ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Graphene–Graphite Oxide Field-Effect Transistors

View Author Information
Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States
Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
Solid State Institute, Department of Physics, Technion Israel Institute of Technology, Haifa, Israel
Cite this: Nano Lett. 2012, 12, 3, 1165–1169
Publication Date (Web):March 1, 2012
https://doi.org/10.1021/nl2028415
Copyright © 2012 American Chemical Society

    Article Views

    4179

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Graphene’s high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO2 or HfO2. In contrast, we have studied the use of an ultrathin layered material, graphene’s insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO2, typically ∼1–3 × 108 V/m, while its dielectric constant is slightly higher, κ ≈ 4.3.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of the low-temperature process used to for electron-beam lithography, an example of the graphite oxide changing color during the standard process, detailed temperature dependence of the leakage current, and a summary table of devices. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 73 publications.

    1. Duwage C. Perera, Jayendran C. Rasaiah. Computational Study of H2O Adsorption, Hydrolysis, and Water Splitting on (ZnO)3 Nanoclusters Deposited on Graphene and Graphene Oxides. ACS Omega 2023, 8 (35) , 32185-32203. https://doi.org/10.1021/acsomega.3c04882
    2. A. Rajapitamahuni, J. Hoffman, C. H. Ahn, and X. Hong . Examining Graphene Field Effect Sensors for Ferroelectric Thin Film Studies. Nano Letters 2013, 13 (9) , 4374-4379. https://doi.org/10.1021/nl402204t
    3. Seoung-Ki Lee, Ho Young Jang, Sukjae Jang, Euiyoung Choi, Byung Hee Hong, Jaichan Lee, Sungho Park, and Jong-Hyun Ahn . All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Letters 2012, 12 (7) , 3472-3476. https://doi.org/10.1021/nl300948c
    4. Ao Chen, Hua Tong, Cheng-Wei Wu, Shi-Yi Li, Pin-Zhen Jia, Wu-Xing Zhou. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer. Physical Chemistry Chemical Physics 2023, 26 (1) , 421-429. https://doi.org/10.1039/D3CP04923J
    5. Silvia Conti, Gabriele Calabrese, Khaled Parvez, Lorenzo Pimpolari, Francesco Pieri, Giuseppe Iannaccone, Cinzia Casiraghi, Gianluca Fiori. Printed transistors made of 2D material-based inks. Nature Reviews Materials 2023, 8 (10) , 651-667. https://doi.org/10.1038/s41578-023-00585-7
    6. Arnab Hazra, Teena Gakhar. GO/p-TiO2 hybrid channel based depletion-mode field-effect transistors with On/Off ratio higher than 103 at room temperature. Journal of Materials Science: Materials in Electronics 2023, 34 (26) https://doi.org/10.1007/s10854-023-11288-8
    7. Wenqiang Hou, Youlong Xu, Yuan Zhang, Xiang Hua Yao, YiJie Xu. Surface tension traction transfer method for wafer-scale device grade graphene film. Carbon 2023, 204 , 427-433. https://doi.org/10.1016/j.carbon.2022.12.055
    8. Yiming Zhang, Dexing Liu, Qiuyue Huang, Qinqi Ren, Lingchong Fan, Chunhui Du, Shengdong Zhang, Min Zhang. Mixed‐Dimensional van der Waals Engineering for Charge Transfer Enables Wafer‐Level Flexible Electronics. Advanced Functional Materials 2022, 32 (36) https://doi.org/10.1002/adfm.202205111
    9. Jorge Ávila, Jose C. Galdon, Maria-Isabel Recio, Norberto Salazar, Carlos Navarro, Carlos Marquez, Francisco Gamiz. Improved inter-device variability in graphene liquid gate sensors by laser treatment. Solid-State Electronics 2022, 192 , 108259. https://doi.org/10.1016/j.sse.2022.108259
    10. Cheng‐Yi Zhu, Jing‐Kai Qin, Pei‐Yu Huang, Hai‐Lin Sun, Nie‐Feng Sun, Yan‐Lei Shi, Liang Zhen, Cheng‐Yan Xu. 2D Indium Phosphorus Sulfide (In 2 P 3 S 9 ): An Emerging van der Waals High‐ k Dielectrics. Small 2022, 18 (5) https://doi.org/10.1002/smll.202104401
    11. Jorge Avila, Jose Galdon, Norberto Salazar, Maria-Isabel Recio, Carlos Navarro, Carlos Marquez, Francisco Gamiz. Improved inter-device variability in graphene liquid gate sensors by laser treatment. 2021, 1-4. https://doi.org/10.1109/EuroSOI-ULIS53016.2021.9560682
    12. Arijit Kayal, Harikrishnan G, K Bandopadhyay, Amit Kumar, S Ravi P Silva, J Mitra. Controlling the macroscopic electrical properties of reduced graphene oxide by nanoscale writing of electronic channels. Nanotechnology 2021, 32 (17) , 175202. https://doi.org/10.1088/1361-6528/abda72
    13. Masahiro Fukuda, M. Saidul Islam, Yoshihiro Sekine, Toru Shinmei, Leonard F. Lindoy, Shinya Hayami. Crystallization of Diamond from Graphene Oxide Nanosheets by a High Temperature and High Pressure Method. ChemistrySelect 2021, 6 (14) , 3399-3402. https://doi.org/10.1002/slct.202100574
    14. Shasha Zhao, Jiaqian Zhang, Lei Fu. Liquid Metals: A Novel Possibility of Fabricating 2D Metal Oxides. Advanced Materials 2021, 33 (9) https://doi.org/10.1002/adma.202005544
    15. K Janeczek. Composite materials for printed electronics in Internet of Things applications. Bulletin of Materials Science 2020, 43 (1) https://doi.org/10.1007/s12034-020-02101-x
    16. Kena Yang, Tao Zhang, Bin Wei, Yijia Bai, Shuangfeng Jia, Guanghui Cao, Renhui Jiang, Chunbo Zhang, Enlai Gao, Xuejiao Chang, Juntao Li, Simo Li, Daming Zhu, Renzhong Tai, Hua Zhou, Jianbo Wang, Mengqi Zeng, Zhongchang Wang, Lei Fu. Ultrathin high-κ antimony oxide single crystals. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16364-9
    17. M Alfonso, J Yuan, F Tardani, W Neri, A Colin, P Poulin. Absence of giant dielectric permittivity in graphene oxide materials. Journal of Physics: Materials 2019, 2 (4) , 045002. https://doi.org/10.1088/2515-7639/ab2666
    18. Chunhui Du, Min Zhang, Qiuyue Huang, Shengdong Zhang, Yang Chai. Ultralow-voltage all-carbon low-dimensional-material flexible transistors integrated by room-temperature photolithography incorporated filtration. Nanoscale 2019, 11 (32) , 15029-15036. https://doi.org/10.1039/C9NR02511A
    19. Evgenyi Yakimchuk, Vladimir Volodin, Irina Antonova. New graphene derivative with N -methylpyrrolidone: suspension, structural, optical and electrical properties. Physical Chemistry Chemical Physics 2019, 21 (23) , 12494-12504. https://doi.org/10.1039/C9CP01612K
    20. M. Neek-Amal, R. Rashidi, Rahul R. Nair, D. Neilson, F. M. Peeters. Electric-field-induced emergent electrical connectivity in graphene oxide. Physical Review B 2019, 99 (11) https://doi.org/10.1103/PhysRevB.99.115425
    21. Dharmendra Pratap Singh, Benoit Duponchel, Yahia Boussoualem, Kaushlendra Agrahari, Rajiv Manohar, Veeresh Kumar, Renu Pasricha, Gonibasappa H. Pujar, Sanjeev R. Inamdar, Redouane Douali, Abdelylah Daoudi. Dual photoluminescence and charge transport in an alkoxy biphenyl benzoate ferroelectric liquid crystalline–graphene oxide composite. New Journal of Chemistry 2018, 42 (20) , 16682-16693. https://doi.org/10.1039/C8NJ02985G
    22. Gunasekaran Venugopal, Yuvaraj Sivalingam, Karthikeyan Krishnamoorthy, V.J.Y. Surya, M.K. Devaraju, Sang-Jae Kim. Observation of anomalous transport characteristics in graphene-oxide thinfilm. Materials Chemistry and Physics 2018, 213 , 89-94. https://doi.org/10.1016/j.matchemphys.2018.03.082
    23. K.-G. Zhou, K. S. Vasu, C. T. Cherian, M. Neek-Amal, J. C. Zhang, H. Ghorbanfekr-Kalashami, K. Huang, O. P. Marshall, V. G. Kravets, J. Abraham, Y. Su, A. N. Grigorenko, A. Pratt, A. K. Geim, F. M. Peeters, K. S. Novoselov, R. R. Nair. Electrically controlled water permeation through graphene oxide membranes. Nature 2018, 559 (7713) , 236-240. https://doi.org/10.1038/s41586-018-0292-y
    24. V. A. Smirnov, A. D. Mokrushin, N. N. Denisov, Yu. A. Dobrovolsky. Sensor Properties of Field-Effect Transistors Based on Graphene Oxide and Nafion Films with Proton Conductivity. Russian Journal of Physical Chemistry A 2018, 92 (7) , 1355-1361. https://doi.org/10.1134/S0036024418070269
    25. Reza Kamali-Sarvestani, Brandon Wright, Kawin Triyasakorn. A Flexible Printed Radio Frequency Direction Finder Using Carbon Nanotube Field Effect Transistors. 2018, 1-4. https://doi.org/10.1109/ISCAS.2018.8351779
    26. V. A. Smirnov, A. D. Mokrushin, N. N. Denisov, Yu. A. Dobrovolskii. Field-Effect Transistor Based on the Proton Conductivity of Graphene Oxide and Nafion Films. Semiconductors 2018, 52 (3) , 352-358. https://doi.org/10.1134/S106378261803020X
    27. Khaled H. Ibrahim, Mehrdad Irannejad, Benjamin Wales, Joseph Sanderson, Kevin P. Musselman, Mustafa Yavuz. The Effect of Varying Ultrafast Pulse Laser Energies on the Electrical Properties of Reduced Graphene Oxide Sheets in Solution. Journal of Electronic Materials 2018, 47 (2) , 1117-1124. https://doi.org/10.1007/s11664-017-5866-1
    28. Ying-Chen Chen, Szu-Tung Hu, Chih-Yang Lin, Burt Fowler, Hui-Chun Huang, Chao-Cheng Lin, Sungjun Kim, Yao-Feng Chang, Jack C. Lee. Graphite-based selectorless RRAM: improvable intrinsic nonlinearity for array applications. Nanoscale 2018, 10 (33) , 15608-15614. https://doi.org/10.1039/C8NR04766A
    29. Kalyan Jyoti Sarkar, K. Sarkar, B. Pal, Aparabal Kumar, Anish Das, P. Banerji. Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors. 2018, 100020. https://doi.org/10.1063/1.5032956
    30. Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang. Ultrathin free-standing graphene oxide film based flexible touchless sensor. Journal of Semiconductors 2018, 39 (1) , 013002. https://doi.org/10.1088/1674-4926/39/1/013002
    31. В.А. Смирнов, А.Д. Мокрушин, Н.Н. Денисов, Ю.А. Добровольский. СЕНСОРНЫЕ СВОЙСТВА ПОЛЕВОГО ТРАНЗИСТОРА НА ОСНОВЕ ПЛЕНОК ОКСИДА ГРАФЕНА И НАФИОНА В РЕЖИМЕ ПРОТОННОЙ ПРОВОДИМОСТИ, "Журнал физической химии". Журнал физической химии 2018, (7) , 1111-1118. https://doi.org/10.7868/S0044453718070129
    32. Cheng Pan, Benhua Huang, Xiaoyong Li, Hua Zhu, Donghua Zhang, Aqun Zheng, Yu Li, Yang Sun. Synthesis and Catalytic Property of Fibrous Titanium-Containing Graphite Oxide. Catalysis Surveys from Asia 2017, 21 (4) , 160-174. https://doi.org/10.1007/s10563-017-9233-2
    33. A. I. Ivanov, N. A. Nebogatikova, I. I. Kurkina, I. V. Antonova. Mechanism of resistive switching in films based on partially fluorinated graphene. Semiconductors 2017, 51 (10) , 1306-1312. https://doi.org/10.1134/S1063782617100116
    34. I. V. Antonova, E. V. Basyleva, I. A. Kotin. High carrier mobility in quasi-suspended few-layer graphene on printed graphene oxide layers. Journal of Materials Science 2017, 52 (17) , 10230-10236. https://doi.org/10.1007/s10853-017-1186-3
    35. Masahiro Narasaki, Haidong Wang, Takashi Nishiyama, Tatsuya Ikuta, Koji Takahashi. Experimental study on thermal conductivity of free-standing fluorinated single-layer graphene. Applied Physics Letters 2017, 111 (9) https://doi.org/10.1063/1.5001169
    36. Demudu Babu Gorle, Venkatesh Velacheri Kumman, Manickam Anbu Kulandainathan. Highly efficient, large surface area and spherically shaped Pt particles deposited electrolytically synthesized graphene for methanol oxidation with impedance spectroscopy. International Journal of Hydrogen Energy 2017, 42 (25) , 16258-16268. https://doi.org/10.1016/j.ijhydene.2017.05.160
    37. Irina V. Antonova, Nadezhda A. Nebogatikova. Fluorinated Graphene Dielectric and Functional Layers for Electronic Applications. 2017https://doi.org/10.5772/67451
    38. Jabril A. Khamaj. Effect of heat treatment in electrical transport characteristics of graphene-oxide transistor. Applied Materials Today 2017, 6 , 62-65. https://doi.org/10.1016/j.apmt.2016.11.006
    39. Shahzad Feizi, Shahryar Malekie, Reza Rahighi, Ahmad Tayyebi, Farhood Ziaie. Evaluation of dosimetric characteristics of graphene oxide/PVC nanocomposite for gamma radiation applications. Radiochimica Acta 2017, 105 (2) , 161-170. https://doi.org/10.1515/ract-2016-2648
    40. A. I. Ivanov, N. A. Nebogatikova, I. A. Kotin, I. V. Antonova. Two-layer and composite films based on oxidized and fluorinated graphene. Physical Chemistry Chemical Physics 2017, 19 (29) , 19010-19020. https://doi.org/10.1039/C7CP03609D
    41. V. A. Smirnov, A. D. Mokrushin, V. P. Vasil’ev, N. N. Denisov, K. N. Denisova. Field effect in a graphene oxide transistor for proton and electron–hole conductivities. Technical Physics Letters 2016, 42 (7) , 671-673. https://doi.org/10.1134/S1063785016070129
    42. V. A. Smirnov, A. D. Mokrushin, V. P. Vasiliev, N. N. Denisov, K. N. Denisova. Mixed proton and electron conduction in graphene oxide films: field effect in a transistor based on graphene oxide. Applied Physics A 2016, 122 (5) https://doi.org/10.1007/s00339-016-0039-2
    43. Ya-ping Wang, Wei-xiao Ji, Chang-wen Zhang, Sheng-shi Li, Feng Li, Ping Li, Miao-juan Ren, Xin-lian Chen, Min Yuan, Pei-ji Wang. Enhanced band gap opening in germanene by organic molecule adsorption. Materials Chemistry and Physics 2016, 173 , 379-384. https://doi.org/10.1016/j.matchemphys.2016.02.026
    44. Zhiyuan Jiang, Guangping Zheng, Ke Zhan, Zhuo Han, Hao Wang. Mechanisms of polarization switching in graphene oxides and poly(vinylidene fluoride)–graphene oxide films. Japanese Journal of Applied Physics 2016, 55 (4S) , 04EP04. https://doi.org/10.7567/JJAP.55.04EP04
    45. Shengbo Sang, Yajun Wang, Qiliang Feng, Ye Wei, Jianlong Ji, Wendong Zhang. Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology 2016, 176 , 1-17. https://doi.org/10.3109/07388551.2014.991270
    46. Hsien-Ching Chung, Cheng-Peng Chang, Chiun-Yan Lin, Ming-Fa Lin. Electronic and optical properties of graphene nanoribbons in external fields. Physical Chemistry Chemical Physics 2016, 18 (11) , 7573-7616. https://doi.org/10.1039/C5CP06533J
    47. Hyunsoo Lee, Narae Son, Hu Young Jeong, Tae Gun Kim, Gyeong Sook Bang, Jong Yun Kim, Gi Woong Shim, Kalyan C. Goddeti, Jong Hun Kim, Namdong Kim, Hyun-Joon Shin, Wondong Kim, Sehun Kim, Sung-Yool Choi, Jeong Young Park. Friction and conductance imaging of sp 2 - and sp 3 -hybridized subdomains on single-layer graphene oxide. Nanoscale 2016, 8 (7) , 4063-4069. https://doi.org/10.1039/C5NR06469D
    48. Demudu Babu Gorle, Manickam Anbu Kulandainathan. Electrochemical sensing of dopamine at the surface of a dopamine grafted graphene oxide/poly(methylene blue) composite modified electrode. RSC Advances 2016, 6 (24) , 19982-19991. https://doi.org/10.1039/C5RA25541D
    49. Bo Xiang, Dong Ling, Feng Gao, Han Lou, Hongbo Gu, Zhanhu Guo. Hexavalent chromium induced tunable surface functionalization of graphite. RSC Advances 2016, 6 (63) , 58354-58362. https://doi.org/10.1039/C6RA09847A
    50. Seiji Obata, Koichiro Saiki, Takaaki Taniguchi, Toshihiro Ihara, Yusuke Kitamura, Yasumichi Matsumoto. Graphene Oxide: A Fertile Nanosheet for Various Applications. Journal of the Physical Society of Japan 2015, 84 (12) , 121012. https://doi.org/10.7566/JPSJ.84.121012
    51. Kuang-Hsu Wu, Han-Hao Cheng, Ali Amdad Mohammad, Idriss Blakey, Kevin Jack, Ian R. Gentle, Da-Wei Wang. Electron-beam writing of deoxygenated micro-patterns on graphene oxide film. Carbon 2015, 95 , 738-745. https://doi.org/10.1016/j.carbon.2015.08.116
    52. Gonçalo da Cunha Rodrigues, Pavel Zelenovskiy, Konstantin Romanyuk, Sergey Luchkin, Yakov Kopelevich, Andrei Kholkin. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms8572
    53. Abdus Salam Sarkar, Suman Kalyan Pal. Exponentially distributed trap-controlled space charge limited conduction in graphene oxide films. Journal of Physics D: Applied Physics 2015, 48 (44) , 445501. https://doi.org/10.1088/0022-3727/48/44/445501
    54. Y. Y. Wang, J. Jiang, T. H. Lin, H. Y. Nan, C. W. Gao, Z. H. Ni, R. X. Gao, B. Zhong, G. W. Wen. Structural evolution in CVD graphene chemically oxidized by sulphuric acid. Journal of Raman Spectroscopy 2015, 46 (3) , 283-286. https://doi.org/10.1002/jrs.4638
    55. N. A. Nebogatikova, I. V. Antonova, V. Ya. Prinz, I. I. Kurkina, V. I. Vdovin, G. N. Aleksandrov, V. B. Timofeev, S. A. Smagulova, E. R. Zakirov, V. G. Kesler. Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties. Physical Chemistry Chemical Physics 2015, 17 (20) , 13257-13266. https://doi.org/10.1039/C4CP04646C
    56. Amrita Chakravarty, Koushik Bhowmik, Goutam De, Arnab Mukherjee. Synthesis of amine functionalized graphite nanosheets and their water-soluble derivative for drug loading and controlled release. New Journal of Chemistry 2015, 39 (4) , 2451-2458. https://doi.org/10.1039/C4NJ01545B
    57. IV Antonova. Non-Organic Dielectric Layers for Graphene and Flexible Electronics. International Journal of Nanomaterials, Nanotechnology and Nanomedicine 2015, 4 , 018-024. https://doi.org/10.17352/2455-3492.000010
    58. Kuan-I Ho, Chi-Hsien Huang, Jia-Hong Liao, Wenjing Zhang, Lain-Jong Li, Chao-Sung Lai, Ching-Yuan Su. Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05893
    59. Thaneshwor P. Kaloni, Georg Schreckenbach, Michael S. Freund. Large Enhancement and Tunable Band Gap in Silicene by Small Organic Molecule Adsorption. The Journal of Physical Chemistry C 2014, 118 (40) , 23361-23367. https://doi.org/10.1021/jp505814v
    60. Yang Yang, Zhengdong Liu, Zongyou Yin, Zehui Du, Linghai Xie, Mingdong Yi, Juqing Liu, Wei Huang. Rod-coating all-solution fabrication of double functional graphene oxide films for flexible alternating current (AC)-driven light-emitting diodes. RSC Adv. 2014, 4 (98) , 55671-55676. https://doi.org/10.1039/C4RA06147K
    61. In-yeal Lee, Hyung-Youl Park, Jin-hyung Park, Gwangwe Yoo, Myung-Hoon Lim, Junsung Park, Servin Rathi, Woo-Shik Jung, Jeehwan Kim, Sang-Woo Kim, Yonghan Roh, Gil-Ho Kim, Jin-Hong Park. Poly-4-vinylphenol and poly(melamine-co-formaldehyde)-based graphene passivation method for flexible, wearable and transparent electronics. Nanoscale 2014, 6 (7) , 3830. https://doi.org/10.1039/c3nr06517k
    62. Chi Chen, Kui Xu, Xiao Ji, Ling Miao, Jianjun Jiang. Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide. Physical Chemistry Chemical Physics 2014, 16 (22) , 11031. https://doi.org/10.1039/c4cp00702f
    63. P T Robert, R Danneau. Charge distribution of metallic single walled carbon nanotube–graphene junctions. New Journal of Physics 2014, 16 (1) , 013019. https://doi.org/10.1088/1367-2630/16/1/013019
    64. Chu-Hsuan Lin, Wei-Ting Yeh, Mei-Hsin Chen. Metal–Insulator–Semiconductor Photodetectors With Different Coverage Ratios of Graphene Oxide. IEEE Journal of Selected Topics in Quantum Electronics 2014, 20 (1) , 25-29. https://doi.org/10.1109/JSTQE.2013.2265218
    65. M J Kelly. Application of the Johnson criteria to graphene transistors. Semiconductor Science and Technology 2013, 28 (12) , 122001. https://doi.org/10.1088/0268-1242/28/12/122001
    66. Mohi Uddin Jewel, Md. Rafiqul Islam. Extrinsic performance of flexible graphene FET with graphene oxide gate dielectric. 2013, 89-93. https://doi.org/10.1109/ICAEE.2013.6750311
    67. FEI-YUE TU, LIN-YAN YU, JIN-GANG YU, XIAO-QING CHEN, QIANG FU, FEI-PENG JIAO, ZHI-GUANG PENG, TING ZHANG. GRAPHENE AS TUNABLE STATIONARY PHASE ADDITIVE FOR ENANTIOSEPARATION. Nano 2013, 08 (06) , 1350069. https://doi.org/10.1142/S1793292013500690
    68. Ying Qu, Ming Ma, Zhengguo Wang, Guoqing Zhan, Buhai Li, Xian Wang, Huaifang Fang, Huijuan Zhang, Chunya Li. Sensitive amperometric biosensor for phenolic compounds based on graphene–silk peptide/tyrosinase composite nanointerface. Biosensors and Bioelectronics 2013, 44 , 85-88. https://doi.org/10.1016/j.bios.2013.01.011
    69. Shun-Tsung Lo, Chiashain Chuang, R K Puddy, T-M Chen, C G Smith, C-T Liang. Non-ohmic behavior of carrier transport in highly disordered graphene. Nanotechnology 2013, 24 (16) , 165201. https://doi.org/10.1088/0957-4484/24/16/165201
    70. Jingbo Chang, Shun Mao, Yang Zhang, Shumao Cui, Douglas A. Steeber, Junhong Chen. Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective proteindetection. Biosensors and Bioelectronics 2013, 42 , 186-192. https://doi.org/10.1016/j.bios.2012.10.041
    71. Seiji Obata, Hiroshige Tanaka, Koichiro Saiki. Electrical and spectroscopic investigations on the reduction mechanism of graphene oxide. Carbon 2013, 55 , 126-132. https://doi.org/10.1016/j.carbon.2012.12.018
    72. Alexandre Felten, Benjamin S. Flavel, Liam Britnell, Axel Eckmann, Pierre Louette, Jean‐Jacques Pireaux, Michael Hirtz, Ralph Krupke, Cinzia Casiraghi. Single‐ and Double‐Sided Chemical Functionalization of Bilayer Graphene. Small 2013, 9 (4) , 631-639. https://doi.org/10.1002/smll.201202214
    73. Chang-Jie Dai, Xiao-Hong Yan, Yan-Dong Guo, Yang Xiao. Effect of an out-of-plane cross connection on the electronic transport of zigzag graphene nanoribbon. Physics Letters A 2012, 376 (26-27) , 2010-2014. https://doi.org/10.1016/j.physleta.2012.04.054

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect