ACS Publications. Most Trusted. Most Cited. Most Read
Direct Imaging of a Two-Dimensional Silica Glass on Graphene
My Activity
    Letter

    Direct Imaging of a Two-Dimensional Silica Glass on Graphene
    Click to copy article linkArticle link copied!

    View Author Information
    School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
    Electron Microscopy Group of Materials Science, University of Ulm, Ulm, Germany 89081
    § Max Planck Institute for Solid State Research, Stuttgart, Germany 70569
    Department of Physics, University of Vienna, Vienna, Austria 1090
    Department of Physics, University of Helsinki, Helsinki, Finland 00014
    Department of Applied Physics, Aalto University, Aalto, Finland 00076
    Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
    *E-mail: (U.K) [email protected]; (D.A.M.) [email protected]
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 2, 1081–1086
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl204423x
    Published January 23, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Large-area graphene substrates provide a promising lab bench for synthesizing, manipulating, and characterizing low-dimensional materials, opening the door to high-resolution analyses of novel structures, such as two-dimensional (2D) glasses, that cannot be exfoliated and may not occur naturally. Here, we report the accidental discovery of a 2D silica glass supported on graphene. The 2D nature of this material enables the first atomic resolution transmission electron microscopy of a glass, producing images that strikingly resemble Zachariasen’s original 1932 cartoon models of 2D continuous random network glasses. Atomic-resolution electron spectroscopy identifies the glass as SiO2 formed from a bilayer of (SiO4)2– tetrahedra and without detectable covalent bonding to the graphene. From these images, we directly obtain ring statistics and pair distribution functions that span short-, medium-, and long-range order. Ab initio calculations indicate that van der Waals interactions with graphene energetically stabilizes the 2D structure with respect to bulk SiO2. These results demonstrate a new class of 2D glasses that can be applied in layered graphene devices and studied at the atomic scale.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Growth and sample preparation, image acquisition parameters, additional film structure information, details of elemental, bonding, and structure analysis, image simulations, and DFT structure and energetic simulations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 244 publications.

    1. Shakti Singh, Manan Dholakia, Sharat Chandra. Medium-Range Order in Iron Phosphate Glass Models Obtained Using Various Randomization Techniques: A Molecular Dynamics Study. Journal of Chemical Theory and Computation 2025, 21 (5) , 2582-2597. https://doi.org/10.1021/acs.jctc.4c01372
    2. Marco Dirindin, Daniele Coslovich. Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica. The Journal of Physical Chemistry B 2025, 129 (3) , 1095-1108. https://doi.org/10.1021/acs.jpcb.4c06881
    3. Arkady V. Krasheninnikov, Yung-Chang Lin, Kazu Suenaga. Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. Nano Letters 2024, 24 (41) , 12733-12740. https://doi.org/10.1021/acs.nanolett.4c03654
    4. Shakti Singh, Manan Dholakia, Sharat Chandra. Toward Atomistic Understanding of Iron Phosphate Glass: A First-Principles-Based Density Functional Theory Modeling and Study of Its Physical Properties. The Journal of Physical Chemistry B 2024, 128 (13) , 3258-3272. https://doi.org/10.1021/acs.jpcb.3c07670
    5. Michael M. J. Treacy, Martin D. Foster, Keith H. Randall, Michael O’Keeffe. Enumeration of Subperiodic Zeolitic Tetrahedral Frameworks. III. Layers, Rods, Tubes, and Clusters. Crystal Growth & Design 2023, 23 (6) , 4186-4197. https://doi.org/10.1021/acs.cgd.3c00013
    6. Georgy V. Pushkarev, Vladimir G. Mazurenko, Vladimir V. Mazurenko, Danil W. Boukhvalov. Nature of Interlayer Bonds in Two-Dimensional Materials. The Journal of Physical Chemistry C 2023, 127 (17) , 8148-8158. https://doi.org/10.1021/acs.jpcc.3c01248
    7. Katelyn A. Kirchner, Daniel R. Cassar, Edgar D. Zanotto, Madoka Ono, Seong H. Kim, Karan Doss, Mikkel L. Bødker, Morten M. Smedskjaer, Shinji Kohara, Longwen Tang, Mathieu Bauchy, Collin J. Wilkinson, Yongjian Yang, Rebecca S. Welch, Matthew Mancini, John C. Mauro. Beyond the Average: Spatial and Temporal Fluctuations in Oxide Glass-Forming Systems. Chemical Reviews 2023, 123 (4) , 1774-1840. https://doi.org/10.1021/acs.chemrev.1c00974
    8. Chia-Hao Lee, Huije Ryu, Gillian Nolan, Yichao Zhang, Yangjin Lee, Siwon Oh, Hyeonsik Cheong, Kenji Watanabe, Takashi Taniguchi, Kwanpyo Kim, Gwan-Hyoung Lee, Pinshane Y. Huang. In Situ Imaging of an Anisotropic Layer-by-Layer Phase Transition in Few-Layer MoTe2. Nano Letters 2023, 23 (2) , 677-684. https://doi.org/10.1021/acs.nanolett.2c04550
    9. Christopher Leist, Meng He, Xue Liu, Ute Kaiser, Haoyuan Qi. Deep-Learning Pipeline for Statistical Quantification of Amorphous Two-Dimensional Materials. ACS Nano 2022, 16 (12) , 20488-20496. https://doi.org/10.1021/acsnano.2c06807
    10. Jian-Qiang Zhong, Hans-Joachim Freund. Two-Dimensional Ultrathin Silica Films. Chemical Reviews 2022, 122 (13) , 11172-11246. https://doi.org/10.1021/acs.chemrev.1c00995
    11. Priti Kharel, Blanka E. Janicek, Sang hyun Bae, Amanda L. Loutris, Patrick T. Carmichael, Pinshane Y. Huang. Atomic-Resolution Imaging of Small Organic Molecules on Graphene. Nano Letters 2022, 22 (9) , 3628-3635. https://doi.org/10.1021/acs.nanolett.2c00213
    12. Kristen M. Burson, Hyun Jin Yang, Daniel S. Wall, Thomas Marsh, Zechao Yang, David Kuhness, Matthias Brinker, Leonard Gura, Markus Heyde, Wolf-Dieter Schneider, Hans-Joachim Freund. Mesoscopic Structures and Coexisting Phases in Silica Films. The Journal of Physical Chemistry C 2022, 126 (7) , 3736-3742. https://doi.org/10.1021/acs.jpcc.1c10216
    13. Daniil Naberezhnyi, Lukas Mai, Nassar Doudin, Inga Ennen, Andreas Hütten, Eric I. Altman, Anjana Devi, Petr Dementyev. Molecular Permeation in Freestanding Bilayer Silica. Nano Letters 2022, 22 (3) , 1287-1293. https://doi.org/10.1021/acs.nanolett.1c04535
    14. Karen M. Ehrhardt, Rebecca C. Radomsky, Scott C. Warren. Quantifying the Local Structure of Nanocrystals, Glasses, and Interfaces Using TEM-Based Diffraction. Chemistry of Materials 2021, 33 (23) , 8990-9011. https://doi.org/10.1021/acs.chemmater.1c03017
    15. Hui Guo, Xueyan Wang, Li Huang, Xin Jin, Zhenzhong Yang, Zhang Zhou, Hai Hu, Yu-Yang Zhang, Hongliang Lu, Qinghua Zhang, Chengmin Shen, Xiao Lin, Lin Gu, Qing Dai, Lihong Bao, Shixuan Du, Werner Hofer, Sokrates T. Pantelides, Hong-Jun Gao. Insulating SiO2 under Centimeter-Scale, Single-Crystal Graphene Enables Electronic-Device Fabrication. Nano Letters 2020, 20 (12) , 8584-8591. https://doi.org/10.1021/acs.nanolett.0c03254
    16. Kunyen Liao, Atsunobu Masuno, Ayako Taguchi, Hiroki Moriwake, Hiroyuki Inoue, Teruyasu Mizoguchi. Revealing Spatial Distribution of Al-Coordinated Species in a Phase-Separated Aluminosilicate Glass by STEM-EELS. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9637-9642. https://doi.org/10.1021/acs.jpclett.0c02687
    17. Juan J. Navarro, Sergio Tosoni, Jared P. Bruce, Lara Chaves, Markus Heyde, Gianfranco Pacchioni, Beatriz Roldan Cuenya. Structure of a Silica Thin Film on Oxidized Cu(111): Conservation of the Honeycomb Lattice and Role of the Interlayer. The Journal of Physical Chemistry C 2020, 124 (38) , 20942-20949. https://doi.org/10.1021/acs.jpcc.0c05463
    18. Ikumi Akita, Yohei Ishida, Tetsu Yonezawa. Atomic-Scale Imaging of a Free-Standing Monolayer Clay Mineral Nanosheet Using Scanning Transmission Electron Microscopy. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3357-3361. https://doi.org/10.1021/acs.jpclett.0c00758
    19. Bong Gyu Shin, Dae Hwan Boo, Bumsub Song, Sunam Jeon, Minwoo Kim, Sangwoo Park, Eun Soo An, Jun Sung Kim, Young Jae Song, Young Hee Lee. Single-Crystalline Monolayer Graphene Wafer on Dielectric Substrate of SiON without Metal Catalysts. ACS Nano 2019, 13 (6) , 6662-6669. https://doi.org/10.1021/acsnano.9b00976
    20. Adrián Leandro Lewandowski, Philomena Schlexer, Sergio Tosoni, Leonard Gura, Patrik Marschalik, Christin Büchner, Hannah Burrall, Kristen M. Burson, Wolf-Dieter Schneider, Gianfranco Pacchioni, Markus Heyde. Determination of Silica and Germania Film Network Structures on Ru(0001) at the Atomic Scale. The Journal of Physical Chemistry C 2019, 123 (13) , 7889-7897. https://doi.org/10.1021/acs.jpcc.8b07110
    21. Hagen W. Klemm, Mauricio J. Prieto, Gina Peschel, Alexander Fuhrich, Ewa Madej, Feng Xiong, Dietrich Menzel, Thomas Schmidt, Hans-Joachim Freund. Formation and Evolution of Ultrathin Silica Polymorphs on Ru(0001) Studied with Combined in Situ, Real-Time Methods. The Journal of Physical Chemistry C 2019, 123 (13) , 8228-8243. https://doi.org/10.1021/acs.jpcc.8b08525
    22. Chao Zhou, Xin Liang, Gregory S. Hutchings, Zachary S. Fishman, Jin-Hao Jhang, Min Li, Udo D. Schwarz, Sohrab Ismail-Beigi, Eric I. Altman. Structure of a Two-Dimensional Silicate Layer Formed by Reaction with an Alloy Substrate. Chemistry of Materials 2019, 31 (3) , 851-861. https://doi.org/10.1021/acs.chemmater.8b03988
    23. Eric I. Altman . Group III Phosphates as Two-Dimensional van der Waals Materials. The Journal of Physical Chemistry C 2017, 121 (30) , 16328-16341. https://doi.org/10.1021/acs.jpcc.7b04394
    24. Gregory S. Hutchings, Jin-Hao Jhang, Chao Zhou, David Hynek, Udo D. Schwarz, and Eric I. Altman . Epitaxial NixPd1–x (111) Alloy Substrates with Continuously Tunable Lattice Constants for 2D Materials Growth. ACS Applied Materials & Interfaces 2017, 9 (12) , 11266-11271. https://doi.org/10.1021/acsami.7b01369
    25. Hans-Joachim Freund . Controlling Silica in Its Crystalline and Amorphous States: A Problem in Surface Science. Accounts of Chemical Research 2017, 50 (3) , 446-449. https://doi.org/10.1021/acs.accounts.6b00459
    26. Linfei Li, Heloise Tissot, Shamil Shaikhutdinov, and Hans-Joachim Freund . Transition Metal Induced Crystallization of Ultrathin Silica Films. Chemistry of Materials 2017, 29 (3) , 931-934. https://doi.org/10.1021/acs.chemmater.6b05213
    27. Zhibin Gao, Xiao Dong, Nianbei Li, and Jie Ren . Novel Two-Dimensional Silicon Dioxide with in-Plane Negative Poisson’s Ratio. Nano Letters 2017, 17 (2) , 772-777. https://doi.org/10.1021/acs.nanolett.6b03921
    28. Torbjörn Björkman, Viera Skakalova, Simon Kurasch, Ute Kaiser, Jannik C. Meyer, Jurgen H. Smet, and Arkady V. Krasheninnikov . Vibrational Properties of a Two-Dimensional Silica Kagome Lattice. ACS Nano 2016, 10 (12) , 10929-10935. https://doi.org/10.1021/acsnano.6b05577
    29. Andrei Malashevich, Sohrab Ismail-Beigi, and Eric I. Altman . Directing the Structure of Two-Dimensional Silica and Silicates. The Journal of Physical Chemistry C 2016, 120 (47) , 26770-26781. https://doi.org/10.1021/acs.jpcc.6b07008
    30. Christin Büchner, Zhu-Jun Wang, Kristen M. Burson, Marc-Georg Willinger, Markus Heyde, Robert Schlögl, and Hans-Joachim Freund . A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer. ACS Nano 2016, 10 (8) , 7982-7989. https://doi.org/10.1021/acsnano.6b03929
    31. Sören Krotzky, Claudius Morchutt, Vijay S. Vyas, Bettina V. Lotsch, Rico Gutzler, and Klaus Kern . Thermodynamics of the Segregation of a Kinetically Trapped Two-Dimensional Amorphous Metal–Organic Network. The Journal of Physical Chemistry C 2016, 120 (8) , 4403-4409. https://doi.org/10.1021/acs.jpcc.5b12406
    32. Gaoxue Wang, G. C. Loh, Ravindra Pandey, and Shashi P. Karna . Novel Two-Dimensional Silica Monolayers with Tetrahedral and Octahedral Configurations. The Journal of Physical Chemistry C 2015, 119 (27) , 15654-15660. https://doi.org/10.1021/acs.jpcc.5b01646
    33. Changming Fang, Alfons Van Blaaderen, and Marijn A. Van Huis . Two-Dimensional Hydrous Silica: Nanosheets and Nanotubes Predicted from First-Principles Simulations. The Journal of Physical Chemistry C 2015, 119 (25) , 14343-14350. https://doi.org/10.1021/jp512590z
    34. Arunima K. Singh, Kiran Mathew, Houlong L. Zhuang, and Richard G. Hennig . Computational Screening of 2D Materials for Photocatalysis. The Journal of Physical Chemistry Letters 2015, 6 (6) , 1087-1098. https://doi.org/10.1021/jz502646d
    35. Ferdaous Ben Romdhane, Torbjörn Björkman, Arkady V. Krasheninnikov, and Florian Banhart . Solid-State Growth of One- and Two-Dimensional Silica Structures on Metal Surfaces. The Journal of Physical Chemistry C 2014, 118 (36) , 21001-21005. https://doi.org/10.1021/jp506114k
    36. Philomena Schlexer, Livia Giordano, and Gianfranco Pacchioni . Adsorption of Li, Na, K, and Mg Atoms on Amorphous and Crystalline Silica Bilayers on Ru(0001): A DFT Study. The Journal of Physical Chemistry C 2014, 118 (29) , 15884-15891. https://doi.org/10.1021/jp504746c
    37. Eric I. Altman, Jan Götzen, Niveditha Samudrala, and Udo D. Schwarz . Growth and Characterization of Crystalline Silica Films on Pd(100). The Journal of Physical Chemistry C 2013, 117 (49) , 26144-26155. https://doi.org/10.1021/jp4101152
    38. C. J. Dawson, M. A. B. Pope, M. O’Keeffe, and M. M. J. Treacy . Low-Density, Low-Energy, Zeolites Assembled from Double-Layer Silica Sheets. Chemistry of Materials 2013, 25 (19) , 3816-3821. https://doi.org/10.1021/cm401471r
    39. Ferdaous Ben Romdhane, Torbjörn Björkman, Julio A. Rodríguez-Manzo, Ovidiu Cretu, Arkady V. Krasheninnikov, and Florian Banhart . In Situ Growth of Cellular Two-Dimensional Silicon Oxide on Metal Substrates. ACS Nano 2013, 7 (6) , 5175-5180. https://doi.org/10.1021/nn400905k
    40. Paul Norman, Thomas E. Schwartzentruber, Hannah Leverentz, Sijie Luo, Rubén Meana-Pañeda, Yuliya Paukku, and Donald G. Truhlar . The Structure of Silica Surfaces Exposed to Atomic Oxygen. The Journal of Physical Chemistry C 2013, 117 (18) , 9311-9321. https://doi.org/10.1021/jp4019525
    41. Hannu-Pekka Komsa and Arkady V. Krasheninnikov . Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties. The Journal of Physical Chemistry Letters 2012, 3 (23) , 3652-3656. https://doi.org/10.1021/jz301673x
    42. Matthew G. Panthani, Colin M. Hessel, Dariya Reid, Gilberto Casillas, Miguel José-Yacamán, and Brian A. Korgel . Graphene-Supported High-Resolution TEM and STEM Imaging of Silicon Nanocrystals and their Capping Ligands. The Journal of Physical Chemistry C 2012, 116 (42) , 22463-22468. https://doi.org/10.1021/jp308545q
    43. Toma Susi, Jani Kotakoski, Raul Arenal, Simon Kurasch, Hua Jiang, Viera Skakalova, Odile Stephan, Arkady V. Krasheninnikov, Esko I. Kauppinen, Ute Kaiser, and Jannik C. Meyer . Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano 2012, 6 (10) , 8837-8846. https://doi.org/10.1021/nn303944f
    44. Leonid Lichtenstein, Markus Heyde, and Hans-Joachim Freund . Atomic Arrangement in Two-Dimensional Silica: From Crystalline to Vitreous Structures. The Journal of Physical Chemistry C 2012, 116 (38) , 20426-20432. https://doi.org/10.1021/jp3062866
    45. Wan-Sheng Wang, Dong-Hong Wang, Wen-Gang Qu, Li-Qiang Lu, and An-Wu Xu . Large Ultrathin Anatase TiO2 Nanosheets with Exposed {001} Facets on Graphene for Enhanced Visible Light Photocatalytic Activity. The Journal of Physical Chemistry C 2012, 116 (37) , 19893-19901. https://doi.org/10.1021/jp306498b
    46. Colby J. Dawson, Vitaliy Kapko, Michael F. Thorpe, Martin D. Foster, and Michael M. J. Treacy . Flexibility As an Indicator of Feasibility of Zeolite Frameworks. The Journal of Physical Chemistry C 2012, 116 (30) , 16175-16181. https://doi.org/10.1021/jp2107473
    47. Luda Wang, Jonathan J. Travis, Andrew S. Cavanagh, Xinghui Liu, Steven P. Koenig, Pinshane Y. Huang, Steven M. George, and J. Scott Bunch . Ultrathin Oxide Films by Atomic Layer Deposition on Graphene. Nano Letters 2012, 12 (7) , 3706-3710. https://doi.org/10.1021/nl3014956
    48. Oliver Whitaker, David Ormrod Morley, Mark Wilson. Structural effects of the insertion of large rings in two-dimensional networks. The Journal of Chemical Physics 2025, 162 (11) https://doi.org/10.1063/5.0252548
    49. D. K. Ferry, D. L. Rode. Physical and electrical properties of silica. Applied Physics Reviews 2025, 12 (1) https://doi.org/10.1063/5.0233576
    50. David K Ferry. Silica as a two-dimensional material for nano-electronics. Semiconductor Science and Technology 2025, 40 (2) , 025008. https://doi.org/10.1088/1361-6641/adaa97
    51. Yang Wang, Xiaoying Wang, Yuzhou Hao, Xuejie Li, Yujie Liu, Jun Sun, Xiangdong Ding, Zhibin Gao. Strain-engineering the lattice thermal conductivity of 2D kagome silica. Applied Physics Letters 2025, 126 (7) https://doi.org/10.1063/5.0253235
    52. Zhongshu He, Peiquan Chen, Weidong Xuan, Guanlan Shao, Haorui Song, Baojun Wang, Zhigang Yang, Zhongming Ren. High temperature performance of silica-based ceramic cores by adding (Mg0.25Co0.25Ni0.25Zn0.25)O medium-entropy oxide as mineralizer. Ceramics International 2025, 829 https://doi.org/10.1016/j.ceramint.2025.01.454
    53. Saif Ullah, Timo Thonhauser, Marcos G. Menezes. Optoelectronic properties of novel layered materials under encapsulation: 2D Copper Iodide and Silver Iodide. Applied Materials Today 2024, 41 , 102495. https://doi.org/10.1016/j.apmt.2024.102495
    54. Akihiko Hirata, Shuya Sato, Motoki Shiga, Yohei Onodera, Koji Kimoto, Shinji Kohara. Direct observation of the atomic density fluctuation originating from the first sharp diffraction peak in SiO2 glass. NPG Asia Materials 2024, 16 (1) https://doi.org/10.1038/s41427-024-00544-w
    55. Tobias Foller, Rakesh Joshi. Let’s discuss: When can we call a thin film 2-dimensional?. Current Opinion in Solid State and Materials Science 2024, 32 , 101186. https://doi.org/10.1016/j.cossms.2024.101186
    56. Sidharth Radhakrishnan, Partha Pratim Das, Aszad Alam, Shashi Prakash Dwivedi, Vijay Chaudhary. Mechanical, thermal, and electrical properties of 2D nanomaterials for advanced applications. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2024, 238 (17) , 8739-8755. https://doi.org/10.1177/09544062241245018
    57. Pengjie Shi, Zhiping Xu. Strength of 2D glasses explored by machine-learning force fields. Journal of Applied Physics 2024, 136 (6) https://doi.org/10.1063/5.0215663
    58. Yinuo Zhang, Xueyan Li, Yuang Li, Di Wu, Xuecen Miao, Lan Li, Tai Min, Yi Pan. Transport Property Evolution in 2H‐MoTe 2− x Mediated by Te‐Deficiency‐Induced Mirror Twin Boundary Networks. Small Structures 2024, 5 (7) https://doi.org/10.1002/sstr.202400027
    59. Sirine Ben Khemis, Laurent Cormier, Ekaterina Burov, Hervé Montigaud, Benoit Baptiste, Sophie Nowak. Comparative structural study of Al 2 O 3 –SiO 2 glasses and amorphous thin films. International Journal of Applied Glass Science 2024, 15 (3) , 212-226. https://doi.org/10.1111/ijag.16666
    60. Jan Stratmann, Somar Shekh Alshabab, Bernd Markert, Franz Bamer. Tuning the Poisson’s ratio of two-dimensional model network materials with application to 2D-silica bilayer structures. Computational Materials Science 2024, 241 , 113054. https://doi.org/10.1016/j.commatsci.2024.113054
    61. Nuzhat Maisha, Olugbenga Ogunbiyi, Guanhui Gao, Mingyuan Sun, Alexander Puretzky, Bo Li, Yingchao Yang. Formation mechanism of two-dimensional hexagonal silica on SiO2/Si substrate. Journal of Crystal Growth 2024, 634 , 127685. https://doi.org/10.1016/j.jcrysgro.2024.127685
    62. Eric I. Altman, Petr Dementyev. Atomic Layer Deposition Brings Applications of Two-Dimensional Silica to the Fore. Catalysis Letters 2024, 154 (4) , 1359-1374. https://doi.org/10.1007/s10562-023-04435-7
    63. Yang Wang, Zhibin Gao, Xiaoying Wang, Jinping Sun, Minxuan Feng, Yuzhou Hao, Xuejie Li, Yinchang Zhao, Xiangdong Ding. Anomalous thermal conductivity in 2D silica nanocages of immobilizing noble gas atom. Applied Physics Letters 2024, 124 (12) https://doi.org/10.1063/5.0200462
    64. Martin Tømterud, Sabrina D. Eder, Christin Büchner, Lothar Wondraczek, Ingve Simonsen, Walter Schirmacher, Joseph R. Manson, Bodil Holst. Observation of the boson peak in a two-dimensional material. Nature Physics 2023, 19 (12) , 1910-1915. https://doi.org/10.1038/s41567-023-02177-2
    65. Marcel Schloz, Johannes Müller, Thomas C. Pekin, Wouter Van den Broek, Jacob Madsen, Toma Susi, Christoph T. Koch. Deep reinforcement learning for data-driven adaptive scanning in ptychography. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-35740-1
    66. Lei Li, Xiaochi Chen, Xiaoli Wu, Xuqiang Liu, Guang Zeng, Guixia Yang, Yuan Jian. Theoretical studies on intrinsic electron traps in strained amorphous silica. Journal of Non-Crystalline Solids 2023, 613 , 122396. https://doi.org/10.1016/j.jnoncrysol.2023.122396
    67. Duyu Chen, Houlong Zhuang, Mohan Chen, Pinshane Y. Huang, Vojtech Vlcek, Yang Jiao. Disordered hyperuniform solid state materials. Applied Physics Reviews 2023, 10 (2) https://doi.org/10.1063/5.0137187
    68. Franz Bamer, Firaz Ebrahem, Bernd Markert, Benjamin Stamm. Molecular Mechanics of Disordered Solids. Archives of Computational Methods in Engineering 2023, 30 (3) , 2105-2180. https://doi.org/10.1007/s11831-022-09861-1
    69. Petr Dementyev, Neita Khayya, David Zanders, Inga Ennen, Anjana Devi, Eric I. Altman. Size and Shape Exclusion in 2D Silicon Dioxide Membranes. Small 2023, 19 (9) https://doi.org/10.1002/smll.202205602
    70. Bryan Xuan, Oliver Whitaker, Mark Wilson. The network structure of the corneal endothelium. The Journal of Chemical Physics 2023, 158 (5) https://doi.org/10.1063/5.0134667
    71. Ruixin Sheng, Zhinan An, Andew C.-P. Chuang, Xie Xie, Peter K. Liaw, Yang Tong. Viscoelasticity-induced structure anisotropy in amorphous materials. Scripta Materialia 2023, 223 , 115062. https://doi.org/10.1016/j.scriptamat.2022.115062
    72. Bo Peng, Adrien Bouhon, Bartomeu Monserrat, Robert-Jan Slager. Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28046-9
    73. Francesc Font-Clos, Marco Zanchi, Stefan Hiemer, Silvia Bonfanti, Roberto Guerra, Michael Zaiser, Stefano Zapperi. Predicting the failure of two-dimensional silica glasses. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30530-1
    74. Laurent Cormier, Daniel R. Neuville. Les verres, quel désordre ?. Reflets de la physique 2022, 44-45 (74) , 22-27. https://doi.org/10.1051/refdp/202274022
    75. Zakariya El-Machachi, Mark Wilson, Volker L. Deringer. Exploring the configurational space of amorphous graphene with machine-learned atomic energies. Chemical Science 2022, 13 (46) , 13720-13731. https://doi.org/10.1039/D2SC04326B
    76. Projesh Kumar Roy, Andreas Heuer. Influence of the coordination defects on the dynamics and the potential energy landscape of two-dimensional silica. The Journal of Chemical Physics 2022, 157 (17) https://doi.org/10.1063/5.0118797
    77. Lisa A. Moore, Charlene M. Smith. Fused silica as an optical material [Invited]. Optical Materials Express 2022, 12 (8) , 3043. https://doi.org/10.1364/OME.463349
    78. Tobias Focks, Franz Bamer, Bernd Markert, Zhao Wu, Benjamin Stamm. Displacement field splitting of defective hexagonal lattices. Physical Review B 2022, 106 (1) https://doi.org/10.1103/PhysRevB.106.014105
    79. Luca Camilli, Daniele Capista, Massimo Tomellini, Jianbo Sun, Patrick Zeller, Matteo Amati, Luca Gregoratti, Luca Lozzi, Maurizio Passacantando. Formation of a two-dimensional oxide via oxidation of a layered material. Physical Chemistry Chemical Physics 2022, 24 (22) , 13935-13940. https://doi.org/10.1039/D2CP00863G
    80. Zechao Yang, Leonard Gura, Florian Kalaß, Patrik Marschalik, Matthias Brinker, William Kirstaedter, Jens Hartmann, Gero Thielsch, Heinz Junkes, Markus Heyde, Hans-Joachim Freund. A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities. Review of Scientific Instruments 2022, 93 (5) https://doi.org/10.1063/5.0079868
    81. Lihong Bao, Li Huang, Hui Guo, Hong-Jun Gao. Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Physical Chemistry Chemical Physics 2022, 24 (16) , 9082-9117. https://doi.org/10.1039/D1CP05981E
    82. Gregory S Hutchings, Xin Shen, Chao Zhou, Petr Dementyev, Daniil Naberezhnyi, Inga Ennen, Andreas Hütten, Nassar Doudin, Jesse H Hsu, Zachary S Fishman, Udo D Schwarz, Shu Hu, Eric I Altman. Scalable production of single 2D van der Waals layers through atomic layer deposition: bilayer silica on metal foils and films. 2D Materials 2022, 9 (2) , 021003. https://doi.org/10.1088/2053-1583/ac5005
    83. Kimmo Mustonen, Christoph Hofer, Peter Kotrusz, Alexander Markevich, Martin Hulman, Clemens Mangler, Toma Susi, Timothy J. Pennycook, Karol Hricovini, Christine Richter, Jannik C. Meyer, Jani Kotakoski, Viera Skákalová. Toward Exotic Layered Materials: 2D Cuprous Iodide. Advanced Materials 2022, 34 (9) https://doi.org/10.1002/adma.202106922
    84. Vo Van Hoang, Nguyen Hoang Giang, To Quy Dong, Vladimir Bubanja. Atomic structure and rippling of amorphous two-dimensional SiC nanoribbons – MD simulations. Computational Materials Science 2022, 203 , 111123. https://doi.org/10.1016/j.commatsci.2021.111123
    85. Qi Zhou, Ying Shi, Binghui Deng, Tao Du, Lijie Guo, Morten M. Smedskjaer, Mathieu Bauchy. Revealing the medium-range structure of glassy silica using force-enhanced atomic refinement. Journal of Non-Crystalline Solids 2021, 573 , 121138. https://doi.org/10.1016/j.jnoncrysol.2021.121138
    86. Hyeuk Jin Han, Gyu Rac Lee, Yujun Xie, Hanhwi Jang, David J. Hynek, Eugene N. Cho, Ye Ji Kim, Yeon Sik Jung, Judy J. Cha. Unconventional grain growth suppression in oxygen-rich metal oxide nanoribbons. Science Advances 2021, 7 (41) https://doi.org/10.1126/sciadv.abh2012
    87. Mahdi Sadjadi, Varda F. Hagh, Mingyu Kang, Meera Sitharam, Robert Connelly, Steven J. Gortler, Louis Theran, Miranda Holmes-Cerfon, Michael F. Thorpe. Realizations of Isostatic Material Frameworks. physica status solidi (b) 2021, 258 (9) https://doi.org/10.1002/pssb.202000555
    88. S. Ben Khemis, E. Burov, H. Montigaud, D. Skrelic, E. Gouillart, L. Cormier. Structural analysis of sputtered amorphous silica thin films: A Raman spectroscopy investigation. Thin Solid Films 2021, 733 , 138811. https://doi.org/10.1016/j.tsf.2021.138811
    89. Stephen D. Funni, Zi Jin Yang, Matthew J. Cabral, Colin Ophus, Xiang M. Chen, Elizabeth C. Dickey. Theory and application of the vector pair correlation function for real-space crystallographic analysis of order/disorder correlations from STEM images. APL Materials 2021, 9 (9) https://doi.org/10.1063/5.0058928
    90. Geoffroy Kremer, Juan Camilo Alvarez-Quiceno, Thomas Pierron, César González, Muriel Sicot, Bertrand Kierren, Luc Moreau, Julien E Rault, Patrick Le Fèvre, François Bertran, Yannick J Dappe, Johann Coraux, Pascal Pochet, Yannick Fagot-Revurat. Dispersing and semi-flat bands in the wide band gap two-dimensional semiconductor bilayer silicon oxide. 2D Materials 2021, 8 (3) , 035021. https://doi.org/10.1088/2053-1583/abf715
    91. Yu Zheng, Duyu Chen, Lei Liu, Yu Liu, Mohan Chen, Houlong Zhuang, Yang Jiao. Topological transformations in hyperuniform pentagonal two-dimensional materials induced by Stone-Wales defects. Physical Review B 2021, 103 (24) https://doi.org/10.1103/PhysRevB.103.245413
    92. Emil Annevelink, Harley T. Johnson, Elif Ertekin. Pathways to controlled 3D deformation of graphene: Manipulating the motion of topological defects. Current Opinion in Solid State and Materials Science 2021, 25 (2) , 100893. https://doi.org/10.1016/j.cossms.2020.100893
    93. David Ormrod Morley, Philip S. Salmon, Mark Wilson. Persistent homology in two-dimensional atomic networks. The Journal of Chemical Physics 2021, 154 (12) https://doi.org/10.1063/5.0040393
    94. Shangcong Cheng. New Interpretation of X-ray Diffraction Pattern of Vitreous Silica. Ceramics 2021, 4 (1) , 83-96. https://doi.org/10.3390/ceramics4010008
    95. Alejandro M. Boscoboinik, Sergio J. Manzi, Víctor D. Pereyra, Walter L. Mas, Jorge Anibal Boscoboinik. Structural evolution of two-dimensional silicates using a “bond-switching” algorithm. Nanoscale 2021, 13 (4) , 2408-2419. https://doi.org/10.1039/D0NR07623F
    96. George Neville Greaves. The Extended Structure of Glass. 2021, 183-195. https://doi.org/10.1002/9781118801017.ch2.5
    97. Kathryn S. Hayward, Charles Le Losq, Stephen F. Cox. Quantifying dynamic pressure and temperature conditions on fault asperities during earthquake slip. Earth and Planetary Science Letters 2021, 555 , 116701. https://doi.org/10.1016/j.epsl.2020.116701
    98. Adrián Leandro Lewandowski, Sergio Tosoni, Leonard Gura, Zechao Yang, Alexander Fuhrich, Mauricio J. Prieto, Thomas Schmidt, Denis Usvyat, Wolf‐Dieter Schneider, Markus Heyde, Gianfranco Pacchioni, Hans‐Joachim Freund. Growth and Atomic‐Scale Characterization of Ultrathin Silica and Germania Films: The Crucial Role of the Metal Support. Chemistry – A European Journal 2021, 27 (6) , 1870-1885. https://doi.org/10.1002/chem.202001806
    99. Duyu Chen, Yu Zheng, Lei Liu, Ge Zhang, Mohan Chen, Yang Jiao, Houlong Zhuang. Stone–Wales defects preserve hyperuniformity in amorphous two-dimensional networks. Proceedings of the National Academy of Sciences 2021, 118 (3) https://doi.org/10.1073/pnas.2016862118
    100. Mengnan Yang, Zhaoli Yan, Tiantian Li, Bing Liu, Qiangshan Jing, Peng Liu. Role of microporous Janus silica nanosheets in the assembly of ultra-small Ag nanoparticles with high catalytic activity. Dalton Transactions 2021, 50 (1) , 208-216. https://doi.org/10.1039/D0DT03702H
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 2, 1081–1086
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl204423x
    Published January 23, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    11k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.