ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Mapping the Plasmon Resonances of Metallic Nanoantennas

View Author Information
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, Instituto de Óptica, CSIC, Serrano 121, 28006 Madrid, Spain, and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain
Cite this: Nano Lett. 2008, 8, 2, 631–636
Publication Date (Web):January 12, 2008
https://doi.org/10.1021/nl073042v
Copyright © 2008 American Chemical Society

    Article Views

    5074

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (230 KB)

    Abstract

    Abstract Image

    We study the light scattering and surface plasmon resonances of Au nanorods that are commonly used as optical nanoantennas in analogy to dipole radio antennas for chemical and biodetection field-enhanced spectroscopies and scanned-probe microscopies. With the use of the boundary element method, we calculate the nanorod near-field and far-field response to show how the nanorod shape and dimensions determine its optical response. A full mapping of the size (length and radius) dependence for Au nanorods is obtained. The dipolar plasmon resonance wavelength λ shows a nearly linear dependence on total rod length L out to the largest lengths that we study. However, L is always substantially less than λ/2, indicating the difference between optical nanoantennas and long-wavelength traditional λ/2 antennas. Although it is often assumed that the plasmon wavelength scales with the nanorod aspect ratio, we find that this scaling does not apply except in the extreme limit of very small, spherical nanoparticles. The plasmon response depends critically on both the rod length and radius. Large (500 nm) differences in resonance wavelength are found for structures with different sizes but with the same aspect ratio. In addition, the plasmon resonance deduced from the near-field enhancement can be significantly red-shifted due to retardation from the resonance in far-field scattering. Large differences in near-field and far-field response, together with the breakdown of the simple scaling law must be accounted for in the choice and design of metallic λ/2 nanoantennas. We provide a general, practical map of the resonances for use in locating the desired response for gold nanoantennas.

    *

     Corresponding author. E-mail:  [email protected].

     National Institute of Standards and Technology.

     Instituto de Óptica.

    §

     Donostia International Physics Center.

    Cited By

    This article is cited by 326 publications.

