ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Chemical Alignment of DNA Origami to Block Copolymer Patterned Arrays of 5 nm Gold Nanoparticles

View Author Information
Department of Physics and Astronomy, Department of Chemistry and Biochemistry, and §Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
*E-mail: [email protected]; Telephone: (801) 422-3238; Fax: (801) 422-0553.
Cite this: Nano Lett. 2011, 11, 5, 1981–1987
Publication Date (Web):April 7, 2011
https://doi.org/10.1021/nl200306w
Copyright © 2011 American Chemical Society

    Article Views

    2757

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We have used block copolymer patterned arrays of 5 nm gold nanoparticles (AuNPs) for chemically aligned surface attachment of DNA origami. Addition of single-stranded DNA-thiol to AuNPs allowed a base paired attachment of sticky end modified DNA origami. Results indicate a stable, selective attachment between the DNA origami and ssDNA modified AuNPs. Yield data showed 74% of AuNP binding sites forming an attachment with a DNA origami rectangle, and control surfaces showed less than 0.5% nonspecific adsorption.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details on scaffold and staple strand sequences, experimental procedures, random attachment simulations, and additional AFM data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 39 publications.

    1. Md. Maksudur Rahman, Chloe L. Tolbert, Partha Saha, Jeffrey M. Halpern, Caleb M. Hill. On-Demand Electrochemical Fabrication of Ordered Nanoparticle Arrays using Scanning Electrochemical Cell Microscopy. ACS Nano 2022, 16 (12) , 21275-21282. https://doi.org/10.1021/acsnano.2c09336
    2. Charlotte Kielar, Saminathan Ramakrishnan, Sebastian Fricke, Guido Grundmeier, Adrian Keller. Dynamics of DNA Origami Lattice Formation at Solid–Liquid Interfaces. ACS Applied Materials & Interfaces 2018, 10 (51) , 44844-44853. https://doi.org/10.1021/acsami.8b16047
    3. Katharina Brassat, Saminathan Ramakrishnan, Julius Bürger, Marcel Hanke, Mahnaz Doostdar, Jörg K. N. Lindner, Guido Grundmeier, Adrian Keller. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays. Langmuir 2018, 34 (49) , 14757-14765. https://doi.org/10.1021/acs.langmuir.8b00793
    4. Avichai Marcovici, Guillaume Le Saux, Viraj Bhingardive, Pazit Rukenstein, Kobi Flomin, Karam Shreteh, Roxana Golan, Taleb Mokari, Mark Schvartzman. Directed Assembly of Au-Tipped 1D Inorganic Nanostructures via Nanolithographic Docking. ACS Nano 2018, 12 (10) , 10016-10023. https://doi.org/10.1021/acsnano.8b04443
    5. Fan Hong, Fei Zhang, Yan Liu, and Hao Yan . DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews 2017, 117 (20) , 12584-12640. https://doi.org/10.1021/acs.chemrev.6b00825
    6. Amir Barati Farimani, Payam Dibaeinia, and Narayana R. Aluru . DNA Origami–Graphene Hybrid Nanopore for DNA Detection. ACS Applied Materials & Interfaces 2017, 9 (1) , 92-100. https://doi.org/10.1021/acsami.6b11001
    7. Haogang Cai, Haguy Wolfenson, David Depoil, Michael L. Dustin, Michael P. Sheetz, and Shalom J. Wind . Molecular Occupancy of Nanodot Arrays. ACS Nano 2016, 10 (4) , 4173-4183. https://doi.org/10.1021/acsnano.5b07425
    8. Bezu Teschome, Stefan Facsko, Kurt V. Gothelf, and Adrian Keller . Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing. Langmuir 2015, 31 (46) , 12823-12829. https://doi.org/10.1021/acs.langmuir.5b02569
    9. Andreas Kopielski, Andrea Csaki, and Wolfgang Fritzsche . Surface Mobility and Ordered Rearrangement of Immobilized DNA Origami. Langmuir 2015, 31 (44) , 12106-12110. https://doi.org/10.1021/acs.langmuir.5b03137
    10. Ashwin Gopinath and Paul W. K. Rothemund . Optimized Assembly and Covalent Coupling of Single-Molecule DNA Origami Nanoarrays. ACS Nano 2014, 8 (12) , 12030-12040. https://doi.org/10.1021/nn506014s
    11. Anthony C. Pearson, Matthew R. Linford, John N. Harb, and Robert C. Davis . Dual Patterning of a Poly(acrylic acid) Layer by Electron-Beam and Block Copolymer Lithographies. Langmuir 2013, 29 (24) , 7433-7438. https://doi.org/10.1021/la304486x
    12. Stefan Howorka . DNA Nanoarchitectonics: Assembled DNA at Interfaces. Langmuir 2013, 29 (24) , 7344-7353. https://doi.org/10.1021/la3045785
    13. Subhadeep Roy, Magdalena Olesiak, Shiying Shang, and Marvin H. Caruthers . Silver Nanoassemblies Constructed from Boranephosphonate DNA. Journal of the American Chemical Society 2013, 135 (16) , 6234-6241. https://doi.org/10.1021/ja400898s
    14. Anthony C. Pearson, Jianfei Liu, Elisabeth Pound, Bibek Uprety, Adam T. Woolley, Robert C. Davis, and John N. Harb . DNA Origami Metallized Site Specifically to Form Electrically Conductive Nanowires. The Journal of Physical Chemistry B 2012, 116 (35) , 10551-10560. https://doi.org/10.1021/jp302316p
    15. M. Serdar Onses, Piyush Pathak, Chi-Chun Liu, Franco Cerrina, and Paul F. Nealey . Localization of Multiple DNA Sequences on Nanopatterns. ACS Nano 2011, 5 (10) , 7899-7909. https://doi.org/10.1021/nn2021277
    16. YongDeok Cho, Sung Hun Park, Ji-Hyeok Huh, Ashwin Gopinath, Seungwoo Lee. DNA as grabbers and steerers of quantum emitters. Nanophotonics 2023, 12 (3) , 399-412. https://doi.org/10.1515/nanoph-2022-0602
    17. Dulashani R. Ranasinghe, Gregory Doerk, Basu R. Aryal, Chao Pang, Robert C. Davis, John N. Harb, Adam T. Woolley. Block copolymer self-assembly to pattern gold nanodots for site-specific placement of DNA origami and attachment of nanomaterials. Nanoscale 2023, 15 (5) , 2188-2196. https://doi.org/10.1039/D2NR05045E
    18. Jonathan Marrs, Qinyi Lu, Victor Pan, Yonggang Ke, Joshua Hihath. Structure‐Dependent Electrical Conductance of DNA Origami Nanowires. ChemBioChem 2023, 24 (2) https://doi.org/10.1002/cbic.202200454
    19. Chao Pang, Basu R. Aryal, Dulashani R. Ranasinghe, Tyler R. Westover, Asami E. F. Ehlert, John N. Harb, Robert C. Davis, Adam T. Woolley. Bottom-Up Fabrication of DNA-Templated Electronic Nanomaterials and Their Characterization. Nanomaterials 2021, 11 (7) , 1655. https://doi.org/10.3390/nano11071655
    20. Yang Xin, Boxuan Shen, Mauri A. Kostiainen, Guido Grundmeier, Mario Castro, Veikko Linko, Adrian Keller. Scaling Up DNA Origami Lattice Assembly. Chemistry – A European Journal 2021, 27 (33) , 8564-8571. https://doi.org/10.1002/chem.202100784
    21. Ashwin Gopinath, Chris Thachuk, Anya Mitskovets, Harry A. Atwater, David Kirkpatrick, Paul W. K. Rothemund. Absolute and arbitrary orientation of single-molecule shapes. Science 2021, 371 (6531) https://doi.org/10.1126/science.abd6179
    22. Heyou Zhang, Calum Kinnear, Paul Mulvaney. Fabrication of Single‐Nanocrystal Arrays. Advanced Materials 2020, 32 (18) https://doi.org/10.1002/adma.201904551
    23. Hebing Hu, Shancheng Wang, Xueling Feng, Matthias Pauly, Gero Decher, Yi Long. In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications. Chemical Society Reviews 2020, 49 (2) , 509-553. https://doi.org/10.1039/C9CS00382G
    24. Nancy Tepale, Víctor V. A. Fernández-Escamilla, Clara Carreon-Alvarez, Valeria J. González-Coronel, Adan Luna-Flores, Alejandra Carreon-Alvarez, Jacobo Aguilar. Nanoengineering of Gold Nanoparticles: Green Synthesis, Characterization, and Applications. Crystals 2019, 9 (12) , 612. https://doi.org/10.3390/cryst9120612
    25. Veikko Linko, Boxuan Shen, Kosti Tapio, J. Jussi Toppari, Mauri A. Kostiainen, Sampo Tuukkanen. One-step large-scale deposition of salt-free DNA origami nanostructures. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep15634
    26. Alessandro Angelin, Simone Weigel, Ruben Garrecht, Rebecca Meyer, Jens Bauer, Ravi Kapoor Kumar, Michael Hirtz, Christof M. Niemeyer. Multiscale Origami Structures as Interface for Cells. Angewandte Chemie 2015, 127 (52) , 16039-16043. https://doi.org/10.1002/ange.201509772
    27. Alessandro Angelin, Simone Weigel, Ruben Garrecht, Rebecca Meyer, Jens Bauer, Ravi Kapoor Kumar, Michael Hirtz, Christof M. Niemeyer. Multiscale Origami Structures as Interface for Cells. Angewandte Chemie International Edition 2015, 54 (52) , 15813-15817. https://doi.org/10.1002/anie.201509772
    28. Elisabeth P. Gates, Andrew M. Dearden, Adam T. Woolley. DNA‐templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Critical Reviews in Analytical Chemistry 2014, 44 (4) , 354-370. https://doi.org/10.1080/10408347.2014.910636
    29. Bezuayehu Teshome, Stefan Facsko, Adrian Keller. Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces. Nanoscale 2014, 6 (3) , 1790-1796. https://doi.org/10.1039/C3NR04627C
    30. Lianchen Shan, Sathya Punniyakoti, Margriet J. Van Bael, Kristiaan Temst, Marlies K. Van Bael, Xiaoxing Ke, Sara Bals, Gustaaf Van Tendeloo, Marc D'Olieslaeger, Patrick Wagner, Ken Haenen, Hans-Gerd Boyen. Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts: a facile way to large-scale ordered arrays of transition-metal nanoparticles. J. Mater. Chem. C 2014, 2 (4) , 701-707. https://doi.org/10.1039/C3TC31333F
    31. Xiaowen Wang, Rüdiger Berger, Jagoba Iturri Ramos, Tao Wang, Kaloian Koynov, Guangming Liu, Hans-Jürgen Butt, Si Wu. Nanopatterns of polymer brushes for understanding protein adsorption on the nanoscale. RSC Adv. 2014, 4 (85) , 45059-45064. https://doi.org/10.1039/C4RA07623K
    32. Xiaoning Zhang, Masudur Rahman, David Neff, Michael Louis Norton. DNA origami deposition on native and passivated molybdenum disulfide substrates. Beilstein Journal of Nanotechnology 2014, 5 , 501-506. https://doi.org/10.3762/bjnano.5.58
    33. Jorge Trasobares, François Vaurette, Marc François, Hans Romijn, Jean-Louis Codron, Dominique Vuillaume, Didier Théron, Nicolas Clément. High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology. Beilstein Journal of Nanotechnology 2014, 5 , 1918-1925. https://doi.org/10.3762/bjnano.5.202
    34. Anitha Ethirajan, Sathya Punniyakoti, Marc D'Olieslaeger, Patrick Wagner, Hans‐Gerd Boyen. Ultrafast Self‐Assembly Using Ultrasound: A Facile Route to the Rapid Fabrication of Well‐Ordered Dense Arrays of Inorganic Nanostructures. Angewandte Chemie International Edition 2013, 52 (37) , 9709-9713. https://doi.org/10.1002/anie.201301980
    35. Anitha Ethirajan, Sathya Punniyakoti, Marc D'Olieslaeger, Patrick Wagner, Hans‐Gerd Boyen. Ultrafast Self‐Assembly Using Ultrasound: A Facile Route to the Rapid Fabrication of Well‐Ordered Dense Arrays of Inorganic Nanostructures. Angewandte Chemie 2013, 125 (37) , 9891-9895. https://doi.org/10.1002/ange.201301980
    36. Risheng Wang, Matteo Palma, Erika Penzo, Shalom J. Wind. Lithographically directed assembly of one-dimensional DNA nanostructures via bivalent binding interactions. Nano Research 2013, 6 (6) , 409-417. https://doi.org/10.1007/s12274-013-0318-6
    37. Huajie Liu, Chunhai Fan. DNA Origami Nanostructures. 2013, 207-224. https://doi.org/10.1007/978-3-642-36077-0_10
    38. Lingxing Zeng, Qunfang Li, Dianping Tang, Guonan Chen, Mingdeng Wei. Metal platinum-wrapped mesoporous carbon for sensitive electrochemical immunosensing based on cyclodextrin functionalized graphene nanosheets. Electrochimica Acta 2012, 68 , 158-165. https://doi.org/10.1016/j.electacta.2012.02.045
    39. Abhijit Biswas, Ilker S. Bayer, Alexandru S. Biris, Tao Wang, Enkeleda Dervishi, Franz Faupel. Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science 2012, 170 (1-2) , 2-27. https://doi.org/10.1016/j.cis.2011.11.001

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect