ACS Publications. Most Trusted. Most Cited. Most Read
Excited Excitonic States in Single-Walled Carbon Nanotubes
My Activity
    Letter

    Excited Excitonic States in Single-Walled Carbon Nanotubes
    Click to copy article linkArticle link copied!

    View Author Information
    Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
    * Corresponding author. E-mail: [email protected]
    Other Access Options

    Nano Letters

    Cite this: Nano Lett. 2008, 8, 7, 1890–1895
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl080518h
    Published May 28, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Polarized photoluminescence excitation spectroscopy on individual SWNTs reveals not only the longitudinal and transverse E11, E22, and E12 ground-state excitons but also excited excitonic states including the continuum. When heated, SWNTs are known to undergo a bandgap shift transition (BST), which effectively changes the nanotube dielectric environment. Here, we show that the entire spectrum of excitonic resonances blue shifts under this transition, with excited states showing larger shifts, approaching 100 meV for a 1 nm diameter nanotube. The excitonic binding energy, Coulomb self-energy correction, and dielectric shift under the BST are estimated. Analysis of this blue shift reveals the dominant effect of dielectric screening on SWNT excitonic states.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 75 publications.

    1. Paul Finnie, Jianying Ouyang, Jeffrey A. Fagan. Broadband Full-Spectrum Raman Excitation Mapping Reveals Intricate Optoelectronic–Vibrational Resonance Structure of Chirality-Pure Single-Walled Carbon Nanotubes. ACS Nano 2023, 17 (8) , 7285-7295. https://doi.org/10.1021/acsnano.2c10524
    2. Zhen Li, Keigo Otsuka, Daiki Yamashita, Daichi Kozawa, Yuichiro K. Kato. Quantum Emission Assisted by Energy Landscape Modification in Pentacene-Decorated Carbon Nanotubes. ACS Photonics 2021, 8 (8) , 2367-2374. https://doi.org/10.1021/acsphotonics.1c00539
    3. Cameron J. Shearer, LePing Yu, Adam J. Blanch, Ming Zheng, Gunther G. Andersson, Joe G. Shapter. Broadening of van Hove Singularities Measured by Photoemission Spectroscopy of Single- and Mixed-Chirality Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (43) , 26683-26694. https://doi.org/10.1021/acs.jpcc.9b07975
    4. Shunsuke Tanaka, Keigo Otsuka, Kensuke Kimura, Akihiro Ishii, Hiroshi Imada, Yousoo Kim, Yuichiro K. Kato. Organic Molecular Tuning of Many-Body Interaction Energies in Air-Suspended Carbon Nanotubes. The Journal of Physical Chemistry C 2019, 123 (9) , 5776-5781. https://doi.org/10.1021/acs.jpcc.8b12496
    5. Wei Li, Run Long, Zhufeng Hou, Jianfeng Tang, Oleg V. Prezhdo. Influence of Encapsulated Water on Luminescence Energy, Line Width, and Lifetime of Carbon Nanotubes: Time Domain Ab Initio Analysis. The Journal of Physical Chemistry Letters 2018, 9 (14) , 4006-4013. https://doi.org/10.1021/acs.jpclett.8b02049
    6. Takushi Uda, Akihiro Ishii, and Yuichiro K. Kato . Single Carbon Nanotubes as Ultrasmall All-Optical Memories. ACS Photonics 2018, 5 (2) , 559-565. https://doi.org/10.1021/acsphotonics.7b01104
    7. Klaus H. Eckstein, Holger Hartleb, Melanie M. Achsnich, Friedrich Schöppler, and Tobias Hertel . Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes. ACS Nano 2017, 11 (10) , 10401-10408. https://doi.org/10.1021/acsnano.7b05543
    8. Christoph Mann and Tobias Hertel . 13 nm Exciton Size in (6,5) Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry Letters 2016, 7 (12) , 2276-2280. https://doi.org/10.1021/acs.jpclett.6b00797
    9. T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato . Electric-Field Induced Activation of Dark Excitonic States in Carbon Nanotubes. Nano Letters 2016, 16 (4) , 2278-2282. https://doi.org/10.1021/acs.nanolett.5b04595
    10. Holger Hartleb, Florian Späth, and Tobias Hertel . Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes. ACS Nano 2015, 9 (10) , 10461-10470. https://doi.org/10.1021/acsnano.5b04707
    11. Paul Finnie, Jianfu Ding, Zhao Li, and Christopher T. Kingston . Assessment of the Metallicity of Single-Wall Carbon Nanotube Ensembles at High Purities. The Journal of Physical Chemistry C 2014, 118 (51) , 30127-30138. https://doi.org/10.1021/jp506945f
    12. Sofie Cambré, Silvia M. Santos, Wim Wenseleers, Ahmad R. T. Nugraha, Riichiro Saito, Laurent Cognet, and Brahim Lounis . Luminescence Properties of Individual Empty and Water-Filled Single-Walled Carbon Nanotubes. ACS Nano 2012, 6 (3) , 2649-2655. https://doi.org/10.1021/nn300035y
    13. Fabienne Dragin, Alain Pénicaud, Matteo Iurlo, Massimo Marcaccio, Francesco Paolucci, Eric Anglaret, and Richard Martel . Raman Doping Profiles of Polyelectrolyte SWNTs in Solution. ACS Nano 2011, 5 (12) , 9892-9897. https://doi.org/10.1021/nn203591j
    14. Tae-Gon Cha, Benjamin A. Baker, M. Dane Sauffer, Janette Salgado, David Jaroch, Jenna L. Rickus, D. Marshall Porterfield, and Jong Hyun Choi . Optical Nanosensor Architecture for Cell-Signaling Molecules Using DNA Aptamer-Coated Carbon Nanotubes. ACS Nano 2011, 5 (5) , 4236-4244. https://doi.org/10.1021/nn201323h
    15. Tammie R. Nelson, Vitaly V. Chaban, Victor V. Prezhdo, and Oleg V. Prezhdo . Vibrational Energy Transfer between Carbon Nanotubes and Nonaqueous Solvents: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2011, 115 (18) , 5260-5267. https://doi.org/10.1021/jp108776q
    16. Tobias Gokus, Laurent Cognet, Juan G. Duque, Matteo Pasquali, Achim Hartschuh and Brahim Lounis . Mono- and Biexponential Luminescence Decays of Individual Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2010, 114 (33) , 14025-14028. https://doi.org/10.1021/jp1049217
    17. Cary L. Pint, Ya-Qiong Xu, Sharief Moghazy, Tonya Cherukuri, Noe T. Alvarez, Erik H. Haroz, Salma Mahzooni, Stephen K. Doorn, Junichiro Kono, Matteo Pasquali and Robert H. Hauge . Dry Contact Transfer Printing of Aligned Carbon Nanotube Patterns and Characterization of Their Optical Properties for Diameter Distribution and Alignment. ACS Nano 2010, 4 (2) , 1131-1145. https://doi.org/10.1021/nn9013356
    18. Juan G. Duque, Matteo Pasquali, Laurent Cognet and Brahim Lounis . Environmental and Synthesis-Dependent Luminescence Properties of Individual Single-Walled Carbon Nanotubes. ACS Nano 2009, 3 (8) , 2153-2156. https://doi.org/10.1021/nn9003956
    19. Jacques Lefebvre and Paul Finnie . Photoluminescence and Förster Resonance Energy Transfer in Elemental Bundles of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2009, 113 (18) , 7536-7540. https://doi.org/10.1021/jp810892z
    20. Jack Deslippe, Mario Dipoppa, David Prendergast, Marcus V. O. Moutinho, Rodrigo B. Capaz and Steven G. Louie . Electron−Hole Interaction in Carbon Nanotubes: Novel Screening and Exciton Excitation Spectra. Nano Letters 2009, 9 (4) , 1330-1334. https://doi.org/10.1021/nl802957t
    21. Justin X. Wong, Jianying Ouyang, François Lapointe, Brendan Mirka, Paul Finnie. Automating Trace Detection and Chemical Purity Analysis of Carbon Nanotube Mixtures by Non-Negative Matrix Factorization of Spatial Raman Scattering Hyperspectra. Applied Spectroscopy Practica 2024, 2 (4) https://doi.org/10.1177/27551857241281755
    22. Daichi Kozawa, Shun Fujii, Yuichiro K. Kato. Intrinsic process for upconversion photoluminescence via K -momentum–phonon coupling in carbon nanotubes. Physical Review B 2024, 110 (15) https://doi.org/10.1103/PhysRevB.110.155418
    23. Wataru TERASHIMA, Yuichiro K. KATO. Optical coupling of individual air-suspended carbon nanotubes to silicon microcavities. Proceedings of the Japan Academy, Series B 2024, 100 (6) , 320-334. https://doi.org/10.2183/pjab.100.022
    24. N. Fang, Y. R. Chang, D. Yamashita, S. Fujii, M. Maruyama, Y. Gao, C. F. Fong, K. Otsuka, K. Nagashio, S. Okada, Y. K. Kato. Resonant exciton transfer in mixed-dimensional heterostructures for overcoming dimensional restrictions in optical processes. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43928-2
    25. Rui-Fang Xie, Jing-Bin Zhang, Yang Wu, Laicai Li, Xiang-Yang Liu, Ganglong Cui. Non-negligible roles of charge transfer excitons in ultrafast excitation energy transfer dynamics of a double-walled carbon nanotube. The Journal of Chemical Physics 2023, 158 (5) https://doi.org/10.1063/5.0134353
    26. H. Machiya, D. Yamashita, A. Ishii, Y. K. Kato. Evidence for near-unity radiative quantum efficiency of bright excitons in carbon nanotubes from the Purcell effect. Physical Review Research 2022, 4 (2) https://doi.org/10.1103/PhysRevResearch.4.L022011
    27. Yoshikazu Homma, Takumi Inaba, Shohei Chiashi. Suspended Carbon Nanotubes for Quantum Hybrid Electronics. 2022, 99-122. https://doi.org/10.1007/978-981-19-1201-6_6
    28. Sang-Hyun Oh, Hatice Altug, Xiaojia Jin, Tony Low, Steven J. Koester, Aleksandar P. Ivanov, Joshua B. Edel, Phaedon Avouris, Michael S. Strano. Nanophotonic biosensors harnessing van der Waals materials. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23564-4
    29. Kaihui Liu, Yuichiro K. Kato, Shigeo Maruyama. Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes. 2021, 135-163. https://doi.org/10.1007/978-3-030-71516-8_5
    30. Hisashi Sumikura, Hiroshi Takaki, Hideyuki Maki, Masaya Notomi. Strong exciton-phonon interaction assisting simultaneous enhancement of photoluminescence and Raman scattering from suspended carbon nanotubes. Physical Review B 2020, 102 (12) https://doi.org/10.1103/PhysRevB.102.125432
    31. Weiwei Zhang, Elena Duran-Valdeiglesias, Carlos Alonso-Ramos, Samuel Serna, Xavier Le Roux, Laurent Vivien, Eric Cassan. Integration of Semiconducting Carbon Nanotubes Within a Silicon Photonic Molecule. IEEE Photonics Journal 2020, 12 (1) , 1-8. https://doi.org/10.1109/JPHOT.2020.2964647
    32. A. Ishii, H. Machiya, Y. K. Kato. High Efficiency Dark-to-Bright Exciton Conversion in Carbon Nanotubes. Physical Review X 2019, 9 (4) https://doi.org/10.1103/PhysRevX.9.041048
    33. T. Uda, S. Tanaka, Y. K. Kato. Molecular screening effects on exciton-carrier interactions in suspended carbon nanotubes. Applied Physics Letters 2018, 113 (12) https://doi.org/10.1063/1.5046433
    34. Amanda R. Amori, Zhentao Hou, Todd D. Krauss. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics. Annual Review of Physical Chemistry 2018, 69 (1) , 81-99. https://doi.org/10.1146/annurev-physchem-050317-014241
    35. H. Machiya, T. Uda, A. Ishii, Y. K. Kato. Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes. Applied Physics Letters 2018, 112 (2) https://doi.org/10.1063/1.5008299
    36. Giancarlo Soavi, Francesco Scotognella, Guglielmo Lanzani, Giulio Cerullo. Ultrafast Photophysics of Single‐Walled Carbon Nanotubes. Advanced Optical Materials 2016, 4 (11) , 1670-1688. https://doi.org/10.1002/adom.201600361
    37. Shaghayegh Agah, Ming Zheng, Matteo Pasquali, Anatoly B Kolomeisky. DNA sequencing by nanopores: advances and challenges. Journal of Physics D: Applied Physics 2016, 49 (41) , 413001. https://doi.org/10.1088/0022-3727/49/41/413001
    38. Masahiro Ito, Hirofumi Yajima, Yoshikazu Homma. Strain effect of cellulose-wrapped single-walled carbon nanotubes measured by photoluminescence and Raman scattering spectroscopy. Japanese Journal of Applied Physics 2016, 55 (7) , 075101. https://doi.org/10.7567/JJAP.55.075101
    39. Pedro Miguel M. C. de Melo, Andrea Marini. Unified theory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz. Physical Review B 2016, 93 (15) https://doi.org/10.1103/PhysRevB.93.155102
    40. J. Deslippe, S.G. Louie, A.Z.M.S. Rahman. Ab Initio Theories of the Structural, Electronic, and Optical Properties of Semiconductors: Bulk Crystals to Nanostructures. 2016https://doi.org/10.1016/B978-0-12-803581-8.00764-5
    41. Thierry Barisien, Laurent Legrand, Zhao Mu, Sophie Hameau. Excitonic linewidth of organic quantum wires generated in reduced dimensionality matrices. Physical Chemistry Chemical Physics 2016, 18 (18) , 12928-12937. https://doi.org/10.1039/C6CP00629A
    42. M. Yoshida, A. Popert, Y. K. Kato. Gate-voltage induced trions in suspended carbon nanotubes. Physical Review B 2016, 93 (4) https://doi.org/10.1103/PhysRevB.93.041402
    43. Yuhei Miyauchi, Zhengyi Zhang, Mitsuhide Takekoshi, Yuh Tomio, Hidekatsu Suzuura, Vasili Perebeinos, Vikram V. Deshpande, Chenguang Lu, Stéphane Berciaud, Philip Kim, James Hone, Tony F. Heinz. Tunable electronic correlation effects in nanotube-light interactions. Physical Review B 2015, 92 (20) https://doi.org/10.1103/PhysRevB.92.205407
    44. Giancarlo Soavi, Francesco Scotognella, Daniele Viola, Timo Hefner, Tobias Hertel, Giulio Cerullo, Guglielmo Lanzani. High energetic excitons in carbon nanotubes directly probe charge-carriers. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep09681
    45. A. Ishii, M. Yoshida, Y. K. Kato. Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes. Physical Review B 2015, 91 (12) https://doi.org/10.1103/PhysRevB.91.125427
    46. M. Yoshida, Y. Kumamoto, A. Ishii, A. Yokoyama, Y. K. Kato. Stark effect of excitons in individual air-suspended carbon nanotubes. Applied Physics Letters 2014, 105 (16) https://doi.org/10.1063/1.4899127
    47. Fabien Vialla, Ermin Malic, Benjamin Langlois, Yannick Chassagneux, Carole Diederichs, Emmanuelle Deleporte, Philippe Roussignol, Jean-Sébastien Lauret, Christophe Voisin. Universal nonresonant absorption in carbon nanotubes. Physical Review B 2014, 90 (15) https://doi.org/10.1103/PhysRevB.90.155401
    48. Yee-fang Xiao, Mitchell D. Anderson, James M. Fraser. Photoluminescence saturation independent of excitation pathway in air-suspended single-walled carbon nanotubes. Physical Review B 2014, 89 (23) https://doi.org/10.1103/PhysRevB.89.235440
    49. Dominik Stich, Florian Späth, Hannes Kraus, Andreas Sperlich, Vladimir Dyakonov, Tobias Hertel. Triplet–triplet exciton dynamics in single-walled carbon nanotubes. Nature Photonics 2014, 8 (2) , 139-144. https://doi.org/10.1038/nphoton.2013.316
    50. M. Ito, T. Kobayashi, Y. Ito, T. Hayashida, D. Nii, K. Umemura, Y. Homma. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid. Applied Physics Letters 2014, 104 (4) https://doi.org/10.1063/1.4863272
    51. Shigeo Maruyama, Yuhei Miyauchi. Important Spectral and Polarized Properties of Semiconducting SWNT Photoluminescence. 2013, 1-21. https://doi.org/10.1201/b15490-2
    52. Jean-Christophe Blancon, Matthieu Paillet, Huy Nam Tran, Xuan Tinh Than, Samuel Aberra Guebrou, Anthony Ayari, Alfonso San Miguel, Ngoc-Minh Phan, Ahmed-Azmi Zahab, Jean-Louis Sauvajol, Natalia Del Fatti, Fabrice Vallée. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes. Nature Communications 2013, 4 (1) https://doi.org/10.1038/ncomms3542
    53. Eike Verdenhalven, Ermin Malić. Excitonic absorption intensity of semiconducting and metallic carbon nanotubes. Journal of Physics: Condensed Matter 2013, 25 (24) , 245302. https://doi.org/10.1088/0953-8984/25/24/245302
    54. Yoshio Kimoto, Makoto Okano, Yoshihiko Kanemitsu. Observation of excited-state excitons and band-gap renormalization in hole-doped carbon nanotubes using photoluminescence excitation spectroscopy. Physical Review B 2013, 87 (19) https://doi.org/10.1103/PhysRevB.87.195416
    55. B. Yuma, S. Berciaud, J. Besbas, J. Shaver, S. Santos, S. Ghosh, R. B. Weisman, L. Cognet, M. Gallart, M. Ziegler, B. Hönerlage, B. Lounis, P. Gilliot. Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes. Physical Review B 2013, 87 (20) https://doi.org/10.1103/PhysRevB.87.205412
    56. . References. 2013, 313-326. https://doi.org/10.1002/9783527658749.refs
    57. Y. Y. Xia, J. L. Mu, X. Leng, Y. C. Ma, M. W. Zhao, X. D. Liu, J. X. Fang. Theoretical investigation of quasiparticle band structures and optical spectra of large-diameter semiconducting single-walled carbon nanotubes. 2013, 64-67. https://doi.org/10.1109/NEMS.2013.6559683
    58. C. Roquelet, B. Langlois, F. Vialla, D. Garrot, J.S. Lauret, C. Voisin. Light harvesting with non covalent carbon nanotube/porphyrin compounds. Chemical Physics 2013, 413 , 45-54. https://doi.org/10.1016/j.chemphys.2012.09.004
    59. Yuhei Miyauchi. Photoluminescence studies on exciton photophysics in carbon nanotubes. Journal of Materials Chemistry C 2013, 1 (40) , 6499. https://doi.org/10.1039/c3tc00947e
    60. Yong-sheng Zhou, Ying-chun Zhu, Jing-jing Chen, Gao-hui Du, Bing-she Xu. In situ synthesis of cobalt sulfide nanostructure-filled carbon nanotubes and their luminescence property. Materials Letters 2012, 86 , 139-141. https://doi.org/10.1016/j.matlet.2012.07.045
    61. Makoto Okano, Yoshihiko Kanemitsu, Shaoqiang Chen, Toshimitsu Mochizuki, Masahiro Yoshita, Hidefumi Akiyama, Loren N. Pfeiffer, Ken W. West. Observation of high Rydberg states of one-dimensional excitons in GaAs quantum wires by magnetophotoluminescence excitation spectroscopy. Physical Review B 2012, 86 (8) https://doi.org/10.1103/PhysRevB.86.085312
    62. Christophe Voisin, Sébastien Berger, Stéphane Berciaud, Hugen Yan, Jean‐Sébastien Lauret, Guillaume Cassabois, Philippe Roussignol, James Hone, Tony F. Heinz. Excitonic signatures in the optical response of single‐wall carbon nanotubes. physica status solidi (b) 2012, 249 (5) , 900-906. https://doi.org/10.1002/pssb.201100085
    63. Nicolas Izard, Etienne Gaufrès, Said Kazaoui, Yoichi Murakami, Delphine Marris-Morini, Eric Cassan, Shigeo Maruyama, Laurent Vivien. Semiconducting carbon nanotubes exciton probed by electroabsorption spectroscopy. Physica E: Low-dimensional Systems and Nanostructures 2012, 44 (6) , 932-935. https://doi.org/10.1016/j.physe.2011.06.002
    64. N. Izard, E. Gaufrès, X. Le Roux, S. Kazaoui, Y. Murakami, D. Marris-Morini, E. Cassan, S. Maruyama, L. Vivien. Electroabsorption study of index-defined semiconducting carbon nanotubes. The European Physical Journal Applied Physics 2011, 55 (2) , 20401. https://doi.org/10.1051/epjap/2011110034
    65. J. Deslippe, S.G. Louie. Ab initio theories of the structural, electronic, and optical properties of semiconductors: Bulk crystals to nanostructures. 2011, 42-72. https://doi.org/10.1016/B978-0-323-96027-4.10002-6
    66. J. Deslippe, S.G. Louie. Ab initio Theories of the Structural, Electronic, and Optical Properties of Semiconductors: Bulk Crystals to Nanostructures. 2011, 42-76. https://doi.org/10.1016/B978-0-44-453153-7.00046-8
    67. Juergen Bartelmess, Christian Ehli, Juan-José Cid, Miguel García-Iglesias, Purificación Vázquez, Tomás Torres, Dirk M. Guldi. Tuning and optimizing the intrinsic interactions between phthalocyanine-based PPV oligomers and single-wall carbon nanotubes toward n-type/p-type. Chem. Sci. 2011, 2 (4) , 652-660. https://doi.org/10.1039/C0SC00364F
    68. Jessica Alfonsi, Guglielmo Lanzani, Moreno Meneghetti. Exact diagonalization of Hubbard models for the optical properties of single-wall carbon nanotubes. New Journal of Physics 2010, 12 (8) , 083009. https://doi.org/10.1088/1367-2630/12/8/083009
    69. Tobias Hertel. Photophysics. 2010, 77-101. https://doi.org/10.1002/9783527629930.ch4
    70. Larry Lüer, Guglielmo Lanzani, Jared Crochet, Tobias Hertel, Josh Holt, Z. Valy Vardeny. Ultrafast dynamics in metallic and semiconducting carbon nanotubes. Physical Review B 2009, 80 (20) https://doi.org/10.1103/PhysRevB.80.205411
    71. Tawfique Hasan, Zhipei Sun, Fengqiu Wang, Francesco Bonaccorso, Ping Heng Tan, Aleksey G. Rozhin, Andrea C. Ferrari. Nanotube–Polymer Composites for Ultrafast Photonics. Advanced Materials 2009, 21 (38-39) , 3874-3899. https://doi.org/10.1002/adma.200901122
    72. Yoshikazu Homma, Shohei Chiashi, Yoshihiro Kobayashi. Suspended single-wall carbon nanotubes: synthesis and optical properties. Reports on Progress in Physics 2009, 72 (6) , 066502. https://doi.org/10.1088/0034-4885/72/6/066502
    73. S. Berger, F. Iglesias, P. Bonnet, C. Voisin, G. Cassabois, J.-S. Lauret, C. Delalande, P. Roussignol. Optical properties of carbon nanotubes in a composite material: The role of dielectric screening and thermal expansion. Journal of Applied Physics 2009, 105 (9) https://doi.org/10.1063/1.3116723
    74. Jessica Alfonsi, Moreno Meneghetti. Small crystal approach for the electronic properties of double-wall carbon nanotubes. New Journal of Physics 2009, 11 (4) , 043002. https://doi.org/10.1088/1367-2630/11/4/043002
    75. P. Bonnet, J. P. Buisson, N. Nomède Martyr, H. Bizot, A. Buelon, O. Chauvet. Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex. Physical Chemistry Chemical Physics 2009, 11 (38) , 8626. https://doi.org/10.1039/b907948c

    Nano Letters

    Cite this: Nano Lett. 2008, 8, 7, 1890–1895
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl080518h
    Published May 28, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1476

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.