ACS Publications. Most Trusted. Most Cited. Most Read
Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes.
My Activity
    Letter

    Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes.
    Click to copy article linkArticle link copied!

    View Author Information
    Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
    Department of Electrical and Computer Engineering, University of Victoria, EOW 448, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
    § EECS Department, UC Berkeley, 253 Cory Hall MC No. 1770, Berkeley California 94720-1770, United States
    *E-mail: (A.W.B.) [email protected]; (S.C) [email protected]; (P.J.S.) [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2011, 11, 3, 1201–1207
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl104163m
    Published January 24, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have demonstrated hyperspectral tip-enhanced Raman imaging on dielectric substrates using linearly polarized light and nanofabricated coaxial antenna tips. A full Raman spectrum was acquired at each pixel of a 256 by 256 pixel contact-mode atomic force microscope image of carbon nanotubes grown on a fused silica microscope coverslip, allowing D and G mode intensity and D-mode peak shifts to be measured with ∼20 nm spatial resolution. Tip enhancement was sufficient to acquire useful Raman spectra in 50−100 ms. Coaxial scan probes combine the efficiency and enhanced, ultralocalized optical fields of plasmonically coupled antennae with the superior topographical imaging properties of sharp metal tips. The yield of the coaxial tip fabrication process is close to 100%, and the tips are sufficiently durable to support hours of contact-mode force microscope imaging. Our coaxial probes avoid the limitations associated with the “gap-mode” imaging geometry used in most tip-enhanced Raman studies to date, where a sharp metal tip is held ∼1 nm above a metallic substrate with the sample located in the gap.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental setup, resonance measurement of coaxial antennae, theoretical modeling, fabrication of coaxial antennae on SPM tip, topography-independent optical intensity variations, and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 106 publications.

    1. Ryo Kato, Shun Igarashi, Takayuki Umakoshi, Prabhat Verma. Tip-Enhanced Raman Spectroscopy of Multiwalled Carbon Nanotubes through D-Band Imaging: Implications for Nanoscale Analysis of Interwall Interactions. ACS Applied Nano Materials 2020, 3 (6) , 6001-6008. https://doi.org/10.1021/acsanm.0c01188
    2. Ruei-Han Jiang, Chi Chen, Ding-Zheng Lin, He-Chun Chou, Jen-You Chu, and Ta-Jen Yen . Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio. Nano Letters 2018, 18 (2) , 881-885. https://doi.org/10.1021/acs.nanolett.7b04142
    3. Andrea Jacassi, Francesco Tantussi, Michele Dipalo, Claudio Biagini, Nicolò Maccaferri, Angelo Bozzola, and Francesco De Angelis . Scanning Probe Photonic Nanojet Lithography. ACS Applied Materials & Interfaces 2017, 9 (37) , 32386-32393. https://doi.org/10.1021/acsami.7b10145
    4. Ivano Alessandri and John R. Lombardi . Enhanced Raman Scattering with Dielectrics. Chemical Reviews 2016, 116 (24) , 14921-14981. https://doi.org/10.1021/acs.chemrev.6b00365
    5. Thiago L. Vasconcelos, Bráulio S. Archanjo, Benjamin Fragneaud, Bruno S. Oliveira, Juha Riikonen, Changfeng Li, Douglas S. Ribeiro, Cassiano Rabelo, Wagner N. Rodrigues, Ado Jorio, Carlos A. Achete, and Luiz Gustavo Cançado . Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes. ACS Nano 2015, 9 (6) , 6297-6304. https://doi.org/10.1021/acsnano.5b01794
    6. Connor G. Bischak, Craig L. Hetherington, Zhe Wang, Jake T. Precht, David M. Kaz, Darrell G. Schlom, and Naomi S. Ginsberg . Cathodoluminescence-Activated Nanoimaging: Noninvasive Near-Field Optical Microscopy in an Electron Microscope. Nano Letters 2015, 15 (5) , 3383-3390. https://doi.org/10.1021/acs.nanolett.5b00716
    7. Wonseok Shin, Wenshan Cai, Peter B. Catrysse, Georgios Veronis, Mark L. Brongersma, and Shanhui Fan . Broadband Sharp 90-degree Bends and T-Splitters in Plasmonic Coaxial Waveguides. Nano Letters 2013, 13 (10) , 4753-4758. https://doi.org/10.1021/nl402335x
    8. E. Poliani, M. R. Wagner, J. S. Reparaz, M. Mandl, M. Strassburg, X. Kong, A. Trampert, C. M. Sotomayor Torres, A. Hoffmann, and J. Maultzsch . Nanoscale Imaging of InN Segregation and Polymorphism in Single Vertically Aligned InGaN/GaN Multi Quantum Well Nanorods by Tip-Enhanced Raman Scattering. Nano Letters 2013, 13 (7) , 3205-3212. https://doi.org/10.1021/nl401277y
    9. M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni . Reaching the Theoretical Resonance Quality Factor Limit in Coaxial Plasmonic Nanoresonators Fabricated by Helium Ion Lithography. Nano Letters 2013, 13 (6) , 2687-2691. https://doi.org/10.1021/nl400844a
    10. Vighter Iberi, Nasrin Mirsaleh-Kohan, and Jon P. Camden . Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations. The Journal of Physical Chemistry Letters 2013, 4 (7) , 1070-1078. https://doi.org/10.1021/jz302140h
    11. Florian Huth, Andrey Chuvilin, Martin Schnell, Iban Amenabar, Roman Krutokhvostov, Sergei Lopatin, and Rainer Hillenbrand . Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy. Nano Letters 2013, 13 (3) , 1065-1072. https://doi.org/10.1021/nl304289g
    12. Barmak Heshmat, Hamid Pahlevaninezhad, Yuanjie, Pang, Mostafa Masnadi-Shirazi, Ryan Burton Lewis, Thomas Tiedje, Reuven Gordon, and Thomas Edward Darcie . Nanoplasmonic Terahertz Photoconductive Switch on GaAs. Nano Letters 2012, 12 (12) , 6255-6259. https://doi.org/10.1021/nl303314a
    13. Aftab Ahmed and Reuven Gordon . Single Molecule Directivity Enhanced Raman Scattering using Nanoantennas. Nano Letters 2012, 12 (5) , 2625-2630. https://doi.org/10.1021/nl301029e
    14. Yuanjie Pang and Reuven Gordon . Optical Trapping of 12 nm Dielectric Spheres Using Double-Nanoholes in a Gold Film. Nano Letters 2011, 11 (9) , 3763-3767. https://doi.org/10.1021/nl201807z
    15. Johannes M. Stiegler, Yohannes Abate, Antonija Cvitkovic, Yaroslav E. Romanyuk, Andreas J. Huber, Stephen R. Leone, and Rainer Hillenbrand . Nanoscale Infrared Absorption Spectroscopy of Individual Nanoparticles Enabled by Scattering-Type Near-Field Microscopy. ACS Nano 2011, 5 (8) , 6494-6499. https://doi.org/10.1021/nn2017638
    16. Dasol Im, Zachary M. Faitz, Feng Jin, Joo Soo Kim, Erica Magee, Priyanthi Amarasinghe, Sudhir Trivedi, Martin T. Zanni. Achromatic correction for birefringent interferometers that improve Fourier transform spectrometers and hyperspectral imaging. Optics Express 2024, 32 (22) , 39446. https://doi.org/10.1364/OE.538565
    17. Zhen‐Feng Cai, Zi‐Xi Tang, Yao Zhang, Naresh Kumar. Mechanistic Understanding of Oxygen Activation on Bulk Au(111) Surface Using Tip‐Enhanced Raman Spectroscopy. Angewandte Chemie 2024, 136 (19) https://doi.org/10.1002/ange.202318682
    18. Zhen‐Feng Cai, Zi‐Xi Tang, Yao Zhang, Naresh Kumar. Mechanistic Understanding of Oxygen Activation on Bulk Au(111) Surface Using Tip‐Enhanced Raman Spectroscopy. Angewandte Chemie International Edition 2024, 63 (19) https://doi.org/10.1002/anie.202318682
    19. Junze Zhou, Edward Barnard, Stefano Cabrini, Keiko Munechika, Adam Schwartzberg, Alexander weber-bargioni. Integrating collapsible plasmonic gaps on near-field probes for polarization-resolved mapping of plasmon-enhanced emission in 2D material. Optics Express 2023, 31 (12) , 20440. https://doi.org/10.1364/OE.490112
    20. John C. Thomas, Antonio Rossi, Darian Smalley, Luca Francaviglia, Zhuohang Yu, Tianyi Zhang, Shalini Kumari, Joshua A. Robinson, Mauricio Terrones, Masahiro Ishigami, Eli Rotenberg, Edward S. Barnard, Archana Raja, Ed Wong, D. Frank Ogletree, Marcus M. Noack, Alexander Weber-Bargioni. Autonomous scanning probe microscopy investigations over WS2 and Au{111}. npj Computational Materials 2022, 8 (1) https://doi.org/10.1038/s41524-022-00777-9
    21. Kaiyuan Yao, Shuai Zhang, Emanuil Yanev, Kathleen McCreary, Hsun‐Jen Chuang, Matthew R. Rosenberger, Thomas Darlington, Andrey Krayev, Berend T. Jonker, James C. Hone, D.N. Basov, P. James Schuck. Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Exciton‐Enhanced Second Harmonic Generation. Advanced Optical Materials 2022, 10 (12) https://doi.org/10.1002/adom.202200085
    22. Samriti, Vishal Rajput, Raju Kumar Gupta, Jai Prakash. Engineering metal oxide semiconductor nanostructures for enhanced charge transfer: fundamentals and emerging SERS applications. Journal of Materials Chemistry C 2021, 10 (1) , 73-95. https://doi.org/10.1039/D1TC04886D
    23. Abid Anjum Sifat, Eric O. Potma. Optimizing the near‐field and far‐field properties of tips in tip‐enhanced Raman scattering. Journal of Raman Spectroscopy 2021, 52 (12) , 2018-2028. https://doi.org/10.1002/jrs.6113
    24. Chaohua Tan, Na Li, Datang Xu, Zhiming Chen. Spatial focusing of surface polaritons based on cross-phase modulation. Results in Physics 2021, 27 , 104531. https://doi.org/10.1016/j.rinp.2021.104531
    25. Qi Chu, Bingbing Han, Yang Jin, Shuang Guo, Sila Jin, Eungyeong Park, Lei Chen, Young Mee Jung. Surface plasmon resonance induced charge transfer effect on the Ag-ZnSe-PATP system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 248 , 119167. https://doi.org/10.1016/j.saa.2020.119167
    26. Márcia D.D. Costa, Luiz Gustavo Cançado, Ado Jorio. Event chronology analysis of the historical development of tip‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy 2021, 52 (3) , 587-599. https://doi.org/10.1002/jrs.6044
    27. Fanfan Lu, Wending Zhang, Min Liu, Lu Zhang, Ting Mei. Tip-Based Plasmonic Nanofocusing: Vector Field Engineering and Background Elimination. IEEE Journal of Selected Topics in Quantum Electronics 2021, 27 (1) , 1-12. https://doi.org/10.1109/JSTQE.2020.3017348
    28. Naresh Kumar, Sofia Marchesini, Thomas Howe, Lee Edwards, Barry Brennan, Andrew J. Pollard. Nanoscale characterization of plasma functionalized graphitic flakes using tip-enhanced Raman spectroscopy. The Journal of Chemical Physics 2020, 153 (18) https://doi.org/10.1063/5.0024370
    29. Yuan Fan, Dan Jin, Xiuju Wu, Hui Fang, Xiaocong Yuan. Facilitating Hotspot Alignment in Tip-Enhanced Raman Spectroscopy via the Silver Photoluminescence of the Probe. Sensors 2020, 20 (22) , 6687. https://doi.org/10.3390/s20226687
    30. Yitzi M. Calm, Luke D’Imperio, Nathan T. Nesbitt, Juan M. Merlo, Aaron H. Rose, Chaobin Yang, Krzysztof Kempa, Michael J. Burns, Michael J. Naughton. Optical confinement in the nanocoax: coupling to the fundamental TEM-like mode. Optics Express 2020, 28 (21) , 32152. https://doi.org/10.1364/OE.402723
    31. Shenghan Zhou, Ke Chen, Xiangdong Guo, Matthew Thomas Cole, Yu Wu, Zhenjun Li, Shunping Zhang, Chi Li, Qing Dai. Antenna-coupled vacuum channel nano-diode with high quantum efficiency. Nanoscale 2020, 12 (3) , 1495-1499. https://doi.org/10.1039/C9NR06109F
    32. Liming Zhu, Yiheng Yin, Lingling Dai, Yanhui Hu, Jiang Nan, Zhenyi Zheng, Chen Cai, Weisheng Zhao, Ming Ding. Round-tower plasmonic optical microfiber tip for nanofocusing with a high field enhancement. Optics Communications 2019, 453 , 124358. https://doi.org/10.1016/j.optcom.2019.124358
    33. Ning Ma, Xin-Yuan Zhang, Wenyue Fan, Shuang Guo, Yongjun Zhang, Yang Liu, Lei Chen, Young Mee Jung. SERS study of Ag/FeS/4-MBA interface based on the SPR effect. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 219 , 147-153. https://doi.org/10.1016/j.saa.2019.04.005
    34. Kang Li, Ji Xu, Sicheng Zhang, Xinyi Lu, Ning Liu, Yunqing Lu, Zhongcheng Liang. Ultrahigh field enhanced nanofocusing of radially polarized light by conical hybrid plasmonic probe with two low-index layers. Optical Engineering 2019, 58 (07) , 1. https://doi.org/10.1117/1.OE.58.7.077101
    35. Kirsty F. Gibson, Sergei G. Kazarian, Sergey S. Kharintsev. Tip‐Enhanced R aman Spectroscopy. 2019, 1-33. https://doi.org/10.1002/9780470027318.a9278.pub2
    36. Qiushi Liu, Sanggon Kim, Xuezhi Ma, Ning Yu, Yangzhi Zhu, Siyu Deng, Ruoxue Yan, Huijuan Zhao, Ming Liu. Ultra-sharp and surfactant-free silver nanowire for scanning tunneling microscopy and tip-enhanced Raman spectroscopy. Nanoscale 2019, 11 (16) , 7790-7797. https://doi.org/10.1039/C8NR08983C
    37. Xingchen Dong, Martin Jakobi, Shengjia Wang, Michael H. Köhler, Xiaoxing Zhang, Alexander W. Koch. A review of hyperspectral imaging for nanoscale materials research. Applied Spectroscopy Reviews 2019, 54 (4) , 285-305. https://doi.org/10.1080/05704928.2018.1463235
    38. Feng Shao, Renato Zenobi. Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Analytical and Bioanalytical Chemistry 2019, 411 (1) , 37-61. https://doi.org/10.1007/s00216-018-1392-0
    39. Amun Jarzembski, Cedric Shaskey, Keunhan Park. Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Frontiers in Energy 2018, 12 (1) , 43-71. https://doi.org/10.1007/s11708-018-0524-8
    40. Sébastien Bonhommeau, Sophie Lecomte. Tip‐Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules. ChemPhysChem 2018, 19 (1) , 8-18. https://doi.org/10.1002/cphc.201701067
    41. Thomas Dieing. Resolution and Performance of 3D Confocal Raman Imaging Systems. 2018, 121-153. https://doi.org/10.1007/978-3-319-75380-5_6
    42. Naresh Kumar, Weitao Su, Martin Veselý, Bert M. Weckhuysen, Andrew J. Pollard, Andrew J. Wain. Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy. Nanoscale 2018, 10 (4) , 1815-1824. https://doi.org/10.1039/C7NR08257F
    43. G. Kolhatkar, J. Plathier, A. Ruediger. Nanoscale investigation of materials, chemical reactions, and biological systems by tip enhanced Raman spectroscopy – a review. Journal of Materials Chemistry C 2018, 6 (6) , 1307-1319. https://doi.org/10.1039/C7TC05688E
    44. Xin Zhao, Weiwei Zhang, Chuchu Peng, Yujie Liang, Wenzhong Wang. Sensitive surface-enhanced Raman scattering of TiO2/Ag nanowires induced by photogenerated charge transfer. Journal of Colloid and Interface Science 2017, 507 , 370-377. https://doi.org/10.1016/j.jcis.2017.08.023
    45. Jyoti Boken, Parul Khurana, Sheenam Thatai, Dinesh Kumar, Surendra Prasad. Plasmonic nanoparticles and their analytical applications: A review. Applied Spectroscopy Reviews 2017, 52 (9) , 774-820. https://doi.org/10.1080/05704928.2017.1312427
    46. Xiang Wang, Sheng-Chao Huang, Teng-Xiang Huang, Hai-Sheng Su, Jin-Hui Zhong, Zhi-Cong Zeng, Mao-Hua Li, Bin Ren. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chemical Society Reviews 2017, 46 (13) , 4020-4041. https://doi.org/10.1039/C7CS00206H
    47. Mengkun Liu, Aaron J Sternbach, D N Basov. Nanoscale electrodynamics of strongly correlated quantum materials. Reports on Progress in Physics 2017, 80 (1) , 014501. https://doi.org/10.1088/0034-4885/80/1/014501
    48. Yasuhiko Fujita, Peter Walke, Steven De Feyter, Hiroshi Uji-i. Tip-enhanced Raman scattering microscopy: Recent advance in tip production. Japanese Journal of Applied Physics 2016, 55 (8S1) , 08NA02. https://doi.org/10.7567/JJAP.55.08NA02
    49. Andrea Jacassi, Angelo Bozzola, Pierfrancesco Zilio, Francesco Tantussi, Francesco De Angelis. 3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep28738
    50. Judith F. Specht, Marten Richter. Reconstruction of exciton wave functions of coupled quantum emitters including spin with ultrafast spectroscopy using localized nanooptical fields. Applied Physics B 2016, 122 (4) https://doi.org/10.1007/s00340-016-6368-1
    51. P. James Schuck, Wei Bao, Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Frontiers of Physics 2016, 11 (2) https://doi.org/10.1007/s11467-015-0526-5
    52. Yu Liu, Dejiao Hu, Lin Pang, Fuhua Gao, Zhiyou Zhang, Jinglei Du. Optoplasmonic probe to realize scanning near-field Raman microscopy. Optics Express 2016, 24 (5) , 5243. https://doi.org/10.1364/OE.24.005243
    53. Amirreza Mahigir, Pouya Dastmalchi, Georgios Veronis, Wonseok Shin, Peter B. Catrysse, Mark L. Brongersma, Shanhui Fan, Wenshan Cai. Subwavelength Plasmonic Two‐Conductor Waveguides. 2016, 1-15. https://doi.org/10.1002/047134608X.W8292
    54. Naresh Kumar, Sandro Mignuzzi, Weitao Su, Debdulal Roy. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation 2015, 2 (1) https://doi.org/10.1140/epjti/s40485-015-0019-5
    55. Yuanyuan Chen, Abhay Kotnala, Li Yu, Jiasen Zhang, Reuven Gordon. Wedge and gap plasmonic resonances in double nanoholes. Optics Express 2015, 23 (23) , 30227. https://doi.org/10.1364/OE.23.030227
    56. Teng-Xiang Huang, Sheng-Chao Huang, Mao-Hua Li, Zhi-Cong Zeng, Xiang Wang, Bin Ren. Tip-enhanced Raman spectroscopy: tip-related issues. Analytical and Bioanalytical Chemistry 2015, 407 (27) , 8177-8195. https://doi.org/10.1007/s00216-015-8968-8
    57. Makoto Tsubokawa, Deqing Kong. A near-field light probe with an optical slot-waveguide structure. Optics Express 2015, 23 (3) , 1981. https://doi.org/10.1364/OE.23.001981
    58. Binod Rizal, Juan M. Merlo, Michael J. Burns, Thomas C. Chiles, Michael J. Naughton. Nanocoaxes for optical and electronic devices. The Analyst 2015, 140 (1) , 39-58. https://doi.org/10.1039/C4AN01447B
    59. K. Masenelli‐Varlot, C. Gauthier, L. Chazeau, F. Dalmas, T. Epicier, J.Y. Cavaillé. Advanced Microscopy Techniques for a Better Understanding of the Polymer/Nanotube Composite Properties. 2014, 365-404. https://doi.org/10.1002/9781118945964.ch10
    60. Kirsty F. Gibson, Sergei G. Kazarian. Tip‐enhanced R aman Spectroscopy. 2014, 1-30. https://doi.org/10.1002/9780470027318.a9278
    61. Aleksandr Polyakov, Mauro Melli, Giuseppe Cantarella, Adam Schwartzberg, Alexander Weber-Bargioni, P James Schuck, Stefano Cabrini. Coupling model for an extended-range plasmonic optical transformer scanning probe. Light: Science & Applications 2014, 3 (8) , e195-e195. https://doi.org/10.1038/lsa.2014.76
    62. Nina Mauser, Achim Hartschuh. Tip-enhanced near-field optical microscopy. Chem. Soc. Rev. 2014, 43 (4) , 1248-1262. https://doi.org/10.1039/C3CS60258C
    63. Yasuhiko Fujita, Rie Chiba, Gang Lu, Noriko N. Horimoto, Shinji Kajimoto, Hiroshi Fukumura, Hiroshi Uji-i. A silver nanowire-based tip suitable for STM tip-enhanced Raman scattering. Chem. Commun. 2014, 50 (69) , 9839-9841. https://doi.org/10.1039/C4CC02750G
    64. Nathan C. Lindquist, Timothy W. Johnson, Prashant Nagpal, David J. Norris, Sang-Hyun Oh. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01857
    65. Hao Jiang, Reuven Gordon. Nonlinear Plasmonics: Four-photon Near-field Photolithography using Optical Antennas. Plasmonics 2013, 8 (4) , 1655-1665. https://doi.org/10.1007/s11468-013-9584-0
    66. Barmak Heshmat, Mostafa Masnadi‐Shirazi, Ryan Burton Lewis, Jinye Zhang, Thomas Tiedje, Reuven Gordon, Thomas Edward Darcie. Enhanced Terahertz Bandwidth and Power from GaAsBi‐based Sources. Advanced Optical Materials 2013, 1 (10) , 714-719. https://doi.org/10.1002/adom.201300190
    67. Terefe G. Habteyes, Scott Dhuey, Karissa I. Kiesow, Alexander Vold. Probe-sample optical interaction: size and wavelength dependence in localized plasmon near-field imaging. Optics Express 2013, 21 (18) , 21607. https://doi.org/10.1364/OE.21.021607
    68. Marten Richter. Spatially localized spectroscopy for examining the internal structure of coupled nanostructures. physica status solidi (b) 2013, 250 (9) , 1760-1767. https://doi.org/10.1002/pssb.201200699
    69. Nathan C. Lindquist, Jincy Jose, Sudhir Cherukulappurath, Xiaoshu Chen, Timothy W. Johnson, Sang-Hyun Oh. Tip-based plasmonics: squeezing light with metallic nanoprobes. Laser & Photonics Reviews 2013, 7 (4) , 453-477. https://doi.org/10.1002/lpor.201209044
    70. A E Krasnok, I S Maksymov, A I Denisyuk, P A Belov, A E Miroshnichenko, C R Simovski, Yu S Kivshar. Optical nanoantennas. Physics-Uspekhi 2013, 56 (6) , 539-564. https://doi.org/10.3367/UFNe.0183.201306a.0561
    71. Thomas Schmid, Lothar Opilik, Carolin Blum, Renato Zenobi. Nanoscale Chemical Imaging Using Tip‐Enhanced Raman Spectroscopy: A Critical Review. Angewandte Chemie International Edition 2013, 52 (23) , 5940-5954. https://doi.org/10.1002/anie.201203849
    72. Thomas Schmid, Lothar Opilik, Carolin Blum, Renato Zenobi. Chemische Bildgebung auf der Nanometerskala mittels spitzenverstärkter Raman‐Spektroskopie. Angewandte Chemie 2013, 125 (23) , 6054-6070. https://doi.org/10.1002/ange.201203849
    73. Withawat Withayachumnankul, Charan Manish Shah, Christophe Fumeaux, Korbinian Kaltenecker, Markus Walther, Bernd M. Fischer, Derek Abbott, Madhu Bhaskaran, Sharath Sriram. Terahertz Localized Surface Plasmon Resonances in Coaxial Microcavities. Advanced Optical Materials 2013, 1 (6) , 443-448. https://doi.org/10.1002/adom.201300021
    74. P. James Schuck, Alexander Weber‐Bargioni, Paul D. Ashby, D. Frank Ogletree, Adam Schwartzberg, Stefano Cabrini. Life Beyond Diffraction: Opening New Routes to Materials Characterization with Next‐Generation Optical Near‐Field Approaches. Advanced Functional Materials 2013, 23 (20) , 2539-2553. https://doi.org/10.1002/adfm.201203432
    75. Solji Kim, Lilin Piao, Donghoon Han, Beom Jin Kim, Taek Dong Chung. Surface Enhanced Raman Scattering on Non‐SERS Active Substrates and In Situ Electrochemical Study based on a Single Gold Microshell. Advanced Materials 2013, 25 (14) , 2056-2061. https://doi.org/10.1002/adma.201203187
    76. Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, P. James Schuck. Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips. Optics Express 2013, 21 (7) , 8166. https://doi.org/10.1364/OE.21.008166
    77. Felix Schlosser, Andreas Knorr, Shaul Mukamel, Marten Richter. Using localized double-quantum-coherence spectroscopy to reconstruct the two-exciton wave function of coupled quantum emitters. New Journal of Physics 2013, 15 (2) , 025004. https://doi.org/10.1088/1367-2630/15/2/025004
    78. Jinhui Tao. FTIR and Raman Studies of Structure and Bonding in Mineral and Organic–Mineral Composites. 2013, 533-556. https://doi.org/10.1016/B978-0-12-416617-2.00022-9
    79. Aleksandr E. Krasnok, I.S. Maksymov, A.I. Denisyuk, P.A. Belov, A.E. Miroshnichenko, C.R. Simovskii, Yu.S. Kivshar. Optical nanoantennas. Uspekhi Fizicheskih Nauk 2013, 183 (6) , 561-589. https://doi.org/10.3367/UFNr.0183.201306a.0561
    80. Mahmoud Z. Iskandarani. Application of Neural Networks to Matlab Analyzed Hyperspectral Images for Characterization of Composite Structures. Journal of Intelligent Learning Systems and Applications 2013, 05 (03) , 143-151. https://doi.org/10.4236/jilsa.2013.53016
    81. Francesco De Angelis, Remo Proietti Zaccaria, Enzo Di Fabrizio. Mapping the local dielectric response at the nanoscale by means of plasmonic force spectroscopy. Optics Express 2012, 20 (28) , 29626. https://doi.org/10.1364/OE.20.029626
    82. Ana Zehtabi-Oskuie, Jarrah Gerald Bergeron, Reuven Gordon. Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres. Scientific Reports 2012, 2 (1) https://doi.org/10.1038/srep00966
    83. Wei Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni. Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging. Science 2012, 338 (6112) , 1317-1321. https://doi.org/10.1126/science.1227977
    84. Joanna M. Atkin, Samuel Berweger, Andrew C. Jones, Markus B. Raschke. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Advances in Physics 2012, 61 (6) , 745-842. https://doi.org/10.1080/00018732.2012.737982
    85. M. Moretti, C. Canale, C. Canale, M. Francardi, S. Dante, F. De Angelis, E. Di Fabrizio. AFM characterization of biomolecules in physiological environment by an advanced nanofabricated probe. Microscopy Research and Technique 2012, 75 (12) , 1723-1731. https://doi.org/10.1002/jemt.22122
    86. Aitzol García-Etxarri, Peter Apell, Mikael Käll, Javier Aizpurua. A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone. Optics Express 2012, 20 (23) , 25201. https://doi.org/10.1364/OE.20.025201
    87. G. Simone, G. Perozziello, E. Battista, F. De Angelis, P. Candeloro, F. Gentile, N. Malara, A. Manz, E. Carbone, P. Netti, E. Di Fabrizio. Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system. Microelectronic Engineering 2012, 98 , 668-671. https://doi.org/10.1016/j.mee.2012.07.008
    88. Gerardo Perozziello, Jacob Møllenbach, Steen Laursen, Enzo Di Fabrizio, Krist Gernaey, Ulrich Krühne. Lab on a chip automates in vitro cell culturing. Microelectronic Engineering 2012, 98 , 655-658. https://doi.org/10.1016/j.mee.2012.07.027
    89. S. Mastel, S. E. Grefe, G. B. Cross, A. Taber, S. Dhuey, S. Cabrini, P. J. Schuck, Y. Abate. Real-space mapping of nanoplasmonic hotspots via optical antenna-gap loading. Applied Physics Letters 2012, 101 (13) https://doi.org/10.1063/1.4754534
    90. Kyoung-Duck Park, Seung Gol Lee, Chaejeong Heo, Young Hee Lee, Mun Seok Jeong. Sensitivity maximized near-field scanning optical microscope with dithering sample stage. Review of Scientific Instruments 2012, 83 (9) https://doi.org/10.1063/1.4754290
    91. Pavel N. Melentiev, Tatyana V. Konstantinova, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin, Victor I. Balykin. Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source. Optics Express 2012, 20 (17) , 19474. https://doi.org/10.1364/OE.20.019474
    92. Marten Richter, Felix Schlosser, Mario Schoth, Sven Burger, Frank Schmidt, Andreas Knorr, Shaul Mukamel. Reconstruction of the wave functions of coupled nanoscopic emitters using a coherent optical technique. Physical Review B 2012, 86 (8) https://doi.org/10.1103/PhysRevB.86.085308
    93. Filippo Alpeggiani, Stefania D'Agostino, Lucio Claudio Andreani. Surface plasmons and strong light-matter coupling in metallic nanoshells. Physical Review B 2012, 86 (3) https://doi.org/10.1103/PhysRevB.86.035421
    94. Franz J. Schmied, Christian Teichert, Lisbeth Kappel, Ulrich Hirn, Robert Schennach. Analysis of precipitated lignin on kraft pulp fibers using atomic force microscopy. Cellulose 2012, 19 (3) , 1013-1021. https://doi.org/10.1007/s10570-012-9667-7
    95. Chan-Gyu Park, Ju-Young Kim, Eun-Byoul Lee, Han-Kyu Choi, Won-Hwa Park, Jin-Wook Kim, Zee-Hwan Kim. Tip-Enhanced Raman Scattering with a Nanoparticle-Functionalized Probe. Bulletin of the Korean Chemical Society 2012, 33 (5) , 1748-1752. https://doi.org/10.5012/bkcs.2012.33.5.1748
    96. Yan Wang, Amr S. Helmy, George V. Eleftheriades. Enabling two-dimensional optical subdiffraction imaging at an extended working distance: a planar antenna-array approach. Journal of the Optical Society of America B 2012, 29 (5) , 1119. https://doi.org/10.1364/JOSAB.29.001119
    97. Nathan C Lindquist, Prashant Nagpal, Kevin M McPeak, David J Norris, Sang-Hyun Oh. Engineering metallic nanostructures for plasmonics and nanophotonics. Reports on Progress in Physics 2012, 75 (3) , 036501. https://doi.org/10.1088/0034-4885/75/3/036501
    98. Beom Jin Kim, Do‐Joong Lee, Yang‐Rae Kim, Sung Yul Lim, Je Hyun Bae, Ki‐Bum Kim, Taek Dong Chung. Gold Microshell Tip for In Situ Electrochemical Raman Spectroscopy. Advanced Materials 2012, 24 (3) , 421-424. https://doi.org/10.1002/adma.201103644
    99. Johannes Stadler, Thomas Schmid, Renato Zenobi. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale 2012, 4 (6) , 1856-1870. https://doi.org/10.1039/C1NR11143D
    100. Amr A. E. Saleh, Jennifer A. Dionne. Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices. Physical Review B 2012, 85 (4) https://doi.org/10.1103/PhysRevB.85.045407
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2011, 11, 3, 1201–1207
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl104163m
    Published January 24, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3004

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.