Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence

View Author Information
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
Cite this: Nano Lett. 2011, 11, 10, 4265–4269
Publication Date (Web):August 31, 2011
https://doi.org/10.1021/nl202256k
Copyright © 2011 American Chemical Society

    Article Views

    1460

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We perform spectrally resolved cathodoluminescence (CL) imaging nanoscopy using a 30 keV electron beam to identify the resonant modes of an ultrathin (20 nm), laterally tapered plasmonic Ag nanostrip antenna. We resolve with deep-subwavelength resolution four antenna resonances (resonance orders m = 2–5) that are ascribed to surface plasmon polariton standing waves that are confined on the strip. We map the local density of states on the strip surface and show that it has contributions from symmetric and antisymmetric surface plasmon polariton modes, each with a very different mode index. This work illustrates the power of CL experiments that can visualize hidden modes that for symmetry reasons have been elusive in optical light scattering experiments.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 47 publications.

    1. Sandro Mignuzzi, Mónica Mota, Toon Coenen, Yi Li, Andrei P. Mihai, Peter K. Petrov, Rupert F. M. Oulton, Stefan A. Maier, Riccardo Sapienza. Energy–Momentum Cathodoluminescence Spectroscopy of Dielectric Nanostructures. ACS Photonics 2018, 5 (4) , 1381-1387. https://doi.org/10.1021/acsphotonics.7b01404
    2. Gabriel D. Bernasconi, Jérémy Butet, Valentin Flauraud, Duncan Alexander, Juergen Brugger, and Olivier J. F. Martin . Where Does Energy Go in Electron Energy Loss Spectroscopy of Nanostructures?. ACS Photonics 2017, 4 (1) , 156-164. https://doi.org/10.1021/acsphotonics.6b00761
    3. Arthur Losquin and Mathieu Kociak . Link between Cathodoluminescence and Electron Energy Loss Spectroscopy and the Radiative and Full Electromagnetic Local Density of States. ACS Photonics 2015, 2 (11) , 1619-1627. https://doi.org/10.1021/acsphotonics.5b00416
    4. R. Geryak, J. Geldmeier, K. Wallace, and V. V. Tsukruk . Remote Giant Multispectral Plasmonic Shifts of Labile Hinged Nanorod Array via Magnetic Field. Nano Letters 2015, 15 (4) , 2679-2684. https://doi.org/10.1021/acs.nanolett.5b00342
    5. Jared K. Day, Nicolas Large, Peter Nordlander, and Naomi J. Halas . Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters 2015, 15 (2) , 1324-1330. https://doi.org/10.1021/nl5045428
    6. David T. Schoen, Ashwin C. Atre, Aitzol García-Etxarri, Jennifer A. Dionne, and Mark L. Brongersma . Probing Complex Reflection Coefficients in One-Dimensional Surface Plasmon Polariton Waveguides and Cavities Using STEM EELS. Nano Letters 2015, 15 (1) , 120-126. https://doi.org/10.1021/nl503179j
    7. Achyut Maity, Arpan Maiti, Pabitra Das, Dulal Senapati, and Tapas Kumar Chini . Effect of Intertip Coupling on the Plasmonic Behavior of Individual Multitipped Gold Nanoflower. ACS Photonics 2014, 1 (12) , 1290-1297. https://doi.org/10.1021/ph500309j
    8. Abbas Mohtashami, Toon Coenen, Alessandro Antoncecchi, Albert Polman, and A. Femius Koenderink . Nanoscale Excitation Mapping of Plasmonic Patch Antennas. ACS Photonics 2014, 1 (11) , 1134-1143. https://doi.org/10.1021/ph500225j
    9. Hiromi Okamoto and Kohei Imura . Visualizing the Optical Field Structures in Metal Nanostructures. The Journal of Physical Chemistry Letters 2013, 4 (13) , 2230-2241. https://doi.org/10.1021/jz401023d
    10. David T. Schoen, Toon Coenen, F. Javier García de Abajo, Mark L. Brongersma, and Albert Polman . The Planar Parabolic Optical Antenna. Nano Letters 2013, 13 (1) , 188-193. https://doi.org/10.1021/nl303850v
    11. Toon Coenen, Ernst Jan R. Vesseur, and Albert Polman . Deep Subwavelength Spatial Characterization of Angular Emission from Single-Crystal Au Plasmonic Ridge Nanoantennas. ACS Nano 2012, 6 (2) , 1742-1750. https://doi.org/10.1021/nn204750d
    12. Qigeng Yan, Siyuan Wang, Kuiwen Guan, Xiaojin Guan, Lei He, . Cathodoluminescence and tip-plasmon resonance of Bi2Te3 triangular nanostructures. PLOS ONE 2024, 19 (1) , e0291251. https://doi.org/10.1371/journal.pone.0291251
    13. Amelia C. Y. Liu, Timothy J. Davis, Toon Coenen, Sangeetha Hari, Lenard M. Voortman, Zhou Xu, Gangcheng Yuan, Patrycja M. Ballard, Alison M. Funston, Joanne Etheridge. Modulation of Cathodoluminescence by Surface Plasmons in Silver Nanowires. Small 2023, 19 (33) https://doi.org/10.1002/smll.202207747
    14. Charles Roques-Carmes, Steven E. Kooi, Yi Yang, Nicholas Rivera, Phillip D. Keathley, John D. Joannopoulos, Steven G. Johnson, Ido Kaminer, Karl K. Berggren, Marin Soljačić. Free-electron–light interactions in nanophotonics. Applied Physics Reviews 2023, 10 (1) https://doi.org/10.1063/5.0118096
    15. Asma Fallah, Yasaman Kiasat, Mário G. Silveirinha, Nader Engheta. Nonreciprocal guided waves in the presence of swift electron beams. Physical Review B 2021, 103 (21) https://doi.org/10.1103/PhysRevB.103.214303
    16. Chawki Awada, Chahinez Dab, Jiawei Zhang, Andreas Ruediger. Observation of propagating surface plasmon polaritons by using functionalized tip‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy 2020, 51 (8) , 1270-1277. https://doi.org/10.1002/jrs.5855
    17. Péter Dombi, Zsuzsanna Pápa, Jan Vogelsang, Sergey V. Yalunin, Murat Sivis, Georg Herink, Sascha Schäfer, Petra Groß, Claus Ropers, Christoph Lienau. Strong-field nano-optics. Reviews of Modern Physics 2020, 92 (2) https://doi.org/10.1103/RevModPhys.92.025003
    18. Jordan A. Hachtel, Sang-Yeon Cho, Roderick B. Davidson, Matthew A. Feldman, Matthew F. Chisholm, Richard F. Haglund, Juan Carlos Idrobo, Sokrates T. Pantelides, Benjamin J. Lawrie. Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. Light: Science & Applications 2019, 8 (1) https://doi.org/10.1038/s41377-019-0136-z
    19. Sven H. C. Askes, Nick J. Schilder, Erwin Zoethout, Albert Polman, Erik C. Garnett. Tunable plasmonic HfN nanoparticles and arrays. Nanoscale 2019, 11 (42) , 20252-20260. https://doi.org/10.1039/C9NR07683B
    20. K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, A. B. Evlyukhin. Revealing Low-Radiative Modes of Nanoresonators with Internal Raman Scattering. JETP Letters 2019, 110 (1) , 25-30. https://doi.org/10.1134/S0021364019130010
    21. Lauren M. Otto, D. Frank Ogletree, Shaul Aloni, Matteo Staffaroni, Barry C. Stipe, Aeron T. Hammack. Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide coupled plasmonic transducers. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-24061-3
    22. Cillian P. T. McPolin, Giuseppe Marino, Alexey V. Krasavin, Valerio Gili, Luca Carletti, Costantino De Angelis, Giuseppe Leo, Anatoly V. Zayats. Imaging Electric and Magnetic Modes and Their Hybridization in Single and Dimer AlGaAs Nanoantennas. Advanced Optical Materials 2018, 6 (20) https://doi.org/10.1002/adom.201800664
    23. Chenglin Du, Wei Cai, Wei Wu, Yinxiao Xiang, Lei Wang, Mengxin Ren, Xinzheng Zhang, Jingjun Xu. Unveiling quasi-dark surface plasmon modes in Au nanoring cavities by cathodoluminescence. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-01607-5
    24. Frank H.L. Koppens, Mark B. Lundeberg, Marco Polini, Tony Low, Phaedon Avouris. Graphene Plasmonics. 2017, 104-140. https://doi.org/10.1017/9781316681619.008
    25. Yuhui Hu, Di Zhao, Zhenghan Wang, Fei Chen, Xiang Xiong, Ruwen Peng, Mu Wang. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains. Optics Letters 2017, 42 (9) , 1744. https://doi.org/10.1364/OL.42.001744
    26. Arthur Losquin, Tom T. A. Lummen. Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Frontiers of Physics 2017, 12 (1) https://doi.org/10.1007/s11467-016-0605-2
    27. Angela E. Klein, Norik Janunts, Sören Schmidt, Shakeeb Bin Hasan, Christoph Etrich, Stefan Fasold, Thomas Kaiser, Carsten Rockstuhl, Thomas Pertsch. Dual-SNOM investigations of multimode interference in plasmonic strip waveguides. Nanoscale 2017, 9 (20) , 6695-6702. https://doi.org/10.1039/C6NR06561A
    28. Jiang Mei-Ling, Zheng Li-Heng, Chi Cheng, Zhu Xing, Fang Zhe-Yu, . Research progress of plasmonic cathodoluminesecence characterization. Acta Physica Sinica 2017, 66 (14) , 144201. https://doi.org/10.7498/aps.66.144201
    29. Patrick E. Landreman, Hamidreza Chalabi, Junghyun Park, Mark L. Brongersma. Fabry-Perot description for Mie resonances of rectangular dielectric nanowire optical resonators. Optics Express 2016, 24 (26) , 29760. https://doi.org/10.1364/OE.24.029760
    30. Tingting Wu, Lei Wei. Tunable resonant graphene plasmons for mid-infrared biosensing. Optics Express 2016, 24 (23) , 26241. https://doi.org/10.1364/OE.24.026241
    31. K. S. Friziuk, V. A. Milichko, M. I. Petrov, D. A. Zuev, A. V. Baranov, M. A. Baranov, S. V. Makarov, A. E. Krasnok, P. A. Belov, I. S. Mukhin. Raman scattering governed by dark resonant modes in silicon nanoparticles. 2016, 155-160. https://doi.org/10.1109/DD.2016.7756833
    32. Sergey V. Yalunin, Benjamin Schröder, Claus Ropers. Theory of electron energy loss near plasmonic wires, nanorods, and cones. Physical Review B 2016, 93 (11) https://doi.org/10.1103/PhysRevB.93.115408
    33. Franz-Philipp Schmidt, Harald Ditlbacher, Andreas Trügler, Ulrich Hohenester, Andreas Hohenau, Ferdinand Hofer, Joachim R. Krenn. Plasmon modes of a silver thin film taper probed with STEM-EELS. Optics Letters 2015, 40 (23) , 5670. https://doi.org/10.1364/OL.40.005670
    34. Felipe Bernal Arango, Rutger Thijssen, Benjamin Brenny, Toon Coenen, A. Femius Koenderink. Robustness of plasmon phased array nanoantennas to disorder. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep10911
    35. Alberto Naldoni, Filippo Fabbri, Marco Altomare, Marcello Marelli, Rinaldo Psaro, Elena Selli, Giancarlo Salviati, Vladimiro Dal Santo. The critical role of intragap states in the energy transfer from gold nanoparticles to TiO 2. Physical Chemistry Chemical Physics 2015, 17 (7) , 4864-4869. https://doi.org/10.1039/C4CP05775A
    36. Liang Peng, N. Asger Mortensen. Plasmonic-cavity model for radiating nano-rod antennas. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep03825
    37. Jia-Ming Liu, Jing-Feng Liu, Yi-Cong Yu, Ling-Yu Zeng, Xue-Hua Wang. Strong anisotropic lifetime orientation distributions of a two-level quantum emitter around a plasmonic nanorod. Nanoscale Research Letters 2014, 9 (1) https://doi.org/10.1186/1556-276X-9-194
    38. Alexandre Merlen, François Lagugné-Labarthet. Imaging the Optical near Field in Plasmonic Nanostructures. Applied Spectroscopy 2014, 68 (12) , 1307-1326. https://doi.org/10.1366/14-07699
    39. Sean M. Collins, Olivia Nicoletti, David Rossouw, Tomas Ostasevicius, Paul A. Midgley. Excitation dependent Fano-like interference effects in plasmonic silver nanorods. Physical Review B 2014, 90 (15) https://doi.org/10.1103/PhysRevB.90.155419
    40. Faustin W. Carter, Daniel F. Santavicca, Daniel E. Prober. A plasmonic antenna-coupled superconducting near-IR photon detector. Optics Express 2014, 22 (18) , 22062. https://doi.org/10.1364/OE.22.022062
    41. Pabitra Das, Abhitosh Kedia, Pandian Senthil Kumar, Nicolas Large, Tapas Kumar Chini. Local electron beam excitation and substrate effect on the plasmonic response of single gold nanostars. Nanotechnology 2013, 24 (40) , 405704. https://doi.org/10.1088/0957-4484/24/40/405704
    42. Yang Zhang, Elizabeth Boer-Duchemin, Tao Wang, Benoit Rogez, Geneviève Comtet, Eric Le Moal, Gérald Dujardin, Andreas Hohenau, Christian Gruber, Joachim R. Krenn. Edge scattering of surface plasmons excited by scanning tunneling microscopy. Optics Express 2013, 21 (12) , 13938. https://doi.org/10.1364/OE.21.013938
    43. Yumin Hou. Which Is the Interpretation of Plasmon Resonance in 2D Split-Ring Resonator Structure—Standing Wave or LC Circuit?. Plasmonics 2013, 8 (2) , 665-668. https://doi.org/10.1007/s11468-012-9453-2
    44. Mohsen Rahmani, Boris Luk'yanchuk, Minghui Hong. Fano resonance in novel plasmonic nanostructures. Laser & Photonics Reviews 2013, 7 (3) , 329-349. https://doi.org/10.1002/lpor.201200021
    45. Vladimir P. Oleshko, James M. Howe. Electron Tweezers as a Tool for High-Precision Manipulation of Nanoobjects. 2013, 203-262. https://doi.org/10.1016/B978-0-12-407700-3.00003-X
    46. Ernst Jan R. Vesseur, Javier Aizpurua, Toon Coenen, Alejandro Reyes-Coronado, Philip E. Batson, Albert Polman. Plasmonic excitation and manipulation with an electron beam. MRS Bulletin 2012, 37 (8) , 752-760. https://doi.org/10.1557/mrs.2012.174
    47. Giuseppe Toscano, Søren Raza, Antti-Pekka Jauho, N. Asger Mortensen, Martijn Wubs. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Optics Express 2012, 20 (4) , 4176. https://doi.org/10.1364/OE.20.004176