ACS Publications. Most Trusted. Most Cited. Most Read
Soft Interactions at Nanoparticles Alter Protein Function and Conformation in a Size Dependent Manner
My Activity
    Letter

    Soft Interactions at Nanoparticles Alter Protein Function and Conformation in a Size Dependent Manner
    Click to copy article linkArticle link copied!

    View Author Information
    Interdisciplinary NanoscienceCenter (iNANO) and Department of Chemistry, Aarhus University, 7400 Herning, Denmark
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2011, 11, 11, 4985–4991
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl202940k
    Published October 7, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Weak protein–nanoparticle (NP) interactions are studied in a low binding regime as a model for the soft protein corona around nanoparticles in complex biological fluids. Noncovalent, reversible interactions between Subtilisin Carlsberg (SC) and silica NPs shows significant alteration in conformation and enzymatic activity in a NP-size dependent manner. Very weak interactions between SC and silica NPs were revealed by centrifugation-based separations and further supported by small-angle X-ray scattering, while bovine serum albumin was used as a strongly interacting reference. Secondary and tertiary structure changes of SC were studied via circular dichroism and correlated to enzymatic activity where the enzyme kinetics showed a critical role for nanoparticle size.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional description of materials, detailed description of TEM, DLS, UV–visible absorption, SAXS, kinetic enzyme activity, and CD assays, additional characterization data of silica NPs and protein–NPs complex (TEM, DLS), Scatchard fitting of BSA adsorption on NPs, detailed SAXS modeling and related parameters, and far-UV CD spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 157 publications.

    1. Vinicius S. Guido, Paulo H. Olivieri, Jr., Milena L. Brito, Benedito C. Prezoto, Diego S. T. Martinez, Maria Luiza V. Oliva, Alioscka A. Sousa. Stealth and Biocompatible Gold Nanoparticles through Surface Coating with a Zwitterionic Derivative of Glutathione. Langmuir 2024, 40 (23) , 12167-12178. https://doi.org/10.1021/acs.langmuir.4c01123
    2. Rudolf Zentel. Nanoparticular Carriers As Objects to Study Intentional and Unintentional Bioconjugation. ACS Biomaterials Science & Engineering 2024, 10 (1) , 3-11. https://doi.org/10.1021/acsbiomaterials.2c00091
    3. Quanhui Ye, Xiuyu Jin, Haifeng Gao, Na Wei. Site-Specific and Tunable Co-immobilization of Proteins onto Magnetic Nanoparticles via Spy Chemistry. ACS Applied Bio Materials 2022, 5 (12) , 5665-5674. https://doi.org/10.1021/acsabm.2c00709
    4. Brian Youden, Runqing Jiang, Andrew J. Carrier, Mark R. Servos, Xu Zhang. A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022, 16 (11) , 17497-17551. https://doi.org/10.1021/acsnano.2c06337
    5. Shaohua Qu, Zihan Qiao, Wencheng Zhong, Kangqiang Liang, Xiue Jiang, Li Shang. Chirality-Dependent Dynamic Evolution of the Protein Corona on the Surface of Quantum Dots. ACS Applied Materials & Interfaces 2022, 14 (39) , 44147-44157. https://doi.org/10.1021/acsami.2c11874
    6. Flávia E. Galdino, Agustin S. Picco, Larissa B. Capeletti, Jefferson Bettini, Mateus B. Cardoso. Inside the Protein Corona: From Binding Parameters to Unstained Hard and Soft Coronas Visualization. Nano Letters 2021, 21 (19) , 8250-8257. https://doi.org/10.1021/acs.nanolett.1c02416
    7. Ken Terao, Mari Otsubo, Masahiro Abe. Complex Formation of Silica Nanoparticles with Collagen: Effects of the Conformation of Collagen. Langmuir 2020, 36 (47) , 14425-14431. https://doi.org/10.1021/acs.langmuir.0c02867
    8. Daniel Sanchez-Guzman, Gaël Giraudon--Colas, Laurent Marichal, Yves Boulard, Frank Wien, Jéril Degrouard, Armelle Baeza-Squiban, Serge Pin, Jean Philippe Renault, Stéphanie Devineau. In Situ Analysis of Weakly Bound Proteins Reveals Molecular Basis of Soft Corona Formation. ACS Nano 2020, 14 (7) , 9073-9088. https://doi.org/10.1021/acsnano.0c04165
    9. Laurent Marichal, Jéril Degrouard, Anouchka Gatin, Nolwenn Raffray, Jean-Christophe Aude, Yves Boulard, Sophie Combet, Fabrice Cousin, Stéphane Hourdez, Jean Mary, Jean-Philippe Renault, Serge Pin. From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein–Nanoparticle Interactions. Langmuir 2020, 36 (28) , 8218-8230. https://doi.org/10.1021/acs.langmuir.0c01334
    10. Wei Song, Zhifeng Jing, Lijun Meng, Ruhong Zhou. Tungsten Oxide Nanodots Exhibit Mild Interactions with WW and SH3 Modular Protein Domains. ACS Omega 2020, 5 (19) , 11005-11012. https://doi.org/10.1021/acsomega.0c00822
    11. Shinji Kihara, Nadine J. van der Heijden, Chris K. Seal, Jitendra P. Mata, Andrew E. Whitten, Ingo Köper, Duncan J. McGillivray. Soft and Hard Interactions between Polystyrene Nanoplastics and Human Serum Albumin Protein Corona. Bioconjugate Chemistry 2019, 30 (4) , 1067-1076. https://doi.org/10.1021/acs.bioconjchem.9b00015
    12. Fang Hao, Qian S. Liu, Xi Chen, Xingchen Zhao, Qunfang Zhou, Chunyang Liao, Guibin Jiang. Exploring the Heterogeneity of Nanoparticles in Their Interactions with Plasma Coagulation Factor XII. ACS Nano 2019, 13 (2) , 1990-2003. https://doi.org/10.1021/acsnano.8b08471
    13. Rachel Kozlowski, Ashwin Ragupathi, R. Brian Dyer. Characterizing the Surface Coverage of Protein–Gold Nanoparticle Bioconjugates. Bioconjugate Chemistry 2018, 29 (8) , 2691-2700. https://doi.org/10.1021/acs.bioconjchem.8b00366
    14. Sugam Kumar, Indresh Yadav, Vinod Kumar Aswal, Joachim Kohlbrecher. Structure and Interaction of Nanoparticle–Protein Complexes. Langmuir 2018, 34 (20) , 5679-5695. https://doi.org/10.1021/acs.langmuir.8b00110
    15. Ramón Rial, Brandon Tichnell, Brendan Latimer, Zhen Liu, Paula V. Messina, and Juan M. Ruso . Structural and Kinetic Visualization of the Protein Corona on Bioceramic Nanoparticles. Langmuir 2018, 34 (7) , 2471-2480. https://doi.org/10.1021/acs.langmuir.7b03573
    16. Yaokai Duan, Yang Liu, Wen Shen, and Wenwan Zhong . Fluorescamine Labeling for Assessment of Protein Conformational Change and Binding Affinity in Protein–Nanoparticle Interaction. Analytical Chemistry 2017, 89 (22) , 12160-12167. https://doi.org/10.1021/acs.analchem.7b02810
    17. Xinyi Wang, Mingzhe Wang, Rong Lei, Shui Fang Zhu, Yuliang Zhao, and Chunying Chen . Chiral Surface of Nanoparticles Determines the Orientation of Adsorbed Transferrin and Its Interaction with Receptors. ACS Nano 2017, 11 (5) , 4606-4616. https://doi.org/10.1021/acsnano.7b00200
    18. Indresh Yadav, Sugam Kumar, Vinod K. Aswal, and Joachim Kohlbrecher . Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle–Protein Systems. Langmuir 2017, 33 (5) , 1227-1238. https://doi.org/10.1021/acs.langmuir.6b04127
    19. Ferry Anggoro Ardy Nugroho, Rickard Frost, Tomasz J. Antosiewicz, Joachim Fritzsche, Elin M. Larsson Langhammer, and Christoph Langhammer . Topographically Flat Nanoplasmonic Sensor Chips for Biosensing and Materials Science. ACS Sensors 2017, 2 (1) , 119-127. https://doi.org/10.1021/acssensors.6b00612
    20. Ruoyu Zhang, Guangxue Feng, Chong-Jing Zhang, Xiaolei Cai, Xiamin Cheng, and Bin Liu . Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration. Analytical Chemistry 2016, 88 (9) , 4841-4848. https://doi.org/10.1021/acs.analchem.6b00524
    21. Ian L. Gunsolus and Christy L. Haynes . Analytical Aspects of Nanotoxicology. Analytical Chemistry 2016, 88 (1) , 451-479. https://doi.org/10.1021/acs.analchem.5b04221
    22. Federico Catalano, Gabriele Alberto, Pavlo Ivanchenko, Galyna Dovbeshko, and Gianmario Martra . Effect of Silica Surface Properties on the Formation of Multilayer or Submonolayer Protein Hard Corona: Albumin Adsorption on Pyrolytic and Colloidal SiO2 Nanoparticles. The Journal of Physical Chemistry C 2015, 119 (47) , 26493-26505. https://doi.org/10.1021/acs.jpcc.5b07764
    23. Sang-Ho Cha, Jin Hong, Matt McGuffie, Bongjun Yeom, J. Scott VanEpps, and Nicholas A. Kotov . Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS Nano 2015, 9 (9) , 9097-9105. https://doi.org/10.1021/acsnano.5b03247
    24. Shenghao Xu, Xin Lu, Chenxi Yao, Fu Huang, Hua Jiang, Wenhao Hua, Na Na, Haiyan Liu, and Jin Ouyang . A Visual Sensor Array for Pattern Recognition Analysis of Proteins Using Novel Blue-Emitting Fluorescent Gold Nanoclusters. Analytical Chemistry 2014, 86 (23) , 11634-11639. https://doi.org/10.1021/ac502643s
    25. Sumit Mehan, Vinod K. Aswal, and Joachim Kohlbrecher . Cationic versus Anionic Surfactant in Tuning the Structure and Interaction of Nanoparticle, Protein, and Surfactant Complexes. Langmuir 2014, 30 (33) , 9941-9950. https://doi.org/10.1021/la502410v
    26. Joana Rafaela Lara Guerreiro, Maj Frederiksen, Vladimir E. Bochenkov, Victor De Freitas, Maria Goreti Ferreira Sales, and Duncan Steward Sutherland . Multifunctional Biosensor Based on Localized Surface Plasmon Resonance for Monitoring Small Molecule–Protein Interaction. ACS Nano 2014, 8 (8) , 7958-7967. https://doi.org/10.1021/nn501962y
    27. Elodie Sanfins, Cecilia Augustsson, Björn Dahlbäck, Sara Linse, and Tommy Cedervall . Size-Dependent Effects of Nanoparticles on Enzymes in the Blood Coagulation Cascade. Nano Letters 2014, 14 (8) , 4736-4744. https://doi.org/10.1021/nl501863u
    28. Jun Yao, Mei Yang, and Yixiang Duan . Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chemical Reviews 2014, 114 (12) , 6130-6178. https://doi.org/10.1021/cr200359p
    29. Teodora Miclăuş, Vladimir E. Bochenkov, Ryosuke Ogaki, Kenneth A. Howard, and Duncan S. Sutherland . Spatial Mapping and Quantification of Soft and Hard Protein Coronas at Silver Nanocubes. Nano Letters 2014, 14 (4) , 2086-2093. https://doi.org/10.1021/nl500277c
    30. Jie An Yang, Wayne Lin, Wendy S. Woods, Julia M. George, and Catherine J. Murphy . α-Synuclein’s Adsorption, Conformation, and Orientation on Cationic Gold Nanoparticle Surfaces Seeds Global Conformation Change. The Journal of Physical Chemistry B 2014, 118 (13) , 3559-3571. https://doi.org/10.1021/jp501114h
    31. Amauri J. Paula, Camila P. Silveira, Diego Stéfani T. Martinez, Antonio G. Souza Filho, Fabian V. Romero, Leandro C. Fonseca, Ljubica Tasic, Oswaldo L. Alves, and Nelson Durán . Topography-driven bionano-interactions on colloidal silica nanoparticles. ACS Applied Materials & Interfaces 2014, 6 (5) , 3437-3447. https://doi.org/10.1021/am405594q
    32. Genevieve A. Kahrilas, Laura M. Wally, Sarah J. Fredrick, Michael Hiskey, Amy L. Prieto, and Janel E. Owens . Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Orange Peel Extract. ACS Sustainable Chemistry & Engineering 2014, 2 (3) , 367-376. https://doi.org/10.1021/sc4003664
    33. Yuya Hayashi, Teodora Miclaus, Carsten Scavenius, Katarzyna Kwiatkowska, Andrzej Sobota, Péter Engelmann, Janeck J. Scott-Fordsmand, Jan J. Enghild, and Duncan S. Sutherland . Species Differences Take Shape at Nanoparticles: Protein Corona Made of the Native Repertoire Assists Cellular Interaction. Environmental Science & Technology 2013, 47 (24) , 14367-14375. https://doi.org/10.1021/es404132w
    34. Terence W. Turney, Martin B. Duriska, Vidura Jayaratne, Abdulkareem Elbaz, Sean J. O’Keefe, Andrew S. Hastings, Terrence J. Piva, Paul F. A. Wright, and Bryce N. Feltis . Formation of Zinc-Containing Nanoparticles from Zn2+ Ions in Cell Culture Media: Implications for the Nanotoxicology of ZnO. Chemical Research in Toxicology 2012, 25 (10) , 2057-2066. https://doi.org/10.1021/tx300241q
    35. Uffe B. Jensen, Elena E. Ferapontova, and Duncan S. Sutherland . Quantifying Protein Adsorption and Function at Nanostructured Materials: Enzymatic Activity of Glucose Oxidase at GLAD Structured Electrodes. Langmuir 2012, 28 (30) , 11106-11114. https://doi.org/10.1021/la3017672
    36. Yao Li, Xiangrui Wang, Dingyuan Liang, Xiaoli Zhao, Zhaomin Dong, Yingchen Bai, Wen-Xiong Wang, Willie J.G.M. Peijnenburg, Ying Wang, Wenhong Fan. Modelling the size distribution and bioaccumulation of gold nanoparticles under mixture exposure. Aquatic Toxicology 2025, 12 , 107286. https://doi.org/10.1016/j.aquatox.2025.107286
    37. Harpreet Kaur, Abhinay Thakur, Ramesh Chand Thakur, Ashish Kumar. Interaction of Nanoparticles With Proteins. 2024, 246-276. https://doi.org/10.4018/979-8-3693-7640-9.ch010
    38. Matthias Barz, Wolfgang J. Parak, Rudolf Zentel. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. Advanced Science 2024, 9 https://doi.org/10.1002/advs.202402935
    39. Leonard Krupnik, Jonathan Avaro, Marianne Liebi, Neda Iranpour Anaraki, Joachim Kohlbrecher, Alla Sologubenko, Stephan Handschin, Andrzej J. Rzepiela, Christian Appel, Tiberiu Totu, Clement E. Blanchet, Amy E. Barton Alston, Reinaldo Digigow, Erik Philipp, Beat Flühmann, Bruno F.B. Silva, Antonia Neels, Peter Wick. Iron-carbohydrate complexes treating iron anaemia: Understanding the nano-structure and interactions with proteins through orthogonal characterisation. Journal of Controlled Release 2024, 368 , 566-579. https://doi.org/10.1016/j.jconrel.2024.02.044
    40. Zhenxu Yang, Arun Jaiswal, Qiankun Yin, Xiaoqi Lin, Lu Liu, Jiarong Li, Xiaochen Liu, Zhejun Xu, Jiao Jiao Li, Ken-Tye Yong. Chiral nanomaterials in tissue engineering. Nanoscale 2024, 16 (10) , 5014-5041. https://doi.org/10.1039/D3NR05003C
    41. Craig J. Neal, Elayaraja Kolanthai, Fei Wei, Melanie Coathup, Sudipta Seal. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. Advanced Materials 2024, 36 (10) https://doi.org/10.1002/adma.202211261
    42. Johannes Kockelmann, Rudolf Zentel, Lutz Nuhn. Post‐Polymerization Modifications to Prepare Biomedical Nanocarriers with Varying Internal Structures, their Properties and Impact on Protein Corona Formation. Macromolecular Chemistry and Physics 2023, 224 (24) https://doi.org/10.1002/macp.202300199
    43. Satya Prakash, Ravi Gupta, Renu Deswal. Nanoparticle Protein Corona: Understanding NP Biomolecule Interactions for Safe and Informed Nanotechnological Applications Including Stress Alleviation in Plants. Journal of Plant Growth Regulation 2023, 42 (10) , 6377-6396. https://doi.org/10.1007/s00344-022-10857-1
    44. Leonard Krupnik, Prachi Joshi, Andreas Kappler, Beat Flühmann, Amy Barton Alston, Reinaldo Digigow, Peter Wick, Antonia Neels. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: Leveraging orthogonal methods to resolve the 3-dimensional structure. European Journal of Pharmaceutical Sciences 2023, 188 , 106521. https://doi.org/10.1016/j.ejps.2023.106521
    45. Chao Chen, Wu Zhong, Shiyu Du, Yayao Li, Yunfei Zeng, Kunguo Liu, Jingjing Yang, Xiaoxiang Guan, Xin Han. Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharmaceutica Sinica B 2023, 13 (6) , 2510-2543. https://doi.org/10.1016/j.apsb.2022.12.013
    46. Rongrong Qiao, Yalin Cong, Muhammad Ovais, Rui Cai, Chunying Chen, Liming Wang. Performance modulation and analysis for catalytic biomedical nanomaterials in biological systems. Cell Reports Physical Science 2023, 4 (6) , 101453. https://doi.org/10.1016/j.xcrp.2023.101453
    47. Xiuxiu Wang, Juan Zhao, Shengli Ding, Hongyan Zhang. Interaction of polystyrene nanoplastics with human fibrinogen. International Journal of Biological Macromolecules 2023, 238 , 124049. https://doi.org/10.1016/j.ijbiomac.2023.124049
    48. Antonio Pellegrino, Denise Danne, Christoph Weigel, Harald Seitz. An In Vitro Assay to Quantify Effects of Micro- and Nano-Plastics on Human Gene Transcription. Microplastics 2023, 2 (1) , 122-131. https://doi.org/10.3390/microplastics2010009
    49. Ruhui Hu, Zhijuan Niu, Yongkai Lu, Han Zhu, Zhihui Mao, Kai Yan, Xiaojun Hu, Hongxia Chen. Immobilization for Lipase: Enhanced Activity and Stability by Flexible Combination and Solid Support. Applied Biochemistry and Biotechnology 2022, 194 (12) , 5963-5976. https://doi.org/10.1007/s12010-022-04026-z
    50. Y. Cong, L. Wang, C. Chen. Study on the Behaviour and Toxicology of Nanomaterials by Synchrotron Radiation Technology. 2022, 414-449. https://doi.org/10.1039/9781839166570-00414
    51. Xuan Zhao, Na Na, Jin Ouyang. CRISPR/Cas9-based coronal nanostructures for targeted mitochondria single molecule imaging. Chemical Science 2022, 13 (38) , 11433-11441. https://doi.org/10.1039/D2SC03329A
    52. Anne Huppertsberg, Christian Leps, Irina Alberg, Christine Rosenauer, Svenja Morsbach, Katharina Landfester, Stefan Tenzer, Rudolf Zentel, Lutz Nuhn. Squaric Ester‐Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromolecular Rapid Communications 2022, 43 (19) https://doi.org/10.1002/marc.202200318
    53. Yanni Yu, Yaning Luan, Wei Dai. Time evolution of protein corona formed by polystyrene nanoplastics and urease. International Journal of Biological Macromolecules 2022, 218 , 72-81. https://doi.org/10.1016/j.ijbiomac.2022.07.104
    54. Saima Hameed, Didar Baimanov, Xiumin Li, Ke Liu, Liming Wang. Synchrotron radiation-based analysis of interactions at the nano–bio interface. Environmental Science: Nano 2022, 9 (9) , 3152-3167. https://doi.org/10.1039/D2EN00408A
    55. Yanni Yu, Yaning Luan, Wei Dai. Dynamic process, mechanisms, influencing factors and study methods of protein corona formation. International Journal of Biological Macromolecules 2022, 205 , 731-739. https://doi.org/10.1016/j.ijbiomac.2022.03.105
    56. Simone Berger, Martin Berger, Christoph Bantz, Michael Maskos, Ernst Wagner. Performance of nanoparticles for biomedical applications: The in vitro / in vivo discrepancy. Biophysics Reviews 2022, 3 (1) https://doi.org/10.1063/5.0073494
    57. Guoxin Cui, Wentao Su, Mingqian Tan. Formation and biological effects of protein corona for food‐related nanoparticles. Comprehensive Reviews in Food Science and Food Safety 2022, 21 (2) , 2002-2031. https://doi.org/10.1111/1541-4337.12838
    58. Sharon Wei Ling Lee, Renato Rogosic, Claudia Venturi, Manuela Teresa Raimondi, Andrea Pavesi, Giulia Adriani. A Human Neurovascular Unit On-a-Chip. 2022, 107-119. https://doi.org/10.1007/978-1-0716-1693-2_7
    59. Wenhong Fan, Yao Li, Xiangrui Wang, Dingyuan Liang, Xiaoli Zhao, Zhaomin Dong, Willie J.G.M. Peijnenburg, Yingchen Bai, Wen-Xiong Wang, Ying Wang. In Vivo Gold Nanoparticles Distribution in a Ciliate Simulated by an EM Algorithm-Based Mixture Size Distribution Model. SSRN Electronic Journal 2022, 14 https://doi.org/10.2139/ssrn.4017469
    60. Mari Otsubo, Ken Terao. Kinetics of the complex formation of silica nanoparticles with collagen. Polymer Journal 2021, 53 (12) , 1481-1484. https://doi.org/10.1038/s41428-021-00553-4
    61. Fangqin Fu, Zhengwei Huang, Wenhua Wang, Wenhao Wang, Xiangyu Ma, Lei Wang, Ying Huang, Ping Hu, Xin Pan, Chuanbin Wu. Interaction between bovine serum albumin and Solutol® HS 15 micelles: A two-stage and concentration-dependent process. Journal of Drug Delivery Science and Technology 2021, 64 , 102376. https://doi.org/10.1016/j.jddst.2021.102376
    62. Xingchen Zhao, Penghui Li, Shanjun Song, Huiyu Wang, Lining Zhao, Wansong Zong, Haiyan Zhang, Guangbo Qu, Ligang Hu, Zongwei Cai, Guibin Jiang. Molecular structural heterogeneity of bisphenols governs their serum albumin binding. Science of The Total Environment 2021, 781 , 146499. https://doi.org/10.1016/j.scitotenv.2021.146499
    63. Maritza Fernández, Jahir Orozco. Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers 2021, 13 (15) , 2464. https://doi.org/10.3390/polym13152464
    64. Mengying Zhang, Yuan Zou, Cuiling Zuo, Hui Ao, Yifei Guo, Xiangtao Wang, Meihua Han. Targeted antitumor comparison study between dopamine self-polymerization and traditional synthesis for nanoparticle surface modification in drug delivery. Nanotechnology 2021, 32 (30) , 305102. https://doi.org/10.1088/1361-6528/abf8dd
    65. Zongshan Zhao, Guoliang Li, Qian S. Liu, Wei Liu, Guangbo Qu, Ligang Hu, Yanmin Long, Zongwei Cai, Xingchen Zhao, Guibin Jiang. Identification and interaction mechanism of protein corona on silver nanoparticles with different sizes and the cellular responses. Journal of Hazardous Materials 2021, 414 , 125582. https://doi.org/10.1016/j.jhazmat.2021.125582
    66. Jinjun Wu, Hanyong Peng, Xiufen Lu, Maode Lai, Hongquan Zhang, X. Chris Le. Binding‐Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. Angewandte Chemie 2021, 133 (20) , 11204-11209. https://doi.org/10.1002/ange.202014162
    67. Jinjun Wu, Hanyong Peng, Xiufen Lu, Maode Lai, Hongquan Zhang, X. Chris Le. Binding‐Mediated Formation of Ribonucleoprotein Corona for Efficient Delivery and Control of CRISPR/Cas9. Angewandte Chemie International Edition 2021, 60 (20) , 11104-11109. https://doi.org/10.1002/anie.202014162
    68. Irina Alberg, Stefan Kramer, Christian Leps, Stefan Tenzer, Rudolf Zentel. Effect of Core‐Crosslinking on Protein Corona Formation on Polymeric Micelles. Macromolecular Bioscience 2021, 21 (4) https://doi.org/10.1002/mabi.202000414
    69. Fang Hao, Fanglan Geng, Xingchen Zhao, Rui Liu, Qian S. Liu, Qunfang Zhou, Guibin Jiang. Chirality of gold nanocluster affects its interaction with coagulation factor XII. NanoImpact 2021, 22 , 100321. https://doi.org/10.1016/j.impact.2021.100321
    70. Xiaoli Cai, Lei Jiao, Hongye Yan, Yu Wu, Wenling Gu, Dan Du, Yuehe Lin, Chengzhou Zhu. Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Materials Today 2021, 44 , 211-228. https://doi.org/10.1016/j.mattod.2020.12.005
    71. Shinji Kihara, Ingo Köper, Jitendra P. Mata, Duncan J. McGillivray. Reviewing nanoplastic toxicology: It's an interface problem. Advances in Colloid and Interface Science 2021, 288 , 102337. https://doi.org/10.1016/j.cis.2020.102337
    72. Hossein Mohammad-Beigi, Yuya Hayashi, Christina Moeslund Zeuthen, Hoda Eskandari, Carsten Scavenius, Kristian Juul-Madsen, Thomas Vorup-Jensen, Jan J. Enghild, Duncan S. Sutherland. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18237-7
    73. Reza Fattah, Hamid Rashedi, Fatemeh Yazdian, Seyed Babak Mousavi, Ahmad Fazeli. Promising insights into the kosmotropic effect of magnetic nanoparticles on proteins: The pivotal role of protein corona formation. Biotechnology Progress 2020, 36 (6) https://doi.org/10.1002/btpr.3051
    74. Walter Richtering, Irina Alberg, Rudolf Zentel. Nanoparticles in the Biological Context: Surface Morphology and Protein Corona Formation. Small 2020, 16 (39) https://doi.org/10.1002/smll.202002162
    75. Zhiqiang Dong, Yuanzhang Hou, Wenhui Han, Mengping Liu, Junliang Wang, Yuping Qiu. Protein corona-mediated transport of nanoplastics in seawater-saturated porous media. Water Research 2020, 182 , 115978. https://doi.org/10.1016/j.watres.2020.115978
    76. Sheikh Tanzina Haque, Rowshan Ara Islam, Siew Hua Gan, Ezharul Hoque Chowdhury. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. International Journal of Molecular Sciences 2020, 21 (18) , 6721. https://doi.org/10.3390/ijms21186721
    77. Irina Alberg, Stefan Kramer, Meike Schinnerer, Qizhi Hu, Christine Seidl, Christian Leps, Natascha Drude, Diana Möckel, Cristianne Rijcken, Twan Lammers, Mustafa Diken, Michael Maskos, Svenja Morsbach, Katharina Landfester, Stefan Tenzer, Matthias Barz, Rudolf Zentel. Polymeric Nanoparticles with Neglectable Protein Corona. Small 2020, 16 (18) https://doi.org/10.1002/smll.201907574
    78. Sharon Wei Ling Lee, Marco Campisi, Tatsuya Osaki, Luca Possenti, Clara Mattu, Giulia Adriani, Roger Dale Kamm, Valeria Chiono. Modeling Nanocarrier Transport across a 3D In Vitro Human Blood‐Brain–Barrier Microvasculature. Advanced Healthcare Materials 2020, 9 (7) https://doi.org/10.1002/adhm.201901486
    79. Sakineh Sadeghi-kaji, Behzad Shareghi, Ali Akbar Saboury, Sadegh Farhadian. Investigating the interaction of porcine pancreatic elastase and propanol: A spectroscopy and molecular simulation study. International Journal of Biological Macromolecules 2020, 146 , 687-691. https://doi.org/10.1016/j.ijbiomac.2019.12.119
    80. Timothy D. Langridge, Richard A. Gemeinhart. Toward understanding polymer micelle stability: Density ultracentrifugation offers insight into polymer micelle stability in human fluids. Journal of Controlled Release 2020, 319 , 157-167. https://doi.org/10.1016/j.jconrel.2019.12.038
    81. Hossein Mohammad-Beigi, Yuya Hayashi, Christina Moeslund Zeuthen, Hoda Eskandari, Carsten Scavenius, Kristian Juul-Madsen, Thomas Vorup-Jensen, Jan J. Enghild, Duncan S. Sutherland. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. 2020https://doi.org/10.1101/2020.02.05.924480
    82. Laurent Marichal, Géraldine Klein, Jean Armengaud, Yves Boulard, Stéphane Chédin, Jean Labarre, Serge Pin, Jean-Philippe Renault, Jean-Christophe Aude. Protein Corona Composition of Silica Nanoparticles in Complex Media: Nanoparticle Size does not Matter. Nanomaterials 2020, 10 (2) , 240. https://doi.org/10.3390/nano10020240
    83. Hao-Hua Deng, Xiao-Qiong Shi, Paramasivam Balasubramanian, Kai-Yuan Huang, Ying-Ying Xu, Zhong-Nan Huang, Hua-Ping Peng, Wei Chen. 6-Aza-2-Thio-Thymine Stabilized Gold Nanoclusters as Photoluminescent Probe for Protein Detection. Nanomaterials 2020, 10 (2) , 281. https://doi.org/10.3390/nano10020281
    84. Sakineh Sadeghi-Kaji, Behzad Shareghi, Ali Akbar Saboury, Sadegh Farhadian. Spermine as a porcine pancreatic elastase activator: spectroscopic and molecular simulation studies. Journal of Biomolecular Structure and Dynamics 2020, 38 (1) , 78-88. https://doi.org/10.1080/07391102.2019.1568306
    85. Weiqi Zhang. Protein Corona of Nanoparticles and Its Application in Drug Delivery. 2020, 389-419. https://doi.org/10.1007/978-981-15-5386-8_9
    86. Justyna Sekretarska, Jarosław Szczepaniak, Malwina Sosnowska, Marta Grodzik, Marta Kutwin, Mateusz Wierzbicki, Sławomir Jaworski, Jaśmina Bałaban, Karolina Daniluk, Ewa Sawosz, André Chwalibog, Barbara Strojny. Influence of Selected Carbon Nanostructures on the CYP2C9 Enzyme of the P450 Cytochrome. Materials 2019, 12 (24) , 4149. https://doi.org/10.3390/ma12244149
    87. Lining Zhao, Dandan Guo, Jing Lin, Rutao Liu. Responses of catalase and superoxide dismutase to low-dose quantum dots on molecular and cellular levels. Ecotoxicology and Environmental Safety 2019, 181 , 388-394. https://doi.org/10.1016/j.ecoenv.2019.06.028
    88. Sakineh Sadeghi-kaji, Behzad Shareghi, Ali Akbar Saboury, Sadegh Farhadian. Investigation on the structure and function of porcine pancreatic elastase (PPE) under the influence of putrescine: A spectroscopy and molecular simulation study. Journal of Molecular Liquids 2019, 289 , 111115. https://doi.org/10.1016/j.molliq.2019.111115
    89. Alioscka A. Sousa. Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation. RSC Advances 2019, 9 (46) , 26927-26941. https://doi.org/10.1039/C9RA04718B
    90. Diego Coglitore, Jean-Marc Janot, Sebastien Balme. Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Advances in Colloid and Interface Science 2019, 270 , 278-292. https://doi.org/10.1016/j.cis.2019.07.004
    91. Sakineh Sadeghi-kaji, Behzad Shareghi, Ali Akbar Saboury, Sadegh Farhadian. Spectroscopic and molecular docking studies on the interaction between spermidine and pancreatic elastase. International Journal of Biological Macromolecules 2019, 131 , 473-483. https://doi.org/10.1016/j.ijbiomac.2019.03.084
    92. Mojtaba Falahati, Farnoosh Attar, Majid Sharifi, Thomas Haertlé, Jean-François Berret, Rizwan Hasan Khan, Ali Akbar Saboury. A health concern regarding the protein corona, aggregation and disaggregation. Biochimica et Biophysica Acta (BBA) - General Subjects 2019, 1863 (5) , 971-991. https://doi.org/10.1016/j.bbagen.2019.02.012
    93. Yan Liu, Yuanlin Zheng, Zhen Chen, Yuling Qin, Rong Guo. High‐Performance Integrated Enzyme Cascade Bioplatform Based on Protein–BiPt Nanochain@Graphene Oxide Hybrid Guided One‐Pot Self‐Assembly Strategy. Small 2019, 15 (12) https://doi.org/10.1002/smll.201804987
    94. Vo-Van Giau, Yoon-Hee Park, Kyu-Hwan Shim, Sang-Wook Son, Seong-Soo A. An. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media. Frontiers of Chemical Science and Engineering 2019, 13 (1) , 90-97. https://doi.org/10.1007/s11705-018-1766-z
    95. Mansoore Hosseini-Koupaei, Behzad Shareghi, Ali Akbar Saboury, Fatemeh Davar, Vladimir A. Sirotkin, Mohammad Hossein Hosseini-Koupaei, Zahra Enteshari. Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. International Journal of Biological Macromolecules 2019, 122 , 732-744. https://doi.org/10.1016/j.ijbiomac.2018.11.001
    96. Massimiliano G. Bianchi, Ovidio Bussolati, Martina Chiu, Giuseppe Taurino, Enrico Bergamaschi. Evaluation of potential engineered nanomaterials impacts on human health: from risk for workers to impact on consumers. 2019, 263-287. https://doi.org/10.1016/B978-0-12-814835-8.00010-8
    97. Jiajing Tang, Qiantao Wang, Qianwen Yu, Yue Qiu, Ling Mei, Dandan Wan, Xuhui Wang, Man Li, Qin He. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery. Acta Biomaterialia 2019, 83 , 379-389. https://doi.org/10.1016/j.actbio.2018.11.002
    98. Yan Liu, Yuling Qin, Yuanlin Zheng, Yong Qin, Mengjun Cheng, Rong Guo. A one-pot and modular self-assembly strategy for high-performance organized enzyme cascade bioplatforms based on dual-functionalized protein–PtNP@mesoporous iron oxide hybrid. Journal of Materials Chemistry B 2019, 7 (1) , 43-52. https://doi.org/10.1039/C8TB02162G
    99. Baolin Huang, Yue Lou, Tong Li, Zuo Lin, Suli Sun, Yuan Yuan, Changsheng Liu, Yuantong Gu. Molecular dynamics simulations of adsorption and desorption of bone morphogenetic protein-2 on textured hydroxyapatite surfaces. Acta Biomaterialia 2018, 80 , 121-130. https://doi.org/10.1016/j.actbio.2018.09.019
    100. Shuying Wang, Fangyuan Li, Xi Hu, Min Lv, Chunhai Fan, Daishun Ling. Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. Advanced Therapeutics 2018, 1 (5) https://doi.org/10.1002/adtp.201800059
    Load all citations

    Nano Letters

    Cite this: Nano Lett. 2011, 11, 11, 4985–4991
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl202940k
    Published October 7, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2400

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.