano Devices as a Biased Random Walk Process: A Case Study of Isothermal Ratchet?. Materials Sciences and Applications 2015, 06 (05) , 401-419. https://doi.org/10.4236/msa.2015.65045
    100. Constantine G. Evans. Experimental Implementation of Tile Assembly. 2015, 1-5. https://doi.org/10.1007/978-3-642-27848-8_674-1
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect