ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Microcavity-Integrated Graphene Photodetector

View Author Information
Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria
Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria
Cite this: Nano Lett. 2012, 12, 6, 2773–2777
Publication Date (Web):May 7, 2012
https://doi.org/10.1021/nl204512x
Copyright © 2012 American Chemical Society
  • Open Access

Article Views

18796

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (1)»

Abstract

There is an increasing interest in using graphene (1, 2) for optoelectronic applications. (3-19) However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating graphene with a Fabry-Pérot microcavity, the optical absorption is 26-fold enhanced, reaching values >60%. We present a graphene-based microcavity photodetector with responsivity of 21 mA/W. Our approach can be applied to a variety of other graphene devices, such as electro-absorption modulators, variable optical attenuators, or light emitters, and provides a new route to graphene photonics with the potential for applications in communications, security, sensing and spectroscopy.

In principle, the light-matter interaction in graphene is strong. The optical absorption coefficient of single-layer graphene (20) is −ln(1−πα)/d ≈ 7 × 105 cm–1, independent of wavelength (d = 0.335 nm is the thickness of graphene and α is the fine structure constant). At the technologically important wavelengths of 850, 1300, and 1550 nm, this value is between 1 and 3 orders of magnitude higher than that of conventionally used semiconductor materials such as In0.53Ga0.47As, GaAs, or Ge. (21) Nevertheless, due to the short interaction length, a layer of graphene absorbs only πα = 2.3% of the incident light. (20) Whereas the weak optical absorption is beneficial to devices such as LCD screens, (4, 5) solar cells, (6-8) or organic light-emitting diodes, (9) it is detrimental to active optoelectronic devices, (10-18) where a strong light-matter interaction is desired. Several approaches have been pursued to increase the interaction length of light with graphene and enhance the optical absorption. It has been shown that by combining graphene with plasmonic nanostructures (12) or nanoparticles, (13) the near-field enhancement due to localized surface plasmons can significantly increase the responsivity of photodetectors (∼11 and ∼6 mA/W, respectively). The integration of graphene with an optical waveguide allowed the increase of the interaction length through coupling between the evanescent waveguide mode and graphene, resulting in −3 dB (50%) absorption in a ∼30 μm long device. (14) Other approaches to increase absorption are patterning of graphene into an array of nanodisks (15) or layering of several graphene sheets to realize a superlattice. (16) Graphene may also be combined with other photosensitive materials, such as quantum dots, (19) to form a hybrid system for photodetection with extremely high sensitivity (up to 108 A/W).

The graphene microcavity photodetectors demonstrated in this letter, benefit from the large increase of the optical field inside a resonant cavity, giving rise to increased absorption. The field enhancement occurs only at the design wavelength, whereas off-resonance wavelengths are rejected by the cavity, making these devices promising for wavelength division multiplexing (WDM) systems. (22) Cavity enhanced devices have a long history in III–V optoelectronics. (23-25) However, monolithic integration of carbon nanomaterials with optical cavities is challenging and experimental realizations are rare. (26, 27) Only very recently, a graphene sheet has been incorporated into an optical cavity to study light-matter interactions in a graphene transistor. (27) A graphene device with two coupled optical cavities has been studied theoretically. (28)

Our graphene microcavity photodetector (GMPD) is shown schematically in Figure 1a. As nominal operating wavelength we have chosen λc = 850 nm, a wavelength that is often used in low-cost multimode fiber data links. (29) However, due to the broad absorption range of graphene, (20, 30) this concept can be extended to any wavelength from the mid-infrared to the ultraviolet, provided that a low-loss optical cavity can be realized at the respective wavelength. (31, 32) In our device, two distributed Bragg mirrors, consisting of quarter-wavelength thick layers of alternating materials with varying refractive indices, form a high-finesse planar cavity. Bragg mirrors are ideal choices for microcavity optoelectronic devices because unlike with metal mirrors the reflectivity can be very well controlled and can reach values near unity. The Bragg mirrors are made of large band gap materials that are nonabsorbing at the detection wavelength λc. The absorbing graphene layer is sandwiched between these mirrors. A buffer layer ensures that the maximum of the field amplitude occurs right at the position where the graphene sheet is placed. The bottom mirror is formed from multiple periods (25 pairs) of weakly doped, alternating AlAs and Al0.10Ga0.90As layers (GaAs would be absorbing at 850 nm) with thicknesses of 70 and 61 nm, respectively. It is grown by molecular beam epitaxy (MBE) on an n-doped GaAs substrate. The refractive index contrast of AlAs and Al0.10Ga0.90As gives a mirror with reflectivity Rbottom > 99% in a broad spectral range around 850 nm (see inset of Figure 1c). We then deposit a 111 nm thick Si3N4 buffer layer by plasma-enhanced chemical vapor deposition (PECVD) using SiH4 and NH3 precursor gases at a substrate temperature of 300 °C. Graphene flakes are deposited by mechanical exfoliation. Single- and bilayer flakes are visually located with a microscope and subsequently confirmed to be single- or bilayers with Raman spectroscopy (see Supporting Information). Source and drain Ti/Au (10/20 nm) electrodes are then deposited by laser lithography, electron-beam evaporation of the metals, and lift-off. In a second lithography step, 70 nm thick Au contact pads are patterned. Overnight thermal annealing at 150 °C under vacuum is performed to remove unintentional doping, including water molecules. The annealing is performed in the PECVD chamber, so that the subsequent top Bragg mirror can be deposited without bringing the sample back to atmosphere. The top mirror is made of seven pairs of SiO2 and Si3N4 layers with thicknesses of 147 and 113 nm, respectively. Its nominal reflectivity is 89%. SiH4 and N2O are used as precursor gases for the SiO2 deposition. During all PECVD deposition processes, dummy Si wafers are placed along with the sample into the chamber. This allows precise determination of the film thicknesses by optical measurements (thin film thickness measurements; ellipsometry). Finally, using reactive ion etching (RIE), contact windows are etched in the SiO2/Si3N4 top mirror at the position of the contact pads. The detailed device structure is provided as Supporting Information.

Figure 1

Figure 1. (a) Schematic drawing of a graphene microcavity photodetector. Distributed Bragg mirrors form a high-finesse optical cavity. The incident light is trapped in the cavity and passes multiple times through the graphene. The graphene sheet is shown in red, and the metal contacts are in yellow. (b) Electric field amplitude inside the cavity. (c) Calculated dependence of optical absorption in a single-layer graphene sheet on the reflectivity of the top mirror. The numbers next to the symbols indicate the number of SiO2/Si3N4 layer pairs that are necessary to achieve the respective reflectivity. Inset: Measured reflectivity of the AlAs/Al0.10Ga0.90As bottom mirror.

The weak doping of the substrate and the bottom Bragg mirror allows electrostatic gating of the graphene channel and measurements of the electrical characteristics. The devices exhibit the typical V-shaped conductance versus gate bias with weak unintended doping (<10 V Dirac point shift) and negligible hysteresis (<2.5 V). However, we observe a strong mobility reduction to typically a few hundred cm2/(V s), as compared to the ∼5000 cm2/(V s) that are obtained in “conventional” graphene devices. (10, 11) Similar impact of the dielectric environment on the mobility was previously reported for high-frequency graphene transistors. (33)

The device design was optimized using the transfer matrix method. In our simulation, graphene is described by a complex refractive index n(λ) = 3.0 + i(C1/3)λ, where C1 = 5.446 μm–1 and λ is the wavelength. (34) The other materials are modeled as loss-less dielectric materials with refractive indices reported in the Supporting Information. Figure 1b shows the electric field distribution in the device for normal incidence light at the design wavelength of λc = 850 nm. The standing wave pattern arises from interference of the counter-propagating incident and reflected waves. The arrow indicates the spatial position of the graphene. It is obvious that the origin of the absorption enhancement is the ∼6.5-fold increased electric field amplitude inside the cavity, which causes more energy to be absorbed. An equivalent interpretation is that the photons bounce between the bottom and top mirrors and thus pass multiple times through the graphene sheet as illustrated in Figure 1a. We calculate the wavelength-dependent absorption A(λ) according to A(λ) = 1 – R(λ) − T(λ), where R(λ) is the (intensity) reflection and T(λ) denotes the transmission. The model allows us to optimize the reflectivity Rtop of the top mirror. As shown in Figure 1c, the absorption increases with increasing reflectivity, reaches a maximum of 98% for seven SiO2/Si3N4 layer pairs (corresponding reflectivity Rtop = 89%) and drops to zero as Rtop approaches 100%. This behavior can also be understood intuitively. For small Rtop, the cavity is too lossy and the field enhancement is small. For Rtop = 100%, on the other hand, all the light is reflected on the surface and cannot enter into the cavity. For bilayer graphene we find an optimum of six instead of seven SiO2/Si3N4 layer pairs.

The performance of GMPDs depends critically on the optical quality of the mirror and buffer layer materials, which must be nonabsorbing at the detection wavelength λc. We have therefore measured the wavelength dependent optical reflection of a millimeter-sized spot on the sample. The corresponding spectrum (shown in Figure 2) is a typical reflectivity spectrum of a Bragg mirror stack, but exhibits an extra dip at λ = 850 nm in the stop band. The dip originates from absorption of the Fabry–Pérot cavity mode. Its depth is less than 6% and supposedly stems mainly from absorption in the (multilayer) graphene flakes that are randomly distributed over the sample (a few percent surface coverage). The weak absorption is an evidence of the high optoelectronic material quality.

Figure 2

Figure 2. Reflectivity of the sample. The dip at 850 nm wavelength originates from absorption of the Fabry–Pérot microcavity mode.

Let us now turn to the photocurrent measurements. Figure 3b shows a microscope image of a single-layer GMPD together with the measurement circuit. The graphene channels of our devices are typically 5 μm long and several micrometers wide. A bias voltage VBias = 2 V is applied to one of the leads. The other lead is connected to a transimpedance low-noise preamp whose output signal is fed into a lock-in amplifier. The gate electrode (substrate) remains unbiased. The output of a tunable continuous-wave Ti/sapphire laser is set to 850 nm wavelength and is focused with an objective lens to an ∼2 μm diameter spot on the sample. The optical power was kept low enough (P = 50 μW) to avoid heating of the sample and reduce the influence of thermo-electric effects. (35-38) A photocurrent map (shown in Figure 3a) is recorded by scanning the laser beam across the sample. The incident light is modulated at 400 Hz using a mechanical chopper. This technique has previously been used to study the potential profiles in graphene transistors, where photocurrents of opposite sign at the metal/graphene interfaces were observed. (39-42) Because of the different biasing condition, the band bending (see Figure 3a) in our experiment is determined by the externally applied voltage, rather than by the metal/graphene contacts. We therefore observe only a single photocurrent peak approximately in the center of the device, whose polarity is determined by the sign of VB. Although this biasing condition does not allow zero dark current operation, it reduces the influence of the metal electrodes on the shape of the photocurrent spectrum.

Figure 3

Figure 3. (a) Photocurrent map taken at a bias voltage of VBias = 2 V between the source and drain electrodes. The gate electrode (substrate) remains unbiased. The dashed lines indicate the source and drain electrodes. The schematic above the photocurrent map illustrates the band diagram under this biasing condition. (b) Microscope image of a graphene photodetector and electrical setup for photocurrent measurements. The scale bar is 5 μm long. (c) Spectral response of the single-layer graphene device. The dashed lines show calculation results: reflection R (red), transmission T (green), and absorption A (blue). The solid lines are measurement results: reflection (red), photocurrent (blue). A strong and spectrally narrow photoresponse is observed at the cavity resonance (855 nm wavelength). Inset: Theoretical result for normal incidence light.

In Figure 3c, we present the spectral response of the device. The dashed lines are results of the transfer matrix calculation; the solid lines are measurement results. The reflectivity spectrum is measured by focusing the Ti/sapphire laser output to a small spot in the center of the graphene sheet and by tuning the laser wavelength between 830 and 900 nm. The result is shown in Figure 3c as solid red line. At the cavity resonance (855 nm), more than 60% of the light is absorbed in the graphene, a 26-fold absorption enhancement as compared to the 2.3% absorption of free-standing graphene. (20) The slight deviation from design wavelength (λc = 850 nm) is caused by small nonuniformities (∼0.6%) in optical layer thicknesses of the buffer and top mirror layers. We accounted for this deviation in our simulation. At λ = 888 nm another reflection dip is observed, which is, however, not related to absorption in the graphene but stems from larger transmission outside the stop band of the Bragg mirror stack (see green line). The measurement data are well reproduced by the simulation (dashed red line) if we consider spectral broadening due to the finite numerical aperture (NA = 0.28) of the objective lens by numerically averaging over all incidence angles between 0 and ϑmax = Arcsin(NA) ≈ 16°. The solid blue line in Figure 3c shows the spectral photocurrent response of the device. It peaks at λ = 855 nm wavelength and exhibits a spectral width of Δλ = 9 nm (full width at half-maximum – fwhm). Its shape follows closely the calculated absorption (dashed blue line), demonstrating that the absorbed light is efficiently converted into photocurrent. From the quality factor of the cavity, Q = λ/Δλ = 95, we obtain a photon lifetime of τ = Qλ/(2πc) = 43 fs, only. The microcavity does hence not affect the potentially high bandwidth (11, 43) of graphene photodetectors. The inset shows the calculation results for NA = 0 (ϑmax = 0°), that is, normal incidence light. In this case, the absorption would be as large as 98%.

In Figure 4, we show the results obtained from a bilayer graphene device. The meaning of the curves is the same as in Figure 3c. Again, we observe a strong photoresponse at the cavity resonance (864.5 nm in this case). A peak photocurrent of I = 1.05 μA is obtained at P = 50 μW excitation power, which translates into a photoresponsivity of S = I/P = 21 mA/W. Also shown in Figure 4 (solid red line) is the response of a “conventional” bilayer graphene photodetector, that is, a device without cavity. It consists of bilayer graphene on a Si wafer with 300 nm thick SiO2 and Ti/Au electrodes. For a fair comparison, the geometrical dimensions (particularly the channel length) of the device are similar to those of our GMPD devices and also the biasing conditions are the same. The response of the conventional device is approximately independent of wavelength, but more than an order of magnitude weaker than that of the microcavity enhanced device.

Figure 4

Figure 4. The meaning of the curves is the same as in Figure 3c, but the results are shown for a bilayer graphene device. A maximum responsivity of 21 mA/W is achieved. In addition, the spectral photoresponse of a conventional (without cavity) bilayer graphene detector is shown as solid red line. The response of the conventional device is approximately independent of wavelength, but more than an order of magnitude weaker than that of the microcavity device.

In conclusion, we have demonstrated that the responsivity of a graphene photodetector can be increased by integrating the graphene sheet in a high-finesse planar optical cavity. A responsivity of S = 21 mA/W is achieved. The devices show a photoresponse only at the design wavelength, making them promising for wavelength division multiplexing. The concept of enhancing the light-matter interaction in graphene by use of an optical microcavity is not limited to photodetectors alone. It can be applied to a variety of other devices such as electro-absorption modulators, variable optical attenuators, and possibly future light emitters. Our demonstration also shows that graphene can be monolithically integrated with other, more established materials and technologies to form novel, highly complex devices.

Supporting Information

ARTICLE SECTIONS
Jump To

Detailed device structure and Raman spectrum. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Thomas Mueller - Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria Email: [email protected]
  • Authors
    • Marco Furchi - Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria
    • Alexander Urich - Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria
    • Andreas Pospischil - Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria
    • Govinda Lilley - Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria
    • Karl Unterrainer - Institute of Photonics, Vienna University of Technology, Gußhausstraße 27-29, 1040 Vienna, Austria
    • Hermann Detz - Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria
    • Pavel Klang - Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria
    • Aaron Maxwell Andrews - Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria
    • Werner Schrenk - Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria
    • Gottfried Strasser - Center for Micro- and Nanostructures, Vienna University of Technology, Floragasse 7, 1040 Vienna, Austria
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

This work was supported by the Austrian Science Fund FWF (START Y-539) and the Austrian Research Promotion Agency FFG (NIL-Graphene).

References

ARTICLE SECTIONS
Jump To

This article references 43 other publications.

  1. 1
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666 669
  2. 2
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197 200
  3. 3
    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics 2010, 4, 611 622
  4. 4
    Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Nano Lett. 2008, 8, 1704 1708
  5. 5
    Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Özyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574 578
  6. 6
    Wang, X.; Zhi, L.; Tsao, N.; Tomović, Ž.; Li, J.; Müllen, K. Angew. Chem. 2008, 47, 2990 2992
  7. 7
    Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Appl. Phys. Lett. 2008, 92, 263302
  8. 8
    De Arco, L. G.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. ACS Nano 2010, 4, 2865 2873
  9. 9
    Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. ACS Nano 2010, 4, 43 48
  10. 10
    Mueller, T.; Xia, F.; Avouris, Ph. Nat. Photonics 2010, 4, 297 301
  11. 11
    Xia, F.; Mueller, T.; Lin, Y.; Valdes-Garcia, A.; Avouris, Ph. Nat. Nanotechnol. 2009, 4, 839 843
  12. 12
    Echtermeyer, T. J.; Britnell, L.; Jasnos, P. K.; Lombardo, A.; Gorbachev, R. V.; Grigorenko, A. N.; Geim, A. K.; Ferrari, A. C.; Novoselov, K. S. Nat. Commun. 2011, 2, 458
  13. 13
    Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X. Nat. Commun. 2011, 2, 579 585
  14. 14
    Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. Nature 2011, 474, 64 67
  15. 15
    Thongrattanasiri, S.; Koppens, F. H. L.; García de Abajo, F. J. Phys. Rev. Lett. 2012, 108, 047401
  16. 16
    Yan, H.; Li, X.; Chandra, B.; Tulevski, G.; Wu, Y.; Freitag, M.; Zhu, W.; Avouris, Ph.; Xia, F. Nat. Nanotechnol. 2012; DOI:  DOI: 10.1038/nnano.2012.59 .
  17. 17
    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Opt. Express 2009, 17, 17630 17635
  18. 18
    Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. ACS Nano 2010, 4, 803 810
  19. 19
    Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, P.; Gatti, F.; Koppens, F. H. L. Arxiv:1112.4730v1.
  20. 20
    Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308
  21. 21
    Handbook of Optical Constants of Solids; Palik, E. D., Ed.; Academic Press: New York, 1985.
  22. 22
    Ishio, H.; Minowa, J.; Nosu, K. J. Lightwave Technol. 1984, 2, 448 463
  23. 23
    Ünlü, M. S.; Strite, S. J. Appl. Phys. 1995, 78, 607 638
  24. 24
    Schubert, E. F.; Wang, Y.-H.; Cho, A. Y.; Tu, L.-W.; Zydzik, G. J. Appl. Phys. Lett. 1992, 60, 921 923
  25. 25
    Maier, T.; Strasser, G.; Gornik, E. IEEE Photonics Technol. Lett 2000, 12, 119 121
  26. 26
    Xia, F.; Steiner, M.; Lin, Y.; Avouris, Ph. Nat. Nanotechnol. 2008, 3, 609 613
  27. 27
    Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Loehneysen, H.; Avouris, Ph.; Krupke, R. Nat. Nanotechnol. 2012; DOI:  DOI: 10.1038/nnano.2012.60 .
  28. 28
    Ferreira, A.; Peres, N. M. R.; Ribeiro, R. M.; Stauber, T. Phys. Rev. B 2012, 85, 115438
  29. 29
    Pepeljugoski, P.; Kuchta, D.; Kwark, Y.; Pleunis, P.; Kuyt, G. IEEE Photonics Technol. Lett. 2002, 14, 717 719
  30. 30
    Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Phys. Rev. Lett. 2008, 101, 196405
  31. 31
    Heiss, W.; Schwarzl, T.; Roither, J.; Springholz, G.; Aigle, M.; Pascher, H.; Biermann, K.; Reimann, K. Prog. Quantum Electron. 2001, 25, 193 228
  32. 32
    Dorsaz, J.; Carlin, J.-F.; Gradecak, S.; Ilegems, M. J. Appl. Phys. 2005, 97, 084505
  33. 33
    Lin, Y.; Jenkins, K. A.; Valdes-Garcia, A.; Small, J. P.; Farmer, D. B.; Avouris, Ph. Nano Lett. 2009, 9, 422 426
  34. 34
    Bruna, M.; Borini, S. Appl. Phys. Lett. 2009, 94, 031901
  35. 35
    Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Nano Lett. 2010, 10, 562 566
  36. 36
    Lemme, M. C.; Koppens, F. H. L.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Nano Lett. 2010, 11, 4134 4137
  37. 37
    Gabor, N. M.; Song, J. C. W.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Science 2011, 334, 648 652
  38. 38
    Prechtel, L.; Song, L.; Schuh, D.; Ajayan, P.; Wegscheider, W.; Holleitner, A. W. Nat. Commun. 2012, 3, 646 652
  39. 39
    Lee, E. J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K. Nat. Nanotechnol. 2008, 3, 486 490
  40. 40
    Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.; Tsang, J.; Perebeinos, V.; Avouris, Ph. Nano Lett. 2009, 9, 1039 1044
  41. 41
    Mueller, T.; Xia, F.; Freitag, M.; Tsang, J.; Avouris, Ph. Phys. Rev. B 2009, 79, 245430
  42. 42
    Park, J.; Ahn, Y. H.; Ruiz-Vargasv, C. Nano Lett. 2009, 9, 1742 1746
  43. 43
    Urich, A.; Unterrainer, K.; Mueller, T. Nano Lett. 2011, 11, 2804 2808

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 742 publications.

  1. Hongjun Cai, Changming Yang, Li Shen, Yu Yu, Xinliang Zhang. High-Efficiency and Polarization-Independent Waveguide-Integrated Graphene Plasmonic Photodetectors Operating at 2 μm. ACS Photonics 2024, 11 (4) , 1565-1573. https://doi.org/10.1021/acsphotonics.3c01755
  2. Shan Zhang, Guanglin Zhang, Guqiao Ding, Zhiduo Liu, Bingkun Wang, Huijuan Wu, Genwang Wei, Jipeng Li, Caichao Ye, Siwei Yang, Gang Wang. The Synergistic Effect on the Mimetic Optical Structure of Feline Eyes toward Household Health Monitoring of Acute and Chronic Diseases. ACS Nano 2024, 18 (6) , 4944-4956. https://doi.org/10.1021/acsnano.3c10468
  3. Ajit Kumar Katiyar, Anh Tuan Hoang, Duo Xu, Juyeong Hong, Beom Jin Kim, Seunghyeon Ji, Jong-Hyun Ahn. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chemical Reviews 2024, 124 (2) , 318-419. https://doi.org/10.1021/acs.chemrev.3c00302
  4. Rong Jin, Lujun Huang, Chaobiao Zhou, Jiaoyang Guo, Zhenchu Fu, Jian Chen, Jian Wang, Xin Li, Feilong Yu, Jin Chen, Zengyue Zhao, Xiaoshuang Chen, Wei Lu, Guanhai Li. Toroidal Dipole BIC-Driven Highly Robust Perfect Absorption with a Graphene-Loaded Metasurface. Nano Letters 2023, 23 (19) , 9105-9113. https://doi.org/10.1021/acs.nanolett.3c02958
  5. Xiaoxue Gao, Sidan Fu, Tao Fang, Xiaobai Yu, Haozhe Wang, Qingqing Ji, Jing Kong, Xiaoxin Wang, Jifeng Liu. Synergistic Photon Management and Strain-Induced Band Gap Engineering of Two-Dimensional MoS2 Using Semimetal Composite Nanostructures. ACS Applied Materials & Interfaces 2023, 15 (19) , 23564-23572. https://doi.org/10.1021/acsami.2c23163
  6. Ahmed Elbanna, Hao Jiang, Qundong Fu, Juan-Feng Zhu, Yuanda Liu, Meng Zhao, Dongjue Liu, Samuel Lai, Xian Wei Chua, Jisheng Pan, Ze Xiang Shen, Lin Wu, Zheng Liu, Cheng-Wei Qiu, Jinghua Teng. 2D Material Infrared Photonics and Plasmonics. ACS Nano 2023, 17 (5) , 4134-4179. https://doi.org/10.1021/acsnano.2c10705
  7. Xinke Liu, Jiangchuan Wang, Yuheng Lin, Jie Zhou, Qiang Liu, Wenjie Yu, Yongqing Cai, Xiaohua Li, V. Divakar Botcha, Tingke Rao, Shuangwu Huang. Synthesis of Rhenium-Doped Molybdenum Sulfide by Atmospheric Pressure Chemical Vapor Deposition (CVD) for a High-Performance Photodetector. ACS Omega 2022, 7 (51) , 48301-48309. https://doi.org/10.1021/acsomega.2c06480
  8. Tuhin Kumar Maji, Kumar Vaibhav, Anna Delin, Olle Eriksson, Debjani Karmakar. 1D/2D Hybrid Te/Graphene and Te/MoS2: Multifaceted Broadband Photonics and Green-Energy Applications. ACS Applied Materials & Interfaces 2022, 14 (45) , 51449-51458. https://doi.org/10.1021/acsami.2c13198
  9. Chia-Hung Wu, Chih-Jen Ku, Min-Wen Yu, Jhen-Hong Yang, Tien-Chang Lu, Tzy-Rong Lin, Chan-Shan Yang, Kuo-Ping Chen. Nonscattering Photodetection in the Propagation of Unidirectional Surface Plasmon Polaritons Embedded with Graphene. ACS Applied Materials & Interfaces 2022, 14 (26) , 30299-30305. https://doi.org/10.1021/acsami.2c03214
  10. Vera R. Islamova, Maxim G. Rybin, Alexander A. Tonkikh, Ivan I. Kondrashov, Eugeny A. Guberna, Van Chuc Nguyen, Elena D. Obraztsova. Quantitative Estimation of p- and n-Doping Effects on Electrophysical and Optical Properties of CVD Graphene. The Journal of Physical Chemistry C 2022, 126 (9) , 4620-4629. https://doi.org/10.1021/acs.jpcc.1c09982
  11. Naga Anirudh Peyyety, Sandeep Kumar, Min-Ken Li, Simone Dehm, Ralph Krupke. Tailoring Spectrally Flat Infrared Photodetection with Thickness-Controlled Nanocrystalline Graphite. ACS Applied Materials & Interfaces 2022, 14 (7) , 9525-9534. https://doi.org/10.1021/acsami.1c24306
  12. Shubhrasish Mukherjee, Didhiti Bhattacharya, Sumanti Patra, Sanjukta Paul, Rajib Kumar Mitra, Priya Mahadevan, Atindra Nath Pal, Samit Kumar Ray. High-Responsivity Gate-Tunable Ultraviolet–Visible Broadband Phototransistor Based on Graphene–WS2 Mixed-Dimensional (2D-0D) Heterostructure. ACS Applied Materials & Interfaces 2022, 14 (4) , 5775-5784. https://doi.org/10.1021/acsami.1c18999
  13. Elena Segura-Sanchis, Roberto Fenollosa, Isabelle Rodriguez, Yann Molard, Stéphane Cordier, Marta Feliz, Pedro Atienzar. Octahedral Molybdenum Cluster-Based Single Crystals as Fabry–Pérot Microresonators. Crystal Growth & Design 2022, 22 (1) , 60-65. https://doi.org/10.1021/acs.cgd.1c01144
  14. Gollakota Venkata Sai Manohar, Debanjan Das, Karuna Kar Nanda. Robust Visible-Blind Wearable Infrared Sensor Based on IrP2 Nanoparticle-Embedded Few-Layer Graphene and the Effect of Photogating. ACS Applied Materials & Interfaces 2021, 13 (45) , 54258-54265. https://doi.org/10.1021/acsami.1c15037
  15. Yifei Wang, Vinh X. Ho, Prashant Pradhan, Michael P. Cooney, Nguyen Q. Vinh. Interfacial Photogating Effect for Hybrid Graphene-Based Photodetectors. ACS Applied Nano Materials 2021, 4 (8) , 8539-8545. https://doi.org/10.1021/acsanm.1c01931
  16. Tomojit Chowdhury, Kiyoung Jo, Surendra B. Anantharaman, Todd H. Brintlinger, Deep Jariwala, Thomas J. Kempa. Anomalous Room-Temperature Photoluminescence from Nanostrained MoSe2 Monolayers. ACS Photonics 2021, 8 (8) , 2220-2226. https://doi.org/10.1021/acsphotonics.1c00640
  17. Zhongzheng Huang, Junku Liu, Tianfu Zhang, Yuanhao Jin, Jiaping Wang, Shoushan Fan, Qunqing Li. Interfacial Gated Graphene Photodetector with Broadband Response. ACS Applied Materials & Interfaces 2021, 13 (19) , 22796-22805. https://doi.org/10.1021/acsami.1c02738
  18. Siyan Gao, Liang Liu, Zezhou Lin, Xi Zhang, Dongfeng Diao. High Photoresponsivity of Vertical Graphene Nanosheets/P-Si Enhanced by Electron Trapping at Edge Quantum Wells. The Journal of Physical Chemistry C 2021, 125 (9) , 5392-5398. https://doi.org/10.1021/acs.jpcc.1c00137
  19. Abedin Nematpour, Nicola Lisi, Laura Lancellotti, Rosa Chierchia, Maria Luisa Grilli. Experimental Mid-Infrared Absorption (84%) of Single-Layer Graphene in a Reflective Asymmetric Fabry–Perot Filter: Implications for Photodetectors. ACS Applied Nano Materials 2021, 4 (2) , 1495-1502. https://doi.org/10.1021/acsanm.0c03010
  20. Mengfei Wu, Ting-An Lin, Jan O. Tiepelt, Vladimir Bulović, Marc A. Baldo. Nanocrystal-Sensitized Infrared-to-Visible Upconversion in a Microcavity under Subsolar Flux. Nano Letters 2021, 21 (2) , 1011-1016. https://doi.org/10.1021/acs.nanolett.0c04060
  21. Ye Wang, Wenwei Liu, Wei Xin, Tingting Zou, Xin Zheng, Yanshuang Li, Xiuhua Xie, Xiaojuan Sun, Weili Yu, Zhibo Liu, Shuqi Chen, Jianjun Yang, Chunlei Guo. Back-Reflected Performance-Enhanced Flexible Perovskite Photodetectors through Substrate Texturing with Femtosecond Laser. ACS Applied Materials & Interfaces 2020, 12 (23) , 26614-26623. https://doi.org/10.1021/acsami.0c04124
  22. Wenjie Deng, Xiaoqing Chen, Yufo Li, Congya You, Feihong Chu, Songyu Li, Boxing An, Yang Ma, Lei Liao, Yongzhe Zhang. Strain Effect Enhanced Ultrasensitive MoS2 Nanoscroll Avalanche Photodetector. The Journal of Physical Chemistry Letters 2020, 11 (11) , 4490-4497. https://doi.org/10.1021/acs.jpclett.0c00861
  23. Shaofan Yuan, Renwen Yu, Chao Ma, Bingchen Deng, Qiushi Guo, Xiaolong Chen, Cheng Li, Chen Chen, Kenji Watanabe, Takashi Taniguchi, F. Javier García de Abajo, Fengnian Xia. Room Temperature Graphene Mid-Infrared Bolometer with a Broad Operational Wavelength Range. ACS Photonics 2020, 7 (5) , 1206-1215. https://doi.org/10.1021/acsphotonics.0c00028
  24. Paul Seifert, Xiaobo Lu, Petr Stepanov, José Ramón Durán Retamal, John N. Moore, Kin-Chung Fong, Alessandro Principi, Dmitri K. Efetov. Magic-Angle Bilayer Graphene Nanocalorimeters: Toward Broadband, Energy-Resolving Single Photon Detection. Nano Letters 2020, 20 (5) , 3459-3464. https://doi.org/10.1021/acs.nanolett.0c00373
  25. Junjia Wang, Adrien Rousseau, Elad Eizner, Anne-Laurence Phaneuf-L’Heureux, Léonard Schue, Sébastien Francoeur, Stéphane Kéna-Cohen. Spectral Responsivity and Photoconductive Gain in Thin Film Black Phosphorus Photodetectors. ACS Photonics 2019, 6 (12) , 3092-3099. https://doi.org/10.1021/acsphotonics.9b00951
  26. Lili Cao, Beidou Guo, Yanxia Yu, Xin Zhou, Jian Ru Gong, Shengbin Lei. Two-Dimensional Covalent Organic Framework–Graphene Photodetectors: Insight into the Relationship between the Microscopic Interfacial Structure and Performance. ACS Omega 2019, 4 (20) , 18780-18786. https://doi.org/10.1021/acsomega.9b02739
  27. Peng Luo, Fuwei Zhuge, Fakun Wang, Linyuan Lian, Kailang Liu, Jianbing Zhang, Tianyou Zhai. PbSe Quantum Dots Sensitized High-Mobility Bi2O2Se Nanosheets for High-Performance and Broadband Photodetection Beyond 2 μm. ACS Nano 2019, 13 (8) , 9028-9037. https://doi.org/10.1021/acsnano.9b03124
  28. Krishna Murali, Nithin Abraham, Sarthak Das, Sangeeth Kallatt, Kausik Majumdar. Highly Sensitive, Fast Graphene Photodetector with Responsivity >106 A/W Using a Floating Quantum Well Gate. ACS Applied Materials & Interfaces 2019, 11 (33) , 30010-30018. https://doi.org/10.1021/acsami.9b06835
  29. Adi Levi, Moshe Kirshner, Ofer Sinai, Eldad Peretz, Ohad Meshulam, Arnab Ghosh, Noam Gotlib, Chen Stern, Shaofan Yuan, Fengnian Xia, Doron Naveh. Graphene Schottky Varactor Diodes for High-Performance Photodetection. ACS Photonics 2019, 6 (8) , 1910-1915. https://doi.org/10.1021/acsphotonics.9b00811
  30. Petr A. Obraztsov, Pavel A. Chizhov, Tommi Kaplas, Vladimir V. Bukin, Martti Silvennoinen, Cho-Fan Hsieh, Kuniaki Konishi, Natsuki Nemoto, Makoto Kuwata-Gonokami. Coherent Detection of Terahertz Radiation with Graphene. ACS Photonics 2019, 6 (7) , 1780-1788. https://doi.org/10.1021/acsphotonics.9b00536
  31. Youngbin Lee, Hyunmin Kim, Soo Kim, Dongmok Whang, Jeong Ho Cho. Photogating in the Graphene–Dye–Graphene Sandwich Heterostructure. ACS Applied Materials & Interfaces 2019, 11 (26) , 23474-23481. https://doi.org/10.1021/acsami.9b05280
  32. Xiangzhi Liu, Quan Zhou, Shi Luo, Haiwei Du, Zhensong Cao, Xiaoyu Peng, Wenlin Feng, Jun Shen, Dapeng Wei. Infrared Photodetector Based on the Photothermionic Effect of Graphene-Nanowall/Silicon Heterojunction. ACS Applied Materials & Interfaces 2019, 11 (19) , 17663-17669. https://doi.org/10.1021/acsami.9b03329
  33. Tao Deng, Zhaohao Zhang, Yaxuan Liu, Yingxin Wang, Fang Su, Shasha Li, Yang Zhang, Hao Li, Houjin Chen, Ziran Zhao, Yue Li, Zewen Liu. Three-Dimensional Graphene Field-Effect Transistors as High-Performance Photodetectors. Nano Letters 2019, 19 (3) , 1494-1503. https://doi.org/10.1021/acs.nanolett.8b04099
  34. Alireza Safaei, Sayan Chandra, Michael N. Leuenberger, Debashis Chanda. Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large-Area Nanopatterned Graphene. ACS Nano 2019, 13 (1) , 421-428. https://doi.org/10.1021/acsnano.8b06601
  35. Ping Ma, Yannick Salamin, Benedikt Baeuerle, Arne Josten, Wolfgang Heni, Alexandros Emboras, Juerg Leuthold. Plasmonically Enhanced Graphene Photodetector Featuring 100 Gbit/s Data Reception, High Responsivity, and Compact Size. ACS Photonics 2019, 6 (1) , 154-161. https://doi.org/10.1021/acsphotonics.8b01234
  36. Simone Schuler, Daniel Schall, Daniel Neumaier, Benedikt Schwarz, Kenji Watanabe, Takashi Taniguchi, Thomas Mueller. Graphene Photodetector Integrated on a Photonic Crystal Defect Waveguide. ACS Photonics 2018, 5 (12) , 4758-4763. https://doi.org/10.1021/acsphotonics.8b01128
  37. Maurizio Casalino, Roberto Russo, Carmela Russo, Anna Ciajolo, Emiliano Di Gennaro, Mario Iodice, Giuseppe Coppola. Free-Space Schottky Graphene/Silicon Photodetectors Operating at 2 μm. ACS Photonics 2018, 5 (11) , 4577-4585. https://doi.org/10.1021/acsphotonics.8b01037
  38. Judson D. Ryckman . Random Coherent Perfect Absorption with 2D Atomic Materials Mediated by Anderson Localization. ACS Photonics 2018, 5 (2) , 574-580. https://doi.org/10.1021/acsphotonics.7b01135
  39. Yan Liu, Bannur Nanjunda Shivananju, Yusheng Wang, Yupeng Zhang, Wenzhi Yu, Si Xiao, Tian Sun, Weiliang Ma, Haoran Mu, Shenghuang Lin, Han Zhang, Yuerui Lu, Cheng-Wei Qiu, Shaojuan Li, and Qiaoliang Bao . Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Applied Materials & Interfaces 2017, 9 (41) , 36137-36145. https://doi.org/10.1021/acsami.7b09889
  40. Yuan Yang, Grigory Kolesov, Lucas Kocia, and Eric J. Heller . Reassessing Graphene Absorption and Emission Spectroscopy. Nano Letters 2017, 17 (10) , 6077-6082. https://doi.org/10.1021/acs.nanolett.7b02500
  41. David M. Coles, Qiang Chen, Lucas C. Flatten, Jason M. Smith, Klaus Müllen, Akimitsu Narita, and David G. Lidzey . Strong Exciton–Photon Coupling in a Nanographene Filled Microcavity. Nano Letters 2017, 17 (9) , 5521-5525. https://doi.org/10.1021/acs.nanolett.7b02211
  42. Kuan-Chang Chiu, Abram L. Falk, Po-Hsun Ho, Damon B. Farmer, George Tulevski, Yi-Hsien Lee, Phaedon Avouris, and Shu-Jen Han . Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes. Nano Letters 2017, 17 (9) , 5641-5645. https://doi.org/10.1021/acs.nanolett.7b02522
  43. Sarah Riazimehr, Satender Kataria, Rainer Bornemann, Peter Haring Bolívar, Francisco Javier Garcia Ruiz, Olof Engström, Andres Godoy, and Max C. Lemme . High Photocurrent in Gated Graphene–Silicon Hybrid Photodiodes. ACS Photonics 2017, 4 (6) , 1506-1514. https://doi.org/10.1021/acsphotonics.7b00285
  44. Hao Li, Lei Ye, and Jianbin Xu . High-Performance Broadband Floating-Base Bipolar Phototransistor Based on WSe2/BP/MoS2 Heterostructure. ACS Photonics 2017, 4 (4) , 823-829. https://doi.org/10.1021/acsphotonics.6b00778
  45. Jaehun Han, Youngbin Lee, S. Appalakondaiah, Jinshu Li, Xing Gao, Youngjae Yoo, Dongmok Whang, Euyheon Hwang, and Jeong Ho Cho . Photoresponse of Physically Oxidized Graphene Sensitized by an Organic Dye. The Journal of Physical Chemistry C 2017, 121 (14) , 8188-8195. https://doi.org/10.1021/acs.jpcc.7b00712
  46. Che Chen, Nathan Youngblood, Ruoming Peng, Daehan Yoo, Daniel A. Mohr, Timothy W. Johnson, Sang-Hyun Oh, and Mo Li . Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano Letters 2017, 17 (2) , 985-991. https://doi.org/10.1021/acs.nanolett.6b04332
  47. Siwapon Srisonphan . Hybrid Graphene–Si-Based Nanoscale Vacuum Field Effect Phototransistors. ACS Photonics 2016, 3 (10) , 1799-1808. https://doi.org/10.1021/acsphotonics.6b00610
  48. Nurbek Kakenov, Osman Balci, Taylan Takan, Vedat Ali Ozkan, Hakan Altan, and Coskun Kocabas . Observation of Gate-Tunable Coherent Perfect Absorption of Terahertz Radiation in Graphene. ACS Photonics 2016, 3 (9) , 1531-1535. https://doi.org/10.1021/acsphotonics.6b00240
  49. Lujun Huang, Guoqing Li, Alper Gurarslan, Yiling Yu, Ronny Kirste, Wei Guo, Junjie Zhao, Ramon Collazo, Zlatko Sitar, Gregory N. Parsons, Michael Kudenov, and Linyou Cao . Atomically Thin MoS2 Narrowband and Broadband Light Superabsorbers. ACS Nano 2016, 10 (8) , 7493-7499. https://doi.org/10.1021/acsnano.6b02195
  50. Shuang Liang, Ze Ma, Gongtao Wu, Nan Wei, Le Huang, Huixin Huang, Huaping Liu, Sheng Wang, and Lian-Mao Peng . Microcavity-Integrated Carbon Nanotube Photodetectors. ACS Nano 2016, 10 (7) , 6963-6971. https://doi.org/10.1021/acsnano.6b02898
  51. Ilya Goykhman, Ugo Sassi, Boris Desiatov, Noa Mazurski, Silvia Milana, Domenico de Fazio, Anna Eiden, Jacob Khurgin, Joseph Shappir, Uriel Levy, and Andrea C. Ferrari . On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain. Nano Letters 2016, 16 (5) , 3005-3013. https://doi.org/10.1021/acs.nanolett.5b05216
  52. Fei Yi, Mingliang Ren, Jason C. Reed, Hai Zhu, Jiechang Hou, Carl H. Naylor, A. T. Charlie Johnson, Ritesh Agarwal, and Ertugrul Cubukcu . Optomechanical Enhancement of Doubly Resonant 2D Optical Nonlinearity. Nano Letters 2016, 16 (3) , 1631-1636. https://doi.org/10.1021/acs.nanolett.5b04448
  53. T.J. Echtermeyer, S. Milana, U. Sassi, A. Eiden, M. Wu, E. Lidorikis, and A.C. Ferrari . Surface Plasmon Polariton Graphene Photodetectors. Nano Letters 2016, 16 (1) , 8-20. https://doi.org/10.1021/acs.nanolett.5b02051
  54. Jiayue Tong, Martin Muthee, Shao-Yu Chen, Sigfrid K. Yngvesson, and Jun Yan . Antenna Enhanced Graphene THz Emitter and Detector. Nano Letters 2015, 15 (8) , 5295-5301. https://doi.org/10.1021/acs.nanolett.5b01635
  55. Xinghan Cai, Andrei B. Sushkov, Mohammad M. Jadidi, Luke O. Nyakiti, Rachael L. Myers-Ward, D. Kurt Gaskill, Thomas E. Murphy, Michael S. Fuhrer, and H. Dennis Drew . Plasmon-Enhanced Terahertz Photodetection in Graphene. Nano Letters 2015, 15 (7) , 4295-4302. https://doi.org/10.1021/acs.nanolett.5b00137
  56. Yu-Lun Liu, Chen-Chieh Yu, Keng-Te Lin, Tai-Chi Yang, En-Yun Wang, Hsuen-Li Chen, Li-Chyong Chen, and Kuei-Hsien Chen . Transparent, Broadband, Flexible, and Bifacial-Operable Photodetectors Containing a Large-Area Graphene–Gold Oxide Heterojunction. ACS Nano 2015, 9 (5) , 5093-5103. https://doi.org/10.1021/acsnano.5b00212
  57. Sidong Lei, Fangfang Wen, Liehui Ge, Sina Najmaei, Antony George, Yongji Gong, Weilu Gao, Zehua Jin, Bo Li, Jun Lou, Junichiro Kono, Robert Vajtai, Pulickel Ajayan, and Naomi J. Halas . An Atomically Layered InSe Avalanche Photodetector. Nano Letters 2015, 15 (5) , 3048-3055. https://doi.org/10.1021/acs.nanolett.5b00016
  58. Le Huang, Zhiyong Zhang, Zishen Li, Bingyan Chen, Xiaomeng Ma, Lijun Dong, and Lian-Mao Peng . Multifunctional Graphene Sensors for Magnetic and Hydrogen Detection. ACS Applied Materials & Interfaces 2015, 7 (18) , 9581-9588. https://doi.org/10.1021/acsami.5b01070
  59. Ye Wang, Yuting Chen, Tushar Kumeria, Fuyuan Ding, Andreas Evdokiou, Dusan Losic, and Abel Santos . Facile Synthesis of Optical Microcavities by a Rationally Designed Anodization Approach: Tailoring Photonic Signals by Nanopore Structure. ACS Applied Materials & Interfaces 2015, 7 (18) , 9879-9888. https://doi.org/10.1021/acsami.5b01885
  60. Vrinda Thareja, Ju-Hyung Kang, Hongtao Yuan, Kaveh M. Milaninia, Harold Y. Hwang, Yi Cui, Pieter G. Kik, and Mark L. Brongersma . Electrically Tunable Coherent Optical Absorption in Graphene with Ion Gel. Nano Letters 2015, 15 (3) , 1570-1576. https://doi.org/10.1021/nl503431d
  61. Zhongyang Li, Serkan Butun, and Koray Aydin . Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics 2015, 2 (2) , 183-188. https://doi.org/10.1021/ph500410u
  62. Der-Hsien Lien, Jeong Seuk Kang, Matin Amani, Kevin Chen, Mahmut Tosun, Hsin-Ping Wang, Tania Roy, Michael S. Eggleston, Ming C. Wu, Madan Dubey, Si-Chen Lee, Jr-Hau He, and Ali Javey . Engineering Light Outcoupling in 2D Materials. Nano Letters 2015, 15 (2) , 1356-1361. https://doi.org/10.1021/nl504632u
  63. S. Schwarz, S. Dufferwiel, P. M. Walker, F. Withers, A. A. P. Trichet, M. Sich, F. Li, E. A. Chekhovich, D. N. Borisenko, N. N. Kolesnikov, K. S. Novoselov, M. S. Skolnick, J. M. Smith, D. N. Krizhanovskii, and A. I. Tartakovskii . Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities. Nano Letters 2014, 14 (12) , 7003-7008. https://doi.org/10.1021/nl503312x
  64. Yu Yao, Raji Shankar, Mikhail A. Kats, Yi Song, Jing Kong, Marko Loncar, and Federico Capasso . Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators. Nano Letters 2014, 14 (11) , 6526-6532. https://doi.org/10.1021/nl503104n
  65. Oleg L. Berman, Roman Ya. Kezerashvili, and German V. Kolmakov . Harnessing the Polariton Drag Effect to Design an Electrically Controlled Optical Switch. ACS Nano 2014, 8 (10) , 10437-10447. https://doi.org/10.1021/nn503787q
  66. Jiabao Zheng, Robert A. Barton, and Dirk Englund . Broadband Coherent Absorption in Chirped-Planar-Dielectric Cavities for 2D-Material-Based Photovoltaics and Photodetectors. ACS Photonics 2014, 1 (9) , 768-774. https://doi.org/10.1021/ph500107b
  67. Daniel Schall, Daniel Neumaier, Muhammad Mohsin, Bartos Chmielak, Jens Bolten, Caroline Porschatis, Andreas Prinzen, Christopher Matheisen, Wolfgang Kuebart, Bernhard Junginger, Wolfgang Templ, Anna Lena Giesecke, and Heinrich Kurz . 50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems. ACS Photonics 2014, 1 (9) , 781-784. https://doi.org/10.1021/ph5001605
  68. Seong Hun Yu, Youngbin Lee, Sung Kyu Jang, Jinyeong Kang, Jiwon Jeon, Changgu Lee, Jun Young Lee, Hyungjun Kim, Euyheon Hwang, Sungjoo Lee, and Jeong Ho Cho . Dye-Sensitized MoS2 Photodetector with Enhanced Spectral Photoresponse. ACS Nano 2014, 8 (8) , 8285-8291. https://doi.org/10.1021/nn502715h
  69. Nan Liu, He Tian, Gregor Schwartz, Jeffrey B.-H. Tok, Tian-Ling Ren, and Zhenan Bao . Large-Area, Transparent, and Flexible Infrared Photodetector Fabricated Using P-N Junctions Formed by N-Doping Chemical Vapor Deposition Grown Graphene. Nano Letters 2014, 14 (7) , 3702-3708. https://doi.org/10.1021/nl500443j
  70. T. J. Echtermeyer, P. S. Nene, M. Trushin, R. V. Gorbachev, A. L. Eiden, S. Milana, Z. Sun, J. Schliemann, E. Lidorikis, K. S. Novoselov, and A. C. Ferrari . Photothermoelectric and Photoelectric Contributions to Light Detection in Metal–Graphene–Metal Photodetectors. Nano Letters 2014, 14 (7) , 3733-3742. https://doi.org/10.1021/nl5004762
  71. Yu Yao, Raji Shankar, Patrick Rauter, Yi Song, Jing Kong, Marko Loncar, and Federico Capasso . High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection. Nano Letters 2014, 14 (7) , 3749-3754. https://doi.org/10.1021/nl500602n
  72. Prarthana Gowda, Tushar Sakorikar, Siva K. Reddy, Darim B. Ferry, and Abha Misra . Defect-Induced Enhancement and Quenching Control of Photocurrent in Few-Layer Graphene Photodetectors. ACS Applied Materials & Interfaces 2014, 6 (10) , 7485-7490. https://doi.org/10.1021/am500865f
  73. Zhenhua Sun and Haixin Chang . Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology. ACS Nano 2014, 8 (5) , 4133-4156. https://doi.org/10.1021/nn500508c
  74. Nathan Youngblood, Yoska Anugrah, Rui Ma, Steven J. Koester, and Mo Li . Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides. Nano Letters 2014, 14 (5) , 2741-2746. https://doi.org/10.1021/nl500712u
  75. Jessica R. Piper and Shanhui Fan . Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. ACS Photonics 2014, 1 (4) , 347-353. https://doi.org/10.1021/ph400090p
  76. Tony Low and Phaedon Avouris . Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano 2014, 8 (2) , 1086-1101. https://doi.org/10.1021/nn406627u
  77. Fucai Liu, Hidekazu Shimotani, Hui Shang, Thangavel Kanagasekaran, Viktor Zólyomi, Neil Drummond, Vladimir I. Fal’ko, and Katsumi Tanigaki . High-Sensitivity Photodetectors Based on Multilayer GaTe Flakes. ACS Nano 2014, 8 (1) , 752-760. https://doi.org/10.1021/nn4054039
  78. Goki Eda and Stefan A. Maier . Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano 2013, 7 (7) , 5660-5665. https://doi.org/10.1021/nn403159y
  79. Giuseppe Pirruccio, Luis Martín Moreno, Gabriel Lozano, and Jaime Gómez Rivas . Coherent and Broadband Enhanced Optical Absorption in Graphene. ACS Nano 2013, 7 (6) , 4810-4817. https://doi.org/10.1021/nn4012253
  80. Dung-Sheng Tsai, Keng-Ku Liu, Der-Hsien Lien, Meng-Lin Tsai, Chen-Fang Kang, Chin-An Lin, Lain-Jong Li, and Jr-Hau He . Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano 2013, 7 (5) , 3905-3911. https://doi.org/10.1021/nn305301b
  81. PingAn Hu, Lifeng Wang, Mina Yoon, Jia Zhang, Wei Feng, Xiaona Wang, Zhenzhong Wen, Juan Carlos Idrobo, Yoshiyuki Miyamoto, David B. Geohegan, and Kai Xiao . Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates. Nano Letters 2013, 13 (4) , 1649-1654. https://doi.org/10.1021/nl400107k
  82. Xiaohong An, Fangze Liu, Yung Joon Jung, and Swastik Kar . Tunable Graphene–Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Letters 2013, 13 (3) , 909-916. https://doi.org/10.1021/nl303682j
  83. Arka Majumdar, Jonghwan Kim, Jelena Vuckovic, and Feng Wang . Electrical Control of Silicon Photonic Crystal Cavity by Graphene. Nano Letters 2013, 13 (2) , 515-518. https://doi.org/10.1021/nl3039212
  84. Xuetao Gan, Ren-Jye Shiue, Yuanda Gao, Kin Fai Mak, Xinwen Yao, Luozhou Li, Attila Szep, Dennis Walker, Jr., James Hone, Tony F. Heinz, and Dirk Englund . High-Contrast Electrooptic Modulation of a Photonic Crystal Nanocavity by Electrical Gating of Graphene. Nano Letters 2013, 13 (2) , 691-696. https://doi.org/10.1021/nl304357u
  85. Xuetao Gan, Kin Fai Mak, Yuanda Gao, Yumeng You, Fariba Hatami, James Hone, Tony F. Heinz, and Dirk Englund . Strong Enhancement of Light–Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity. Nano Letters 2012, 12 (11) , 5626-5631. https://doi.org/10.1021/nl302746n
  86. Zhihao Yuan, Yanlei Liu, Xueyang Zong, Zhiying Chen, Yufang Liu. Anisotropic perfect absorber at mid-infrared wavelengths using black phosphorus-based metasurfaces. Optics & Laser Technology 2024, 175 , 110778. https://doi.org/10.1016/j.optlastec.2024.110778
  87. Xiong Deng, Guanghui Li, Yanli Xu, Chaomeng Chen, Jiangtao Liu, Zhi-Yuan Li. High-resolution imageable miniaturized spectrometer based on graphene micro-electro-mechanical systems. Optics and Lasers in Engineering 2024, 178 , 108244. https://doi.org/10.1016/j.optlaseng.2024.108244
  88. Mostafa Vafaei, Melih Can Tasdelen, Farid Sayar Irani, Murat Kaya Yapici. Performance Evaluation of a MEMS-Compatible Flexible Graphene Bolometer for Chamberless NDIR Gas Sensing. IEEE Sensors Letters 2024, 8 (6) , 1-4. https://doi.org/10.1109/LSENS.2024.3400886
  89. Zeyang Zhang, Cunzhi Sun, Baihong Zhu, Jiadong Chen, Zhao Fu, Zihao Li, Shaoxiong Wu, Yuning Zhang, Jiafa Cai, Rongdun Hong, Dingqu Lin, Deyi Fu, Zhengyun Wu, Xiaping Chen, Feng Zhang. High‐Performance SiC/Graphene UV‐Visible Band Photodetectors with Grating Structure and Asymmetrical Electrodes for Optoelectronic Logic Gate. Advanced Optical Materials 2024, 1 https://doi.org/10.1002/adom.202400469
  90. Yun Qiu, Xin Zhang, Kangni Wang, Lin Yong Qian. Electrically tunable dual-channel absorber based on a graphene integrated slanted grating cavity. Optics Communications 2024, 559 , 130406. https://doi.org/10.1016/j.optcom.2024.130406
  91. Arash Vaghef-Koodehi, Mahmoud Nikoufard, Ali Rostami-Khomami. Voltage-tunable graphene-InP schottky photodetector with enhanced responsivity using plasmonic waveguide integration. Physica Scripta 2024, 99 (5) , 055012. https://doi.org/10.1088/1402-4896/ad35f5
  92. Jintao Fu, Zhongmin Guo, Changbin Nie, Feiying Sun, Genglin Li, Shuanglong Feng, Xingzhan Wei. Schottky infrared detectors with optically tunable barriers beyond the internal photoemission limit. The Innovation 2024, 5 (3) , 100600. https://doi.org/10.1016/j.xinn.2024.100600
  93. Rajesh Jana, Sagnik Ghosh, Ritamay Bhunia, Avijit Chowdhury. Recent developments in the state-of-the-art optoelectronic synaptic devices based on 2D materials: a review. Journal of Materials Chemistry C 2024, 12 (15) , 5299-5338. https://doi.org/10.1039/D4TC00371C
  94. Luchi Tang, Junxue Chen, Tao Tang, Liu Wang, Zhonggang Xiong. Actively modulating near-infrared absorption of monolayer graphene in a compound grating-coupled waveguide structure. Physica E: Low-dimensional Systems and Nanostructures 2024, 158 , 115889. https://doi.org/10.1016/j.physe.2023.115889
  95. Yuning Li, Danke Chen, Xiaoqiu Tang, Lingbing Kong, Linan Li, Tao Deng. 3D-structured photodetectors based on 2D materials. Applied Physics Letters 2024, 124 (13) https://doi.org/10.1063/5.0196890
  96. Pulimi Mahesh, Damodar Panigrahy, Chittaranjan Nayak. Single-layer graphene-based electrically-magnetically tunable multi-mode and broadband terahertz absorber: A comprehensive study. Optical Materials 2024, 149 , 115045. https://doi.org/10.1016/j.optmat.2024.115045
  97. Qian Cai, Jiachi Ye, Belal Jahannia, Hao Wang, Chandraman Patil, Rasul Al Foysal Redoy, Abdulrahman Sidam, Sinan Sameer, Sultan Aljohani, Muhammed Umer, Aseel Alsulami, Essa Shibli, Bassim Arkook, Yas Al-Hadeethi, Hamed Dalir, Elham Heidari. Comprehensive Study and Design of Graphene Transistor. Micromachines 2024, 15 (3) , 406. https://doi.org/10.3390/mi15030406
  98. Duc Anh Ngo, Nhat Minh Nguyen, Cong Khanh Tran, Thi Thanh Van Tran, Nhu Hoa Thi Tran, Thi Thu Thao Bui, Le Thai Duy, Vinh Quang Dang. A study on a broadband photodetector based on hybrid 2D copper oxide/reduced graphene oxide. Nanoscale Advances 2024, 6 (5) , 1460-1466. https://doi.org/10.1039/D3NA00796K
  99. Xiao He, Yilun Wang, Zhuiri Peng, Zheng Li, Xiangxiang Yu, Langlang Xu, Xinyu Huang, Xiaohan Meng, Wenhao Shi, Xiaoyan Gao, Jihao Zhao, Jianbin Xu, Lei Tong, Xinliang Zhang, Xiangshui Miao, Lei Ye. On-chip two-dimensional material-based waveguide-integrated photodetectors. Journal of Materials Chemistry C 2024, 12 (7) , 2279-2316. https://doi.org/10.1039/D3TC03679K
  100. Jialin Li, Qing Li, Junjian Mi, Zhuan Xu, Yu Xie, Wei Tang, Huanfeng Zhu, Linjun Li, Limin Tong. Ultrabroadband High Photoresponsivity at Room Temperature Based on Quasi‐1D Pseudogap System (TaSe 4 ) 2 I. Advanced Science 2024, 11 (7) https://doi.org/10.1002/advs.202302886
Load more citations
  • Abstract

    Figure 1

    Figure 1. (a) Schematic drawing of a graphene microcavity photodetector. Distributed Bragg mirrors form a high-finesse optical cavity. The incident light is trapped in the cavity and passes multiple times through the graphene. The graphene sheet is shown in red, and the metal contacts are in yellow. (b) Electric field amplitude inside the cavity. (c) Calculated dependence of optical absorption in a single-layer graphene sheet on the reflectivity of the top mirror. The numbers next to the symbols indicate the number of SiO2/Si3N4 layer pairs that are necessary to achieve the respective reflectivity. Inset: Measured reflectivity of the AlAs/Al0.10Ga0.90As bottom mirror.

    Figure 2

    Figure 2. Reflectivity of the sample. The dip at 850 nm wavelength originates from absorption of the Fabry–Pérot microcavity mode.

    Figure 3

    Figure 3. (a) Photocurrent map taken at a bias voltage of VBias = 2 V between the source and drain electrodes. The gate electrode (substrate) remains unbiased. The dashed lines indicate the source and drain electrodes. The schematic above the photocurrent map illustrates the band diagram under this biasing condition. (b) Microscope image of a graphene photodetector and electrical setup for photocurrent measurements. The scale bar is 5 μm long. (c) Spectral response of the single-layer graphene device. The dashed lines show calculation results: reflection R (red), transmission T (green), and absorption A (blue). The solid lines are measurement results: reflection (red), photocurrent (blue). A strong and spectrally narrow photoresponse is observed at the cavity resonance (855 nm wavelength). Inset: Theoretical result for normal incidence light.

    Figure 4

    Figure 4. The meaning of the curves is the same as in Figure 3c, but the results are shown for a bilayer graphene device. A maximum responsivity of 21 mA/W is achieved. In addition, the spectral photoresponse of a conventional (without cavity) bilayer graphene detector is shown as solid red line. The response of the conventional device is approximately independent of wavelength, but more than an order of magnitude weaker than that of the microcavity device.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 43 other publications.

    1. 1
      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666 669
    2. 2
      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197 200
    3. 3
      Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics 2010, 4, 611 622
    4. 4
      Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Nano Lett. 2008, 8, 1704 1708
    5. 5
      Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Özyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574 578
    6. 6
      Wang, X.; Zhi, L.; Tsao, N.; Tomović, Ž.; Li, J.; Müllen, K. Angew. Chem. 2008, 47, 2990 2992
    7. 7
      Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Appl. Phys. Lett. 2008, 92, 263302
    8. 8
      De Arco, L. G.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. ACS Nano 2010, 4, 2865 2873
    9. 9
      Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. ACS Nano 2010, 4, 43 48
    10. 10
      Mueller, T.; Xia, F.; Avouris, Ph. Nat. Photonics 2010, 4, 297 301
    11. 11
      Xia, F.; Mueller, T.; Lin, Y.; Valdes-Garcia, A.; Avouris, Ph. Nat. Nanotechnol. 2009, 4, 839 843
    12. 12
      Echtermeyer, T. J.; Britnell, L.; Jasnos, P. K.; Lombardo, A.; Gorbachev, R. V.; Grigorenko, A. N.; Geim, A. K.; Ferrari, A. C.; Novoselov, K. S. Nat. Commun. 2011, 2, 458
    13. 13
      Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X. Nat. Commun. 2011, 2, 579 585
    14. 14
      Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. Nature 2011, 474, 64 67
    15. 15
      Thongrattanasiri, S.; Koppens, F. H. L.; García de Abajo, F. J. Phys. Rev. Lett. 2012, 108, 047401
    16. 16
      Yan, H.; Li, X.; Chandra, B.; Tulevski, G.; Wu, Y.; Freitag, M.; Zhu, W.; Avouris, Ph.; Xia, F. Nat. Nanotechnol. 2012; DOI:  DOI: 10.1038/nnano.2012.59 .
    17. 17
      Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Opt. Express 2009, 17, 17630 17635
    18. 18
      Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. ACS Nano 2010, 4, 803 810
    19. 19
      Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, P.; Gatti, F.; Koppens, F. H. L. Arxiv:1112.4730v1.
    20. 20
      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308
    21. 21
      Handbook of Optical Constants of Solids; Palik, E. D., Ed.; Academic Press: New York, 1985.
    22. 22
      Ishio, H.; Minowa, J.; Nosu, K. J. Lightwave Technol. 1984, 2, 448 463
    23. 23
      Ünlü, M. S.; Strite, S. J. Appl. Phys. 1995, 78, 607 638
    24. 24
      Schubert, E. F.; Wang, Y.-H.; Cho, A. Y.; Tu, L.-W.; Zydzik, G. J. Appl. Phys. Lett. 1992, 60, 921 923
    25. 25
      Maier, T.; Strasser, G.; Gornik, E. IEEE Photonics Technol. Lett 2000, 12, 119 121
    26. 26
      Xia, F.; Steiner, M.; Lin, Y.; Avouris, Ph. Nat. Nanotechnol. 2008, 3, 609 613
    27. 27
      Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Loehneysen, H.; Avouris, Ph.; Krupke, R. Nat. Nanotechnol. 2012; DOI:  DOI: 10.1038/nnano.2012.60 .
    28. 28
      Ferreira, A.; Peres, N. M. R.; Ribeiro, R. M.; Stauber, T. Phys. Rev. B 2012, 85, 115438
    29. 29
      Pepeljugoski, P.; Kuchta, D.; Kwark, Y.; Pleunis, P.; Kuyt, G. IEEE Photonics Technol. Lett. 2002, 14, 717 719
    30. 30
      Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Phys. Rev. Lett. 2008, 101, 196405
    31. 31
      Heiss, W.; Schwarzl, T.; Roither, J.; Springholz, G.; Aigle, M.; Pascher, H.; Biermann, K.; Reimann, K. Prog. Quantum Electron. 2001, 25, 193 228
    32. 32
      Dorsaz, J.; Carlin, J.-F.; Gradecak, S.; Ilegems, M. J. Appl. Phys. 2005, 97, 084505
    33. 33
      Lin, Y.; Jenkins, K. A.; Valdes-Garcia, A.; Small, J. P.; Farmer, D. B.; Avouris, Ph. Nano Lett. 2009, 9, 422 426
    34. 34
      Bruna, M.; Borini, S. Appl. Phys. Lett. 2009, 94, 031901
    35. 35
      Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Nano Lett. 2010, 10, 562 566
    36. 36
      Lemme, M. C.; Koppens, F. H. L.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Nano Lett. 2010, 11, 4134 4137
    37. 37
      Gabor, N. M.; Song, J. C. W.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Science 2011, 334, 648 652
    38. 38
      Prechtel, L.; Song, L.; Schuh, D.; Ajayan, P.; Wegscheider, W.; Holleitner, A. W. Nat. Commun. 2012, 3, 646 652
    39. 39
      Lee, E. J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K. Nat. Nanotechnol. 2008, 3, 486 490
    40. 40
      Xia, F.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y.; Tsang, J.; Perebeinos, V.; Avouris, Ph. Nano Lett. 2009, 9, 1039 1044
    41. 41
      Mueller, T.; Xia, F.; Freitag, M.; Tsang, J.; Avouris, Ph. Phys. Rev. B 2009, 79, 245430
    42. 42
      Park, J.; Ahn, Y. H.; Ruiz-Vargasv, C. Nano Lett. 2009, 9, 1742 1746
    43. 43
      Urich, A.; Unterrainer, K.; Mueller, T. Nano Lett. 2011, 11, 2804 2808
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Detailed device structure and Raman spectrum. This material is available free of charge via the Internet at http://pubs.acs.org.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect