ACS Publications. Most Trusted. Most Cited. Most Read
Quantum Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer
My Activity
    Letter

    Quantum Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer
    Click to copy article linkArticle link copied!

    View Author Information
    Institut des Sciences Moléculaires d’Orsay, UMR 8214 CNRS-Université Paris-Sud, Bâtiment 351, 91405 Orsay Cedex, France
    Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
    § IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
    Department of Physics and Astronomy, M.S. 61 Laboratory for Nanophotonics, Rice University, Houston, Texas 77251-1892, United States
    Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 3, 1333–1339
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl300269c
    Published February 9, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A fully quantum mechanical investigation using time-dependent density functional theory reveals that the field enhancement in a coupled nanoparticle dimer can be strongly affected by nonlinear effects. We show that both classical as well as linear quantum mechanical descriptions of the system fail even for moderate incident light intensities. An interparticle current resulting from the strong field photoemission tends to neutralize the plasmon-induced surface charge densities on the opposite sides of the nanoparticle junction. Thus, the coupling between the two nanoparticles and the field enhancement is reduced as compared to linear theory. A substantial nonlinear effect is revealed already at incident powers of 109 W/cm2 for interparticle separation distances as large as 1 nm and down to the touching limit.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details on the TDDFT calculations. Classical calculation of the optical response of the nanoparticle dimer. Field enhancement of the nanoparticle dimer. Density dynamics. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 432 publications.

    1. Pu Zhang, Christos Tserkezis, N. Asger Mortensen. Quantum-Hydrodynamic Modal Perspective on Plasmonic Gap Structures. The Journal of Physical Chemistry C 2025, Article ASAP.
    2. Piero Lafiosca, Luca Nicoli, Silvio Pipolo, Stefano Corni, Tommaso Giovannini, Chiara Cappelli. Real-Time Formulation of Atomistic Electromagnetic Models for Plasmonics. The Journal of Physical Chemistry C 2024, 128 (41) , 17513-17525. https://doi.org/10.1021/acs.jpcc.4c04002
    3. Hoa Duc Trinh, Seokheon Kim, Seokhyun Yun, Ly Thi Minh Huynh, Sangwoon Yoon. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2024, 16 (1) , 1805-1814. https://doi.org/10.1021/acsami.3c14487
    4. Marina Quijada, Antton Babaze, Javier Aizpurua, Andrei G. Borisov. Nonlinear Optical Response of a Plasmonic Nanoantenna to Circularly Polarized Light: Rotation of Multipolar Charge Density and Near-Field Spin Angular Momentum Inversion. ACS Photonics 2023, 10 (11) , 3963-3975. https://doi.org/10.1021/acsphotonics.3c00783
    5. Javier Rodríguez-Álvarez, Amílcar Labarta, Juan Carlos Idrobo, Rossana Dell’Anna, Alessandro Cian, Damiano Giubertoni, Xavier Borrisé, Albert Guerrero, Francesc Perez-Murano, Arantxa Fraile Rodríguez, Xavier Batlle. Imaging of Antiferroelectric Dark Modes in an Inverted Plasmonic Lattice. ACS Nano 2023, 17 (9) , 8123-8132. https://doi.org/10.1021/acsnano.2c11016
    6. Egor Kokin, Hyun Ji An, Donghoon Koo, Seungyeon Han, Keumrai Whang, Taewook Kang, Inhee Choi, Luke P. Lee. Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity. Nano Letters 2022, 22 (24) , 9861-9868. https://doi.org/10.1021/acs.nanolett.2c02917
    7. Jesil Jose, Ludmilla Schumacher, Mandana Jalali, Georg Haberfehlner, Jan Taro Svejda, Daniel Erni, Sebastian Schlücker. Particle Size-Dependent Onset of the Tunneling Regime in Ideal Dimers of Gold Nanospheres. ACS Nano 2022, 16 (12) , 21377-21387. https://doi.org/10.1021/acsnano.2c09680
    8. Dong Su, Siqi Yang, Yuxuan Xiong, Xi Yang, Xie Yu, Pei Zeng, Yuqing Wu, Yutian Cheng, Tao Zhang, Haiping Shen, Huageng Liang, Guangzu Zhang, Boxiang Song, Shenglin Jiang. Ordered Gold Nanocluster-Based Plasmonic Hotspot Arrays for SERS Detection of Single Molecules. ACS Applied Nano Materials 2022, 5 (11) , 17067-17077. https://doi.org/10.1021/acsanm.2c03959
    9. Nhat M. Ngo, Hung-Vu Tran, T. Randall Lee. Plasmonic Nanostars: Systematic Review of their Synthesis and Applications. ACS Applied Nano Materials 2022, 5 (10) , 14051-14091. https://doi.org/10.1021/acsanm.2c02533
    10. Tommaso Giovannini, Luca Bonatti, Piero Lafiosca, Luca Nicoli, Matteo Castagnola, Pablo Grobas Illobre, Stefano Corni, Chiara Cappelli. Do We Really Need Quantum Mechanics to Describe Plasmonic Properties of Metal Nanostructures?. ACS Photonics 2022, 9 (9) , 3025-3034. https://doi.org/10.1021/acsphotonics.2c00761
    11. Stephen J. Bauman, Ahmad A. Darweesh, Miles Furr, Meredith Magee, Christos Argyropoulos, Joseph B. Herzog. Tunable SERS Enhancement via Sub-nanometer Gap Metasurfaces. ACS Applied Materials & Interfaces 2022, 14 (13) , 15541-15548. https://doi.org/10.1021/acsami.2c01335
    12. Angela L. Paoletta, E-Dean Fung, Latha Venkataraman. Gap Size-Dependent Plasmonic Enhancement in Electroluminescent Tunnel Junctions. ACS Photonics 2022, 9 (2) , 688-693. https://doi.org/10.1021/acsphotonics.1c01757
    13. Maxime S. Maurice, Noémi Barros, Hamid Kachkachi. Orientational Selectivity of Hot Electrons Generated by a Dimer of Plasmonic Nanoparticles. The Journal of Physical Chemistry C 2021, 125 (43) , 23991-24000. https://doi.org/10.1021/acs.jpcc.1c04172
    14. Antton Babaze, Ruben Esteban, Andrei G. Borisov, Javier Aizpurua. Electronic Exciton–Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture. Nano Letters 2021, 21 (19) , 8466-8473. https://doi.org/10.1021/acs.nanolett.1c03202
    15. Giulia Giannone, Szymon Śmiga, Stefania D’Agostino, Eduardo Fabiano, Fabio Della Sala. Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2021, 125 (33) , 7246-7259. https://doi.org/10.1021/acs.jpca.1c05384
    16. Krishna Prasad Koirala, Hernando Garcia, Venkatanarayana Prasad Sandireddy, Ramki Kalyanaraman, Gerd Duscher. Bimetallic Fe–Ag Nanopyramid Arrays for Optical Communication Applications. ACS Applied Nano Materials 2021, 4 (6) , 5758-5767. https://doi.org/10.1021/acsanm.1c00547
    17. Vladimir Smirnov, Sven Stephan, Michael Westphal, Daniel Emmrich, André Beyer, Armin Gölzhäuser, Christoph Lienau, Martin Silies. Transmitting Surface Plasmon Polaritons across Nanometer-Sized Gaps by Optical near-Field Coupling. ACS Photonics 2021, 8 (3) , 832-840. https://doi.org/10.1021/acsphotonics.0c01797
    18. Mengjie Zheng, Yi Yang, Di Zhu, Yiqin Chen, Zhiwen Shu, Karl K. Berggren, Marin Soljačić, Huigao Duan. Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion. Nano Letters 2021, 21 (1) , 91-98. https://doi.org/10.1021/acs.nanolett.0c03293
    19. Duoduo Zhang, Hao Cui, Chenyang Zhu, Kefan Lv, Haoran Zhang, Xiaofeng Liu, Jianrong Qiu. Nanoscale Engineering of Optical nonlinearity Based on a Metal Nitride/Oxide Heterostructure. ACS Applied Materials & Interfaces 2021, 13 (1) , 1253-1260. https://doi.org/10.1021/acsami.0c18431
    20. François Aguillon, Dana Codruta Marinica, Andrei G. Borisov. Molecule Detection with Graphene Dimer Nanoantennas. The Journal of Physical Chemistry C 2020, 124 (51) , 28210-28219. https://doi.org/10.1021/acs.jpcc.0c09026
    21. Boxiang Song, Zhihao Jiang, Zerui Liu, Yunxiang Wang, Fanxin Liu, Stephen B. Cronin, Hao Yang, Deming Meng, Buyun Chen, Pan Hu, Adam M. Schwartzberg, Stefano Cabrini, Stephan Haas, Wei Wu. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision. ACS Nano 2020, 14 (11) , 14769-14778. https://doi.org/10.1021/acsnano.0c01973
    22. Chih-Feng Wang, Brian T. O’Callahan, Dmitry Kurouski, Andrey Krayev, Zachary D. Schultz, Patrick Z. El-Khoury. Suppressing Molecular Charging, Nanochemistry, and Optical Rectification in the Tip-Enhanced Raman Geometry. The Journal of Physical Chemistry Letters 2020, 11 (15) , 5890-5895. https://doi.org/10.1021/acs.jpclett.0c01413
    23. Elli Selenius, Sami Malola, Mikael Kuisma, Hannu Häkkinen. Charge Transfer Plasmons in Dimeric Electron Clusters. The Journal of Physical Chemistry C 2020, 124 (23) , 12645-12654. https://doi.org/10.1021/acs.jpcc.0c02889
    24. Ding-Feng Zhang, Shuang Li, Qing-Hua Xu, Yong Cao. Aggregation-Induced Plasmon Coupling-Enhanced One- and Two-Photon Excitation Fluorescence by Silver Nanoparticles. Langmuir 2020, 36 (17) , 4721-4727. https://doi.org/10.1021/acs.langmuir.0c00712
    25. Sian Sloan-Dennison, Chelsea M. Zoltowski, Patrick Z. El-Khoury, Zachary D. Schultz. Surface Enhanced Raman Scattering Selectivity in Proteins Arises from Electron Capture and Resonant Enhancement of Radical Species. The Journal of Physical Chemistry C 2020, 124 (17) , 9548-9558. https://doi.org/10.1021/acs.jpcc.0c01436
    26. Narges Asadi-Aghbolaghi, Robert Rüger, Zahra Jamshidi, Lucas Visscher. TD-DFT+TB: An Efficient and Fast Approach for Quantum Plasmonic Excitations. The Journal of Physical Chemistry C 2020, 124 (14) , 7946-7955. https://doi.org/10.1021/acs.jpcc.0c00979
    27. Antton Babaze, Ruben Esteban, Javier Aizpurua, Andrei G. Borisov. Second-Harmonic Generation from a Quantum Emitter Coupled to a Metallic Nanoantenna. ACS Photonics 2020, 7 (3) , 701-713. https://doi.org/10.1021/acsphotonics.9b01569
    28. Ashish Bhattarai, Zhihua Cheng, Alan G. Joly, Irina V. Novikova, James E. Evans, Zachary D. Schultz, Matthew R. Jones, Patrick Z. El-Khoury. Tip-Enhanced Raman Nanospectroscopy of Smooth Spherical Gold Nanoparticles. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1795-1801. https://doi.org/10.1021/acs.jpclett.0c00217
    29. Ashish Bhattarai, Kevin T. Crampton, Alan G. Joly, Chih-Feng Wang, Zachary D. Schultz, Patrick Z. El-Khoury. A Closer Look at Corrugated Au Tips. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1915-1920. https://doi.org/10.1021/acs.jpclett.0c00305
    30. Yun-Hang Qiu, Si-Jing Ding, Yong-Jie Lin, Kai Chen, Da-Jie Yang, Song Ma, Xiaoguang Li, Hai-qing Lin, Jianfang Wang, Qu-Quan Wang. Growth of Au Hollow Stars and Harmonic Excitation Energy Transfer. ACS Nano 2020, 14 (1) , 736-745. https://doi.org/10.1021/acsnano.9b07686
    31. Shuang Li, Jiangling He, Qing-Hua Xu. Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing. ACS Omega 2020, 5 (1) , 41-48. https://doi.org/10.1021/acsomega.9b03560
    32. Hongping Xiang, Zhilue Wang, Lin Xu, Xu Zhang, Gang Lu. Quantum Plasmonics in Nanorods: A Time-Dependent Orbital-Free Density Functional Theory Study with Thousands of Atoms. The Journal of Physical Chemistry C 2020, 124 (1) , 945-951. https://doi.org/10.1021/acs.jpcc.9b10510
    33. Laetitia Dalstein, Christophe Humbert, Maroua Ben Haddada, Souhir Boujday, Grégory Barbillon, Bertrand Busson. The Prevailing Role of Hotspots in Plasmon-Enhanced Sum-Frequency Generation Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (24) , 7706-7711. https://doi.org/10.1021/acs.jpclett.9b03064
    34. Richard E. Darienzo, Jingming Wang, Olivia Chen, Maurinne Sullivan, Tatsiana Mironava, Hyungjin Kim, Rina Tannenbaum. Surface-Enhanced Raman Spectroscopy Characterization of Breast Cell Phenotypes: Effect of Nanoparticle Geometry. ACS Applied Nano Materials 2019, 2 (11) , 6960-6970. https://doi.org/10.1021/acsanm.9b01436
    35. Ehsan Nahvi, Iñigo Liberal, Nader Engheta. Nonperturbative Effective Magnetic Nonlinearity in ENZ Media Doped with Kerr Dielectric Inclusions. ACS Photonics 2019, 6 (11) , 2823-2831. https://doi.org/10.1021/acsphotonics.9b00913
    36. Takashi Takeuchi, Masashi Noda, Kazuhiro Yabana. Operation of Quantum Plasmonic Metasurfaces Using Electron Transport through Subnanometer Gaps. ACS Photonics 2019, 6 (10) , 2517-2522. https://doi.org/10.1021/acsphotonics.9b00889
    37. Darby A. Nelson, Zachary D. Schultz. Impact of Plasmon-Induced Optically Rectified Electric Fields on Second Harmonic Generation. The Journal of Physical Chemistry C 2019, 123 (33) , 20639-20648. https://doi.org/10.1021/acs.jpcc.9b05685
    38. Yu Zhang Tammie Nelson Sergei Tretiak . Atomistic Simulations of Plasmon Mediated Photochemistry. 2019, 239-256. https://doi.org/10.1021/bk-2019-1331.ch011
    39. Ximin Cui, Feng Qin, Yunhe Lai, Hao Wang, Lei Shao, Huanjun Chen, Jianfang Wang, Hai-qing Lin. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances. ACS Nano 2018, 12 (12) , 12541-12550. https://doi.org/10.1021/acsnano.8b07066
    40. Fahri Alkan, Christine M. Aikens. TD-DFT and TD-DFTB Investigation of the Optical Properties and Electronic Structure of Silver Nanorods and Nanorod Dimers. The Journal of Physical Chemistry C 2018, 122 (41) , 23639-23650. https://doi.org/10.1021/acs.jpcc.8b05196
    41. Stefania D’Agostino, Rosaria Rinaldi, Gianaurelio Cuniberti, Fabio Della Sala. Density Functional Tight Binding for Quantum Plasmonics. The Journal of Physical Chemistry C 2018, 122 (34) , 19756-19766. https://doi.org/10.1021/acs.jpcc.8b05278
    42. Yu Zhang, Tammie Nelson, Sergei Tretiak, Hua Guo, George C. Schatz. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions. ACS Nano 2018, 12 (8) , 8415-8422. https://doi.org/10.1021/acsnano.8b03830
    43. Ari D. Mayevsky, Alison M. Funston. Control of Electric Field Localization by Three-Dimensional Bowtie Nanoantennae. The Journal of Physical Chemistry C 2018, 122 (31) , 18012-18020. https://doi.org/10.1021/acs.jpcc.8b05805
    44. Chao Chen, Shuzhou Li. Valence Electron Density-Dependent Pseudopermittivity for Nonlocal Effects in Optical Properties of Metallic Nanoparticles. ACS Photonics 2018, 5 (6) , 2295-2304. https://doi.org/10.1021/acsphotonics.8b00122
    45. Gilad Haran, Lev Chuntonov. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews 2018, 118 (11) , 5539-5580. https://doi.org/10.1021/acs.chemrev.7b00647
    46. Uriel N. Morzan, Diego J. Alonso de Armiño, Nicolás O. Foglia, Francisco Ramírez, Mariano C. González Lebrero, Damián A. Scherlis, Darío A. Estrin. Spectroscopy in Complex Environments from QM–MM Simulations. Chemical Reviews 2018, 118 (7) , 4071-4113. https://doi.org/10.1021/acs.chemrev.8b00026
    47. Mattin Urbieta, Marc Barbry, Yao Zhang, Peter Koval, Daniel Sánchez-Portal, Nerea Zabala, and Javier Aizpurua . Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano 2018, 12 (1) , 585-595. https://doi.org/10.1021/acsnano.7b07401
    48. Hannes Böckmann, Sylwester Gawinkowski, Jacek Waluk, Markus B. Raschke, Martin Wolf, and Takashi Kumagai . Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction. Nano Letters 2018, 18 (1) , 152-157. https://doi.org/10.1021/acs.nanolett.7b03720
    49. Elli Selenius, Sami Malola, and Hannu Häkkinen . Analysis of Localized Surface Plasmon Resonances in Spherical Jellium Clusters and Their Assemblies. The Journal of Physical Chemistry C 2017, 121 (48) , 27036-27052. https://doi.org/10.1021/acs.jpcc.7b10154
    50. Shuai Yuan, Xingzhi Qiu, Chengcong Cui, Liangqiu Zhu, Yuxi Wang, Yi Li, Jinwen Song, Qingzhong Huang, and Jinsong Xia . Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor. ACS Nano 2017, 11 (11) , 10704-10711. https://doi.org/10.1021/acsnano.7b04810
    51. B. Wells, Zh. A. Kudyshev, N. Litchinitser, and V. A. Podolskiy . Nonlocal Effects in Transition Hyperbolic Metamaterials. ACS Photonics 2017, 4 (10) , 2470-2478. https://doi.org/10.1021/acsphotonics.7b00690
    52. Radoslaw Jurga, Stefania D’Agostino, Fabio Della Sala, and Cristian Ciracì . Plasmonic Nonlocal Response Effects on Dipole Decay Dynamics in the Weak- and Strong-Coupling Regimes. The Journal of Physical Chemistry C 2017, 121 (40) , 22361-22368. https://doi.org/10.1021/acs.jpcc.7b07462
    53. Tuomas P. Rossi, Mikael Kuisma, Martti J. Puska, Risto M. Nieminen, and Paul Erhart . Kohn–Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations. Journal of Chemical Theory and Computation 2017, 13 (10) , 4779-4790. https://doi.org/10.1021/acs.jctc.7b00589
    54. Boxiang Song, Yuhan Yao, Roelof E. Groenewald, Yunxiang Wang, He Liu, Yifei Wang, Yuanrui Li, Fanxin Liu, Stephen B. Cronin, Adam M. Schwartzberg, Stefano Cabrini, Stephan Haas, and Wei Wu . Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. ACS Nano 2017, 11 (6) , 5836-5843. https://doi.org/10.1021/acsnano.7b01468
    55. Alyssa B. Zrimsek, Naihao Chiang, Michael Mattei, Stephanie Zaleski, Michael O. McAnally, Craig T. Chapman, Anne-Isabelle Henry, George C. Schatz, and Richard P. Van Duyne . Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chemical Reviews 2017, 117 (11) , 7583-7613. https://doi.org/10.1021/acs.chemrev.6b00552
    56. Yang Huang, Ya Min Wu, and Lei Gao . Nonlocality-Broaden Optical Bistability in a Nonlinear Plasmonic Core–Shell Cylinder. The Journal of Physical Chemistry C 2017, 121 (16) , 8952-8960. https://doi.org/10.1021/acs.jpcc.6b12546
    57. Eric A. Pozzi, Guillaume Goubert, Naihao Chiang, Nan Jiang, Craig T. Chapman, Michael O. McAnally, Anne-Isabelle Henry, Tamar Seideman, George C. Schatz, Mark C. Hersam, and Richard P. Van Duyne . Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chemical Reviews 2017, 117 (7) , 4961-4982. https://doi.org/10.1021/acs.chemrev.6b00343
    58. Dao Xiang, Jian Wu, and Reuven Gordon . Coulomb Blockade Plasmonic Switch. Nano Letters 2017, 17 (4) , 2584-2588. https://doi.org/10.1021/acs.nanolett.7b00360
    59. Garikoitz Aguirregabiria, Dana Codruta Marinica, Ruben Esteban, Andrey K. Kazansky, Javier Aizpurua, and Andrei G. Borisov . Electric Field-Induced High Order Nonlinearity in Plasmonic Nanoparticles Retrieved with Time-Dependent Density Functional Theory. ACS Photonics 2017, 4 (3) , 613-620. https://doi.org/10.1021/acsphotonics.6b00953
    60. Sanghoon Han, Joon-Yeon Kim, Taehee Kang, Young-Mi Bahk, Jiyeah Rhie, Bong Joo Kang, Yong Seung Kim, Joohyun Park, Won Tae Kim, Hyeongtag Jeon, Fabian Rotermund, and Dai-Sik Kim . Colossal Terahertz Nonlinearity in Angstrom- and Nanometer-Sized Gaps. ACS Photonics 2016, 3 (8) , 1440-1445. https://doi.org/10.1021/acsphotonics.6b00103
    61. Maryam Zahedian, Xinlei Huang, Irina B. Tsvetkova, Vincent M. Rotello, William L. Schaich, and Bogdan Dragnea . Toward Virus-Like Surface Plasmon Strain Sensors. The Journal of Physical Chemistry B 2016, 120 (26) , 5896-5906. https://doi.org/10.1021/acs.jpcb.6b01023
    62. Hongping Xiang, Mingliang Zhang, Xu Zhang, and Gang Lu . Understanding Quantum Plasmonics from Time-Dependent Orbital-Free Density Functional Theory. The Journal of Physical Chemistry C 2016, 120 (26) , 14330-14336. https://doi.org/10.1021/acs.jpcc.6b05841
    63. Jean-François Lemineur, Silvere Schuermans, Joseph Marae-Djouda, Thomas Maurer, and Anna M. Ritcey . Size-Modulation of Plasmonic Nanorings Obtained by the Self-Assembly of Gold Nanoparticles and Block Copolymers. The Journal of Physical Chemistry C 2016, 120 (16) , 8883-8890. https://doi.org/10.1021/acs.jpcc.6b01689
    64. Mario Zapata Herrera, Javier Aizpurua, Andrey K. Kazansky, and Andrei G. Borisov . Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles. Langmuir 2016, 32 (11) , 2829-2840. https://doi.org/10.1021/acs.langmuir.6b00112
    65. Kargal L. Gurunatha, Agathe C. Fournier, Agathe Urvoas, Marie Valerio-Lepiniec, Valérie Marchi, Philippe Minard, and Erik Dujardin . Nanoparticles Self-Assembly Driven by High Affinity Repeat Protein Pairing. ACS Nano 2016, 10 (3) , 3176-3185. https://doi.org/10.1021/acsnano.5b04531
    66. Federico Marchesin, Peter Koval, Marc Barbry, Javier Aizpurua, and Daniel Sánchez-Portal . Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics. ACS Photonics 2016, 3 (2) , 269-277. https://doi.org/10.1021/acsphotonics.5b00609
    67. Jonathan A. Scholl, Aitzol Garcia-Etxarri, Garikoitz Aguirregabiria, Ruben Esteban, Tarun C. Narayan, Ai Leen Koh, Javier Aizpurua, and Jennifer A. Dionne . Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. ACS Nano 2016, 10 (1) , 1346-1354. https://doi.org/10.1021/acsnano.5b06738
    68. Longkun Yang, Hancong Wang, Yan Fang, and Zhipeng Li . Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas. ACS Nano 2016, 10 (1) , 1580-1588. https://doi.org/10.1021/acsnano.5b07223
    69. Andreas Hille, Matthias Moeferdt, Christian Wolff, Christian Matyssek, Rogelio Rodríguez-Oliveros, Cristopher Prohm, Jens Niegemann, Stefan Grafström, Lukas M. Eng, and Kurt Busch . Second Harmonic Generation from Metal Nano-Particle Resonators: Numerical Analysis On the Basis of the Hydrodynamic Drude Model. The Journal of Physical Chemistry C 2016, 120 (2) , 1163-1169. https://doi.org/10.1021/acs.jpcc.5b08348
    70. Heesun Jung, Hoon Cha, Daedu Lee, and Sangwoon Yoon . Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles. ACS Nano 2015, 9 (12) , 12292-12300. https://doi.org/10.1021/acsnano.5b05568
    71. Li Lin, Mario Zapata, Min Xiong, Zhonghui Liu, Shanshan Wang, Hong Xu, Andrei G. Borisov, Hongchen Gu, Peter Nordlander, Javier Aizpurua, and Jian Ye . Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core–Shell Junction to Subnanometer. Nano Letters 2015, 15 (10) , 6419-6428. https://doi.org/10.1021/acs.nanolett.5b02931
    72. Vikram Kulkarni and Alejandro Manjavacas . Quantum Effects in Charge Transfer Plasmons. ACS Photonics 2015, 2 (7) , 987-992. https://doi.org/10.1021/acsphotonics.5b00246
    73. Chua-Zu Huang, Ming-Jing Wu, and Shiuan-Yeh Chen . High Order Gap Modes of Film-Coupled Nanospheres. The Journal of Physical Chemistry C 2015, 119 (24) , 13799-13806. https://doi.org/10.1021/acs.jpcc.5b01948
    74. Alejandro Varas, Pablo García-González, F. J. García-Vidal, and Angel Rubio . Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers. The Journal of Physical Chemistry Letters 2015, 6 (10) , 1891-1898. https://doi.org/10.1021/acs.jpclett.5b00573
    75. M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal . Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics. Nano Letters 2015, 15 (5) , 3410-3419. https://doi.org/10.1021/acs.nanolett.5b00759
    76. Patrick Z. El-Khoury, Yu Gong, Patricia Abellan, Bruce W. Arey, Alan G. Joly, Dehong Hu, James E. Evans, Nigel D. Browning, and Wayne P. Hess . Tip-Enhanced Raman Nanographs: Mapping Topography and Local Electric Fields. Nano Letters 2015, 15 (4) , 2385-2390. https://doi.org/10.1021/acs.nanolett.5b00609
    77. Bo Peng, David B. Lingerfelt, Feizhi Ding, Christine M. Aikens, and Xiaosong Li . Real-Time TDDFT Studies of Exciton Decay and Transfer in Silver Nanowire Arrays. The Journal of Physical Chemistry C 2015, 119 (11) , 6421-6427. https://doi.org/10.1021/acs.jpcc.5b00263
    78. Rubén Esteban, Garikoitz Aguirregabiria, Andrey G. Borisov, Yumin M. Wang, Peter Nordlander, Garnett W. Bryant, and Javier Aizpurua . The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics 2015, 2 (2) , 295-305. https://doi.org/10.1021/ph5004016
    79. Y. Huang and L. Gao . Superscattering of Light from Core–Shell Nonlocal Plasmonic Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (51) , 30170-30178. https://doi.org/10.1021/jp508289z
    80. Ghazal Hajisalem, Mohammedreza S. Nezami, and Reuven Gordon . Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation. Nano Letters 2014, 14 (11) , 6651-6654. https://doi.org/10.1021/nl503324g
    81. Siyam M. Ansar, Manuel Gadogbe, Kumudu Siriwardana, Jane Y. Howe, Stas Dogel, Hooman Hosseinkhannazer, Willard E. Collier, Jose Rodriguez, Shengli Zou, and Dongmao Zhang . Dispersion Stability, Ligand Structure and Conformation, and SERS Activities of 1-Alkanethiol Functionalized Gold and Silver Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (43) , 24925-24934. https://doi.org/10.1021/jp507142v
    82. Peiyan Yuan, Rizhao Ma, Zhenping Guan, Nengyue Gao, and Qing-Hua Xu . Tuning Two-Photon Photoluminescence of Gold Nanoparticle Aggregates with DNA and Its Application as Turn-on Photoluminescence Probe for DNA Sequence Detection. ACS Applied Materials & Interfaces 2014, 6 (15) , 13149-13156. https://doi.org/10.1021/am502988u
    83. J. Wirth, F. Garwe, R. Meyer, A. Csáki, O. Stranik, and W. Fritzsche . Plasmonically Enhanced Electron Escape from Gold Nanoparticles and Their Polarization-Dependent Excitation Transfer along DNA Nanowires. Nano Letters 2014, 14 (7) , 3809-3816. https://doi.org/10.1021/nl5009184
    84. Patrick Z. El-Khoury and Wayne P. Hess . Vibronic Raman Scattering at the Quantum Limit of Plasmons. Nano Letters 2014, 14 (7) , 4114-4118. https://doi.org/10.1021/nl501690u
    85. Nir Zohar and Gilad Haran . Modular Plasmonic Antennas Built of Ultrathin Silica-Shell Silver-Core Nanoparticles. Langmuir 2014, 30 (26) , 7919-7927. https://doi.org/10.1021/la5017033
    86. Arnaud Stolz, Johann Berthelot, Marie-Maxime Mennemanteuil, Gérard Colas des Francs, Laurent Markey, Vincent Meunier, and Alexandre Bouhelier . Nonlinear Photon-Assisted Tunneling Transport in Optical Gap Antennas. Nano Letters 2014, 14 (5) , 2330-2338. https://doi.org/10.1021/nl404707t
    87. Luca Sementa, Andrea Marini, Giovanni Barcaro, Fabio R. Negreiros, and Alessandro Fortunelli . Atomistic Quantum Plasmonics of Gold Nanowire Arrays. ACS Photonics 2014, 1 (4) , 315-322. https://doi.org/10.1021/ph500038z
    88. Hongping Xiang, Xu Zhang, Daniel Neuhauser, and Gang Lu . Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations. The Journal of Physical Chemistry Letters 2014, 5 (7) , 1163-1169. https://doi.org/10.1021/jz500216t
    89. D. C. Marinica, H. Lourenço-Martins, J. Aizpurua, and A. G. Borisov . Plexciton Quenching by Resonant Electron Transfer from Quantum Emitter to Metallic Nanoantenna. Nano Letters 2013, 13 (12) , 5972-5978. https://doi.org/10.1021/nl403160s
    90. Sebastian Thomas, Michael Krüger, Michael Förster, Markus Schenk, and Peter Hommelhoff . Probing of Optical Near-Fields by Electron Rescattering on the 1 nm Scale. Nano Letters 2013, 13 (10) , 4790-4794. https://doi.org/10.1021/nl402407r
    91. Julibeth M. Martinez de la Hoz, Gustavo E. Ramirez-Caballero, and Perla B. Balbuena . Characterization of Electronic States inside Metallic Nanopores. The Journal of Physical Chemistry C 2013, 117 (36) , 18406-18413. https://doi.org/10.1021/jp404288f
    92. Rasoul Alaee, Christoph Menzel, Uwe Huebner, Ekaterina Pshenay-Severin, Shakeeb Bin Hasan, Thomas Pertsch, Carsten Rockstuhl, and Falk Lederer . Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling. Nano Letters 2013, 13 (8) , 3482-3486. https://doi.org/10.1021/nl4007694
    93. Vassilios Yannopapas . Fluctuational-Electrodynamics Calculations of the van der Waals Potential in Nanoparticle Superlattices. The Journal of Physical Chemistry C 2013, 117 (29) , 15342-15346. https://doi.org/10.1021/jp403875k
    94. Tianhong Chen, Mahshid Pourmand, Amin Feizpour, Bradford Cushman, and Björn M. Reinhard . Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation. The Journal of Physical Chemistry Letters 2013, 4 (13) , 2147-2152. https://doi.org/10.1021/jz401066g
    95. Cuifeng Jiang, Tingting Zhao, Peiyan Yuan, Nengyue Gao, Yanlin Pan, Zhenping Guan, Na Zhou, and Qing-Hua Xu . Two-Photon Induced Photoluminescence and Singlet Oxygen Generation from Aggregated Gold Nanoparticles. ACS Applied Materials & Interfaces 2013, 5 (11) , 4972-4977. https://doi.org/10.1021/am4007403
    96. Pavel Ginzburg and Anatoly V. Zayats . Localized Surface Plasmon Resonances in Spatially Dispersive Nano-Objects: Phenomenological Treatise. ACS Nano 2013, 7 (5) , 4334-4342. https://doi.org/10.1021/nn400842m
    97. Sushmita Biswas, Jinsong Duan, Dhriti Nepal, Ruth Pachter, and Richard Vaia . Plasmonic Resonances in Self-Assembled Reduced Symmetry Gold Nanorod Structures. Nano Letters 2013, 13 (5) , 2220-2225. https://doi.org/10.1021/nl4007358
    98. Lorenzo Stella, Pu Zhang, F. J. García-Vidal, Angel Rubio, and P. García-González . Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures. The Journal of Physical Chemistry C 2013, 117 (17) , 8941-8949. https://doi.org/10.1021/jp401887y
    99. Patrick Z. El-Khoury, Samuel J. Peppernick, Dehong Hu, Alan G. Joly, and Wayne P. Hess . The Origin of Surface-Enhanced Raman Scattering of 4,4′-Biphenyldicarboxylate on Silver Substrates. The Journal of Physical Chemistry C 2013, 117 (14) , 7260-7268. https://doi.org/10.1021/jp401026x
    100. Jérémy Butet, Krishnan Thyagarajan, and Olivier J. F. Martin . Ultrasensitive Optical Shape Characterization of Gold Nanoantennas Using Second Harmonic Generation. Nano Letters 2013, 13 (4) , 1787-1792. https://doi.org/10.1021/nl400393e
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 3, 1333–1339
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl300269c
    Published February 9, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    8662

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.