    1. Jérémie Asselin, Christina Boukouvala, Elizabeth R. Hopper, Quentin M. Ramasse, John S. Biggins, Emilie Ringe. Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles. ACS Nano 2020, 14 (5) , 5968-5980. https://doi.org/10.1021/acsnano.0c01427
    2. Siva Kumar-Krishnan, Rodrigo Esparza, Umapada Pal. Controlled Fabrication of Flower-Shaped Au–Cu Nanostructures Using a Deep Eutectic Solvent and Their Performance in Surface-Enhanced Raman Scattering-Based Molecular Sensing. ACS Omega 2020, 5 (7) , 3699-3708. https://doi.org/10.1021/acsomega.9b04355
    3. Hongping Xiang, Zhilue Wang, Lin Xu, Xu Zhang, Gang Lu. Quantum Plasmonics in Nanorods: A Time-Dependent Orbital-Free Density Functional Theory Study with Thousands of Atoms. The Journal of Physical Chemistry C 2020, 124 (1) , 945-951. https://doi.org/10.1021/acs.jpcc.9b10510
    4. Grace Pakeltis, Zhongwei Hu, Austin G. Nixon, Eva Mutunga, C. Praise Anyanwu, Claire A. West, Juan Carlos Idrobo, Harald Plank, David J. Masiello, Jason D. Fowlkes, Philip D. Rack. Focused Electron Beam Induced Deposition Synthesis of 3D Photonic and Magnetic Nanoresonators. ACS Applied Nano Materials 2019, 2 (12) , 8075-8082. https://doi.org/10.1021/acsanm.9b02182
    5. Man-Nung Su, Quan Sun, Kosei Ueno, Wei-Shun Chang, Hiroaki Misawa, Stephan Link. Optical Characterization of Gold Nanoblock Dimers: From Capacitive Coupling to Charge Transfer Plasmons and Rod Modes. The Journal of Physical Chemistry C 2018, 122 (31) , 18005-18011. https://doi.org/10.1021/acs.jpcc.8b05755
    6. Gilad Haran, Lev Chuntonov. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews 2018, 118 (11) , 5539-5580. https://doi.org/10.1021/acs.chemrev.7b00647
    7. Andrea Konečná, Tomáš Neuman, Javier Aizpurua, Rainer Hillenbrand. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy. ACS Nano 2018, 12 (5) , 4775-4786. https://doi.org/10.1021/acsnano.8b01481
    8. Guang Yang, Jagjit Nanda, Boya Wang, Gang Chen, and Daniel T. Hallinan, Jr. . Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces 2017, 9 (15) , 13457-13470. https://doi.org/10.1021/acsami.7b01121
    9. A. G. Milekhin, S. A. Kuznetsov, L. L. Sveshnikova, T. A. Duda, I. A. Milekhin, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn . Surface-Enhanced Infrared Absorption by Optical Phonons in Nanocrystal Monolayers on Au Nanoantenna Arrays. The Journal of Physical Chemistry C 2017, 121 (10) , 5779-5786. https://doi.org/10.1021/acs.jpcc.6b11431
    10. Raymond Gillibert, Florent Colas, Ryohei Yasukuni, Gennaro Picardi, and Marc Lamy de la Chapelle . Plasmonic Properties of Aluminum Nanocylinders in the Visible Range. The Journal of Physical Chemistry C 2017, 121 (4) , 2402-2409. https://doi.org/10.1021/acs.jpcc.6b11779
    11. Ana B. Serrano-Montes, Judith Langer, Malou Henriksen-Lacey, Dorleta Jimenez de Aberasturi, Diego M. Solís, José M. Taboada, Fernando Obelleiro, Kadir Sentosun, Sara Bals, Ahmet Bekdemir, Francesco Stellacci, and Luis M. Liz-Marzán . Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. The Journal of Physical Chemistry C 2016, 120 (37) , 20860-20868. https://doi.org/10.1021/acs.jpcc.6b02282
    12. Deok-Soo Kim, Sung-Hyun Ahn, Jinwook Kim, Daeha Seo, Hyunjoon Song, and Zee Hwan Kim . Far-Field and Near-Field Investigation of Longitudinal Plasmons of AgAuAg Nanorods. The Journal of Physical Chemistry C 2016, 120 (37) , 21082-21090. https://doi.org/10.1021/acs.jpcc.6b03813
    13. Maciej Da̧browski, Yanan Dai, Adam Argondizzo, Qiang Zou, Xuefeng Cui, and Hrvoje Petek . Multiphoton Photoemission Microscopy of High-Order Plasmonic Resonances at the Ag/Vacuum and Ag/Si Interfaces of Epitaxial Silver Nanowires. ACS Photonics 2016, 3 (9) , 1704-1713. https://doi.org/10.1021/acsphotonics.6b00353
    14. Florent J. Colas, Maximilien Cottat, Raymond Gillibert, Nicolas Guillot, Nadia Djaker, Nathalie Lidgi-Guigui, Timothée Toury, Dominique Barchiesi, Andrea Toma, Enzo Di Fabrizio, Pietro G. Gucciardi, and Marc Lamy de la Chapelle . Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?. The Journal of Physical Chemistry C 2016, 120 (25) , 13675-13683. https://doi.org/10.1021/acs.jpcc.6b01492
    15. Richard W. Taylor, Rubén Esteban, Sumeet Mahajan, Javier Aizpurua, and Jeremy J. Baumberg . Optimizing SERS from Gold Nanoparticle Clusters: Addressing the Near Field by an Embedded Chain Plasmon Model. The Journal of Physical Chemistry C 2016, 120 (19) , 10512-10522. https://doi.org/10.1021/acs.jpcc.6b00506
    16. Xiaolu Zhuo, Xingzhong Zhu, Qian Li, Zhi Yang, and Jianfang Wang . Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances. ACS Nano 2015, 9 (7) , 7523-7535. https://doi.org/10.1021/acsnano.5b02622
    17. Todd Brintlinger, Andrew A. Herzing, James P. Long, Igor Vurgaftman, Rhonda Stroud, and B. S. Simpkins . Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas. ACS Nano 2015, 9 (6) , 6222-6232. https://doi.org/10.1021/acsnano.5b01591
    18. F. J. Recio, N. Zabala, A. Rivacoba, P. Crespo, A. Ayuela, P. M. Echenique, and A. Hernando . Optical Resonances of Colloidal Gold Nanorods: From Seeds to Chemically Thiolated Long Nanorods. The Journal of Physical Chemistry C 2015, 119 (14) , 7856-7864. https://doi.org/10.1021/jp5117273
    19. Rubén Esteban, Garikoitz Aguirregabiria, Andrey G. Borisov, Yumin M. Wang, Peter Nordlander, Garnett W. Bryant, and Javier Aizpurua . The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics 2015, 2 (2) , 295-305. https://doi.org/10.1021/ph5004016
    20. Robert Czaplicki, Jouni Mäkitalo, Roope Siikanen, Hannu Husu, Joonas Lehtolahti, Markku Kuittinen, and Martti Kauranen . Second-Harmonic Generation from Metal Nanoparticles: Resonance Enhancement versus Particle Geometry. Nano Letters 2015, 15 (1) , 530-534. https://doi.org/10.1021/nl503901e
    21. Moritz Tebbe, Max Maennel, Andreas Fery, Nicolas Pazos-Perez, and Ramon A. Alvarez-Puebla . Organized Solid Thin Films of Gold Nanorods with Different Sizes for Surface-Enhanced Raman Scattering Applications. The Journal of Physical Chemistry C 2014, 118 (48) , 28095-28100. https://doi.org/10.1021/jp5086685
    22. Wei-Liang Chen, Fan-Cheng Lin, Yu-Yang Lee, Feng-Chieh Li, Yu-Ming Chang, and Jer-Shing Huang . The Modulation Effect of Transverse, Antibonding, and Higher-Order Longitudinal Modes on the Two-Photon Photoluminescence of Gold Plasmonic Nanoantennas. ACS Nano 2014, 8 (9) , 9053-9062. https://doi.org/10.1021/nn502389s
    23. Honghua U. Yang, Robert L. Olmon, Kseniya S. Deryckx, Xiaoji G. Xu, Hans A. Bechtel, Yuancheng Xu, Brian A. Lail, and Markus B. Raschke . Accessing the Optical Magnetic Near-Field through Babinet’s Principle. ACS Photonics 2014, 1 (9) , 894-899. https://doi.org/10.1021/ph5001988
    24. Niels Verellen, Fernando López-Tejeira, Ramón Paniagua-Domínguez, Dries Vercruysse, Denitza Denkova, Liesbet Lagae, Pol Van Dorpe, Victor V. Moshchalkov, and José A. Sánchez-Gil . Mode Parity-Controlled Fano- and Lorentz-like Line Shapes Arising in Plasmonic Nanorods. Nano Letters 2014, 14 (5) , 2322-2329. https://doi.org/10.1021/nl404670x
    25. C. D’Andrea, B. Fazio, P. G. Gucciardi, M. C. Giordano, C. Martella, D. Chiappe, A. Toma, F. Buatier de Mongeot, F. Tantussi, P. Vasanthakumar, F. Fuso, and M. Allegrini . SERS Enhancement and Field Confinement in Nanosensors Based on Self-Organized Gold Nanowires Produced by Ion-Beam Sputtering. The Journal of Physical Chemistry C 2014, 118 (16) , 8571-8580. https://doi.org/10.1021/jp5007236
    26. Nikolai Strohfeldt, Andreas Tittl, Martin Schäferling, Frank Neubrech, Uwe Kreibig, Ronald Griessen, and Harald Giessen . Yttrium Hydride Nanoantennas for Active Plasmonics. Nano Letters 2014, 14 (3) , 1140-1147. https://doi.org/10.1021/nl403643v
    27. Philip Trøst Kristensen , Stephen Hughes . Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators. ACS Photonics 2014, 1 (1) , 2-10. https://doi.org/10.1021/ph400114e
    28. Yunuen Montelongo, Jaime O. Tenorio-Pearl, William I. Milne, and Timothy D. Wilkinson . Polarization Switchable Diffraction Based on Subwavelength Plasmonic Nanoantennas. Nano Letters 2014, 14 (1) , 294-298. https://doi.org/10.1021/nl4039967
    29. Anna A. Lyamkina and Sergey P. Moshchenko . Numerical Investigation of Surface Plasmon Resonance in Lens-Shaped Self-Assembled Nanodroplets of Group III Metals. The Journal of Physical Chemistry C 2013, 117 (32) , 16564-16570. https://doi.org/10.1021/jp403924m
    30. Rasoul Alaee, Christoph Menzel, Uwe Huebner, Ekaterina Pshenay-Severin, Shakeeb Bin Hasan, Thomas Pertsch, Carsten Rockstuhl, and Falk Lederer . Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling. Nano Letters 2013, 13 (8) , 3482-3486. https://doi.org/10.1021/nl4007694
    31. Hongyan Liang, David Rossouw, Haiguang Zhao, Scott K. Cushing, Honglong Shi, Andreas Korinek, Hongxing Xu, Federico Rosei, Wenzhong Wang, Nianqiang Wu, Gianluigi A. Botton, and Dongling Ma . Asymmetric Silver “Nanocarrot” Structures: Solution Synthesis and Their Asymmetric Plasmonic Resonances. Journal of the American Chemical Society 2013, 135 (26) , 9616-9619. https://doi.org/10.1021/ja404345s
    32. F. Moreno, P. Albella, and M. Nieto-Vesperinas . Analysis of the Spectral Behavior of Localized Plasmon Resonances in the Near- and Far-Field Regimes. Langmuir 2013, 29 (22) , 6715-6721. https://doi.org/10.1021/la400703r
    33. Andreas M. Kern, Alfred J. Meixner, and Olivier J. F. Martin . Molecule-Dependent Plasmonic Enhancement of Fluorescence and Raman Scattering near Realistic Nanostructures. ACS Nano 2012, 6 (11) , 9828-9836. https://doi.org/10.1021/nn3033612
    34. Martina Abb, Yudong Wang, Pablo Albella, C. H. de Groot, Javier Aizpurua, and Otto L. Muskens . Interference, Coupling, and Nonlinear Control of High-Order Modes in Single Asymmetric Nanoantennas. ACS Nano 2012, 6 (7) , 6462-6470. https://doi.org/10.1021/nn3021579
    35. Zhening Zhu, Wenjing Liu, Zhengtao Li, Bing Han, Yunlong Zhou, Yan Gao, and Zhiyong Tang . Manipulation of Collective Optical Activity in One-Dimensional Plasmonic Assembly. ACS Nano 2012, 6 (3) , 2326-2332. https://doi.org/10.1021/nn2044802
    36. Tobias Hanke, Julijan Cesar, Vanessa Knittel, Andreas Trügler, Ulrich Hohenester, Alfred Leitenstorfer, and Rudolf Bratschitsch . Tailoring Spatiotemporal Light Confinement in Single Plasmonic Nanoantennas. Nano Letters 2012, 12 (2) , 992-996. https://doi.org/10.1021/nl2041047
    37. Ina Alber, Wilfried Sigle, Sven Müller, Reinhard Neumann, Oliver Picht, Markus Rauber, Peter A. van Aken, and Maria Eugenia Toimil-Molares . Visualization of Multipolar Longitudinal and Transversal Surface Plasmon Modes in Nanowire Dimers. ACS Nano 2011, 5 (12) , 9845-9853. https://doi.org/10.1021/nn2035044
    38. Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst . Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas. Nano Letters 2011, 11 (11) , 4674-4678. https://doi.org/10.1021/nl202255g
    39. Lindsey J. E. Anderson, Courtney M. Payne, Yu-Rong Zhen, Peter Nordlander, and Jason H. Hafner . A Tunable Plasmon Resonance in Gold Nanobelts. Nano Letters 2011, 11 (11) , 5034-5037. https://doi.org/10.1021/nl203085t
    40. Sassan N. Sheikholeslami, Aitzol García-Etxarri, and Jennifer A. Dionne . Controlling the Interplay of Electric and Magnetic Modes via Fano-like Plasmon Resonances. Nano Letters 2011, 11 (9) , 3927-3934. https://doi.org/10.1021/nl202143j
    41. Ezequiel R. Encina and Eduardo A. Coronado . Near Field Enhancement in Ag Au Nanospheres Heterodimers. The Journal of Physical Chemistry C 2011, 115 (32) , 15908-15914. https://doi.org/10.1021/jp205158w
    42. Liane Slaughter, Wei-Shun Chang, and Stephan Link . Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy. The Journal of Physical Chemistry Letters 2011, 2 (16) , 2015-2023. https://doi.org/10.1021/jz200702m
    43. Qingzhen Hao, Yong Zeng, Bala Krishna Juluri, Xiande Wang, Brian Kiraly, I-Kao Chiang, Lasse Jensen, Douglas H. Werner, Vincent H. Crespi, and Tony Jun Huang . Metallic Membranes with Subwavelength Complementary Patterns: Distinct Substrates for Surface-Enhanced Raman Scattering. ACS Nano 2011, 5 (7) , 5472-5477. https://doi.org/10.1021/nn200704p
    44. Vincenzo Giannini, Antonio I. Fernández-Domínguez, Susannah C. Heck, and Stefan A. Maier . Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews 2011, 111 (6) , 3888-3912. https://doi.org/10.1021/cr1002672
    45. Naomi J. Halas, Surbhi Lal, Wei-Shun Chang, Stephan Link, and Peter Nordlander . Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews 2011, 111 (6) , 3913-3961. https://doi.org/10.1021/cr200061k
    46. Nikolai Berkovitch and Meir Orenstein . Thin Wire Shortening of Plasmonic Nanoparticle Dimers: The Reason for Red Shifts. Nano Letters 2011, 11 (5) , 2079-2082. https://doi.org/10.1021/nl2005669
    47. Tim H. Taminiau, Fernando D. Stefani, and Niek F. van Hulst . Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes. Nano Letters 2011, 11 (3) , 1020-1024. https://doi.org/10.1021/nl103828n
    48. Jorge Zuloaga and Peter Nordlander . On the Energy Shift between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems. Nano Letters 2011, 11 (3) , 1280-1283. https://doi.org/10.1021/nl1043242
    49. Cheng-ping Huang, Xiao-gang Yin, Ling-bao Kong, and Yong-yuan Zhu. Interactions of Nanorod Particles in the Strong Coupling Regime. The Journal of Physical Chemistry C 2010, 114 (49) , 21123-21131. https://doi.org/10.1021/jp1074362
    50. Markus Pfeiffer, Klas Lindfors, Christian Wolpert, Paola Atkinson, Mohamed Benyoucef, Armando Rastelli, Oliver G. Schmidt, Harald Giessen, and Markus Lippitz. Enhancing the Optical Excitation Efficiency of a Single Self-Assembled Quantum Dot with a Plasmonic Nanoantenna. Nano Letters 2010, 10 (11) , 4555-4558. https://doi.org/10.1021/nl102548t
    51. Abrin L. Schmucker, Nadine Harris, Matthew J. Banholzer, Martin G. Blaber, Kyle D. Osberg, George C. Schatz, and Chad A. Mirkin . Correlating Nanorod Structure with Experimentally Measured and Theoretically Predicted Surface Plasmon Resonance. ACS Nano 2010, 4 (9) , 5453-5463. https://doi.org/10.1021/nn101493t
    52. O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander and J. Aizpurua . Optical Spectroscopy of Conductive Junctions in Plasmonic Cavities. Nano Letters 2010, 10 (8) , 3090-3095. https://doi.org/10.1021/nl1017173
    53. Lindsey J. E. Anderson, Kathryn M. Mayer, Robert D. Fraleigh, Yi Yang, Seunghyun Lee and Jason H. Hafner . Quantitative Measurements of Individual Gold Nanoparticle Scattering Cross Sections. The Journal of Physical Chemistry C 2010, 114 (25) , 11127-11132. https://doi.org/10.1021/jp1040663
    54. Hong Wei, Alejandro Reyes-Coronado, Peter Nordlander, Javier Aizpurua and Hongxing Xu . Multipolar Plasmon Resonances in Individual Ag Nanorice. ACS Nano 2010, 4 (5) , 2649-2654. https://doi.org/10.1021/nn1002419
    55. Harold S. Park and Xiaohu Qian. Surface-Stress-Driven Lattice Contraction Effects on the Extinction Spectra of Ultrasmall Silver Nanowires. The Journal of Physical Chemistry C 2010, 114 (19) , 8741-8748. https://doi.org/10.1021/jp100456p
    56. Ernesto Jiménez, Kamal Abderrafi, Rafael Abargues, José L. Valdés and Juan P. Martínez-Pastor. Laser-Ablation-Induced Synthesis of SiO2-Capped Noble Metal Nanoparticles in a Single Step. Langmuir 2010, 26 (10) , 7458-7463. https://doi.org/10.1021/la904179x
    57. Zhipeng Li, Kui Bao, Yurui Fang, Yingzhou Huang, Peter Nordlander and Hongxing Xu . Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides. Nano Letters 2010, 10 (5) , 1831-1835. https://doi.org/10.1021/nl100528c
    58. Laura Rodríguez-Lorenzo, Ramón A. Álvarez-Puebla, F. Javier García de Abajo and Luis M. Liz-Marzán . Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. The Journal of Physical Chemistry C 2010, 114 (16) , 7336-7340. https://doi.org/10.1021/jp909253w
    59. Liane S. Slaughter, Wei-Shun Chang, Pattanawit Swanglap, Alexei Tcherniak, Bishnu P. Khanal, Eugene R. Zubarev and Stephan Link. Single-Particle Spectroscopy of Gold Nanorods beyond the Quasi-Static Limit: Varying the Width at Constant Aspect Ratio. The Journal of Physical Chemistry C 2010, 114 (11) , 4934-4938. https://doi.org/10.1021/jp101272w
    60. Nicolás Pazos-Pérez, Silvia Barbosa, Laura Rodríguez-Lorenzo, Paula Aldeanueva-Potel, Jorge Pérez-Juste, Isabel Pastoriza-Santos, Ramón A. Alvarez-Puebla, and Luis M. Liz-Marzán . Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. The Journal of Physical Chemistry Letters 2010, 1 (1) , 24-27. https://doi.org/10.1021/jz900004h
    61. Jinsong Duan, Kyoungweon Park, Robert I. MacCuspie, Richard A. Vaia and Ruth Pachter . Optical Properties of Rodlike Metallic Nanostructures: Insight from Theory and Experiment. The Journal of Physical Chemistry C 2009, 113 (35) , 15524-15532. https://doi.org/10.1021/jp902448f
    62. Andrew C. Jones, Robert L. Olmon, Sara E. Skrabalak, Benjamin J. Wiley, Younan N. Xia and Markus B. Raschke . Mid-IR Plasmonics: Near-Field Imaging of Coherent Plasmon Modes of Silver Nanowires. Nano Letters 2009, 9 (7) , 2553-2558. https://doi.org/10.1021/nl900638p
    63. Jens Dorfmüller, Ralf Vogelgesang, R. Thomas Weitz, Carsten Rockstuhl, Christoph Etrich, Thomas Pertsch, Falk Lederer and Klaus Kern. Fabry-Pérot Resonances in One-Dimensional Plasmonic Nanostructures. Nano Letters 2009, 9 (6) , 2372-2377. https://doi.org/10.1021/nl900900r
    64. Ezequiel R. Encina, Eduardo M. Perassi and Eduardo A. Coronado. Near-Field Enhancement of Multipole Plasmon Resonances in Ag and Au Nanowires. The Journal of Physical Chemistry A 2009, 113 (16) , 4489-4497. https://doi.org/10.1021/jp811089a
    65. Zhipeng Li, Timur Shegai, Gilad Haran and Hongxing Xu . Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission. ACS Nano 2009, 3 (3) , 637-642. https://doi.org/10.1021/nn800906c
    66. Wei-Shun Chang, Liane S. Slaughter, Bishnu P. Khanal, Pramit Manna, Eugene R. Zubarev and Stephan Link . One-Dimensional Coupling of Gold Nanoparticle Plasmons in Self-Assembled Ring Superstructures. Nano Letters 2009, 9 (3) , 1152-1157. https://doi.org/10.1021/nl803796d
    67. Nikolay A. Mirin and Naomi J. Halas. Light-Bending Nanoparticles. Nano Letters 2009, 9 (3) , 1255-1259. https://doi.org/10.1021/nl900208z
    68. Feng Hao, Yannick Sonnefraud, Pol Van Dorpe, Stefan A. Maier, Naomi J. Halas and Peter Nordlander . Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance. Nano Letters 2008, 8 (11) , 3983-3988. https://doi.org/10.1021/nl802509r
    69. Hong Wei, Feng Hao, Yingzhou Huang, Wenzhong Wang, Peter Nordlander and Hongxing Xu. Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle−Nanowire Systems. Nano Letters 2008, 8 (8) , 2497-2502. https://doi.org/10.1021/nl8015297
    70. Hrvoje Petek, Andi Li, Xintong Li, Shijing Tan, Marcel Reutzel. Plasmonic decay into hot electrons in silver. Progress in Surface Science 2023, 98 (3) , 100707. https://doi.org/10.1016/j.progsurf.2023.100707
    71. Gino Wegner, Dan-Nha Huynh, N. Asger Mortensen, Francesco Intravaia, Kurt Busch. Halevi's extension of the Euler-Drude model for plasmonic systems. Physical Review B 2023, 107 (11) https://doi.org/10.1103/PhysRevB.107.115425
    72. Ramón A. Alvarez-Puebla. Surface Enhanced Raman Spectroscopy (SERS). 2023, 151-168. https://doi.org/10.1007/978-3-031-07125-6_7
    73. Cuixia Bi, Zhixiu Wang, Hongyan Zhao, Guangqiang Liu. Facile synthesis of multibranched gold nanostars with precisely tunable sizes for surface-enhanced Raman scattering. Journal of Materials Chemistry C 2023, 1 https://doi.org/10.1039/D3TC01796F
    74. Hyung Shik Kim, Minwook Seo, Tae-Eun Park, Dong Yun Lee. A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-021-01220-9
    75. Marita Wagner, Andreas Seifert, Luis M. Liz-Marzán. Towards multi-molecular surface-enhanced infrared absorption using metal plasmonics. Nanoscale Horizons 2022, 7 (11) , 1259-1278. https://doi.org/10.1039/D2NH00276K
    76. Ahmad Aziz Darweesh, Desalegn Tadesse Debu, Stephen Joseph Bauman, Joseph Bruce Herzog. Near- and Far-Field Plasmonic Enhancement by Asymmetric Nanosphere Heterodimers. Plasmonics 2022, 17 (4) , 1645-1653. https://doi.org/10.1007/s11468-022-01650-7
    77. Jiajia Zha, Mingcheng Luo, Ming Ye, Tanveer Ahmed, Xuechao Yu, Der‐Hsien Lien, Qiyuan He, Dangyuan Lei, Johnny C. Ho, James Bullock, Kenneth B. Crozier, Chaoliang Tan. Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials 2022, 32 (15) https://doi.org/10.1002/adfm.202111970
    78. H. Farheen, T. Leuteritz, S. Linden, V. Myroshnychenko, J. Förstner. Optimization of optical waveguide antennas for directive emission of light. Journal of the Optical Society of America B 2022, 39 (1) , 83. https://doi.org/10.1364/JOSAB.438514
    79. Subhavna Juneja, Jaspal Singh, Roshni Thapa, R. K. Soni, Jaydeep Bhattacharya. Improved SERS sensing on biosynthetically grown self-cleaning plasmonic ZnO nano-leaves. New Journal of Chemistry 2021, 45 (44) , 20895-20903. https://doi.org/10.1039/D1NJ02883A
    80. Jiayi Tan, Yu Wen, Ming Li. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coordination Chemistry Reviews 2021, 446 , 214111. https://doi.org/10.1016/j.ccr.2021.214111
    81. D. Jonker, Z. Jafari, J. P. Winczewski, C. Eyovge, J. W. Berenschot, N. R. Tas, J. G. E. Gardeniers, I. De Leon, A. Susarrey-Arce. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars. Nanoscale Advances 2021, 3 (17) , 4926-4939. https://doi.org/10.1039/D1NA00316J
    82. Joseph J. Liberko, Jacob A. Busche, Robyn Seils, Hans A. Bechtel, Philip D. Rack, David J. Masiello, Jon P. Camden. Probing nanoparticle substrate interactions with synchrotron infrared nanospectroscopy: Coupling gold nanorod Fabry-Pérot resonances with SiO 2 and h − BN phonons. Physical Review B 2021, 104 (3) https://doi.org/10.1103/PhysRevB.104.035412
    83. Joachim Koetz. The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance. Nanomaterials 2020, 10 (11) , 2187. https://doi.org/10.3390/nano10112187
    84. Luke R. McCourt, Michael G. Ruppert, Ben S. Routley, Sathish C. Indirathankam, Andrew F. Fleming. A comparison of gold and silver nanocones and geometry optimisation for tip‐enhanced microscopy. Journal of Raman Spectroscopy 2020, 51 (11) , 2208-2216. https://doi.org/10.1002/jrs.5987
    85. Joshua Christopher, Masoud Taleb, Achyut Maity, Mario Hentschel, Harald Giessen, Nahid Talebi. Electron-driven photon sources for correlative electron-photon spectroscopy with electron microscopes. Nanophotonics 2020, 9 (15) , 4381-4406. https://doi.org/10.1515/nanoph-2020-0263
    86. Kunyi Zhang, Andrew P. Lawson, Chase T. Ellis, Matthew S. Davis, Thomas E. Murphy, Hans A. Bechtel, Joseph G. Tischler, Oded Rabin. Plasmonic nanoarcs: a versatile platform with tunable localized surface plasmon resonances in octave intervals. Optics Express 2020, 28 (21) , 30889. https://doi.org/10.1364/OE.403728
    87. Nikolai G. Khlebtsov, Sergey V. Zarkov, Vitaly A. Khanadeev, Yuri A. Avetisyan. A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification. Nanoscale 2020, 12 (38) , 19963-19981. https://doi.org/10.1039/D0NR02531C
    88. Michal Horák, Tomáš Šikola. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy 2020, 216 , 113044. https://doi.org/10.1016/j.ultramic.2020.113044
    89. Lev Chuntonov, Igor V. Rubtsov. Surface-enhanced ultrafast two-dimensional vibrational spectroscopy with engineered plasmonic nano-antennas. The Journal of Chemical Physics 2020, 153 (5) https://doi.org/10.1063/5.0013956
    90. D. Bruce Burckel, Michael Goldflam, Katherine M. Musick, Paul J. Resnick, Gaspar Armelles, Michael B. Sinclair. Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films. Optics Express 2020, 28 (8) , 10836. https://doi.org/10.1364/OE.389077
    91. Ferenc Liebig, Radwan M. Sarhan, Matias Bargheer, Clemens N. Z. Schmitt, Armen H. Poghosyan, Aram A. Shahinyan, Joachim Koetz. Spiked gold nanotriangles: formation, characterization and applications in surface-enhanced Raman spectroscopy and plasmon-enhanced catalysis. RSC Advances 2020, 10 (14) , 8152-8160. https://doi.org/10.1039/D0RA00729C
    92. Amer Abu Arisheh, Said Mikki, Nihad Dib. A Subwavelength-Laser-Driven Transmitting Optical Nanoantenna for Wireless Communications. IEEE Journal on Multiscale and Multiphysics Computational Techniques 2020, 5 , 144-154. https://doi.org/10.1109/JMMCT.2020.2984933
    93. Tianan Yi, Wei Su, Zhen Geng. Third-Harmonic Generation From Double Nanohole Aperture in Gold Film. IEEE Photonics Technology Letters 2019, 31 (24) , 1936-1939. https://doi.org/10.1109/LPT.2019.2950233
    94. Mufasila M. Muhammed, Joicy John, Junais H. Mokkath. Electric field amplification of plasmon‐molecule hybrids revealed by first‐principles time dependent density functional theory calculations. International Journal of Quantum Chemistry 2019, 119 (23) https://doi.org/10.1002/qua.26021
    95. Sara Pourjamal, Mikko Kataja, Nicolò Maccaferri, Paolo Vavassori, Sebastiaan van Dijken. Tunable magnetoplasmonics in lattices of Ni/SiO2/Au dimers. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-46058-2
    96. Dou Zhang, Zhong-Jian Yang, Jun He. Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement*. Chinese Physics B 2019, 28 (10) , 107802. https://doi.org/10.1088/1674-1056/ab3f99
    97. Gaspar Armelles, Luca Bergamini, Nerea Zabala, María Ujué González, Fernando García, Raquel Alvaro, Javier Aizpurua, Alfonso Cebollada. Broad band infrared modulation using spintronic-plasmonic metasurfaces. Nanophotonics 2019, 8 (10) , 1847-1854. https://doi.org/10.1515/nanoph-2019-0183
    98. Emma Marlow, Antony Murphy, Robert Pollard, , . Investigating electromagnetic field enhancements from gold nanostructured arrays for plasmon enhanced fluorescence. 2019, 54. https://doi.org/10.1117/12.2528829
    99. Matias Ruiz, Ory Schnitzer. Slender-body theory for plasmonic resonance. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2019, 475 (2229) , 20190294. https://doi.org/10.1098/rspa.2019.0294
    100. Emilija Petronijevic, Marco Centini, Tiziana Cesca, Giovanni Mattei, Fabio Antonio Bovino, Concita Sibilia. Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO 2 phase change layers. Optics Express 2019, 27 (17) , 24260. https://doi.org/10.1364/OE.27.024260
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect