Quantum Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle DimerClick to copy article linkArticle link copied!
Abstract

A fully quantum mechanical investigation using time-dependent density functional theory reveals that the field enhancement in a coupled nanoparticle dimer can be strongly affected by nonlinear effects. We show that both classical as well as linear quantum mechanical descriptions of the system fail even for moderate incident light intensities. An interparticle current resulting from the strong field photoemission tends to neutralize the plasmon-induced surface charge densities on the opposite sides of the nanoparticle junction. Thus, the coupling between the two nanoparticles and the field enhancement is reduced as compared to linear theory. A substantial nonlinear effect is revealed already at incident powers of 109 W/cm2 for interparticle separation distances as large as 1 nm and down to the touching limit.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 432 publications.
- Pu Zhang, Christos Tserkezis, N. Asger Mortensen. Quantum-Hydrodynamic Modal Perspective on Plasmonic Gap Structures. The Journal of Physical Chemistry C 2025, Article ASAP.
- Piero Lafiosca, Luca Nicoli, Silvio Pipolo, Stefano Corni, Tommaso Giovannini, Chiara Cappelli. Real-Time Formulation of Atomistic Electromagnetic Models for Plasmonics. The Journal of Physical Chemistry C 2024, 128
(41)
, 17513-17525. https://doi.org/10.1021/acs.jpcc.4c04002
- Hoa Duc Trinh, Seokheon Kim, Seokhyun Yun, Ly Thi Minh Huynh, Sangwoon Yoon. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2024, 16
(1)
, 1805-1814. https://doi.org/10.1021/acsami.3c14487
- Marina Quijada, Antton Babaze, Javier Aizpurua, Andrei G. Borisov. Nonlinear Optical Response of a Plasmonic Nanoantenna to Circularly Polarized Light: Rotation of Multipolar Charge Density and Near-Field Spin Angular Momentum Inversion. ACS Photonics 2023, 10
(11)
, 3963-3975. https://doi.org/10.1021/acsphotonics.3c00783
- Javier Rodríguez-Álvarez, Amílcar Labarta, Juan Carlos Idrobo, Rossana Dell’Anna, Alessandro Cian, Damiano Giubertoni, Xavier Borrisé, Albert Guerrero, Francesc Perez-Murano, Arantxa Fraile Rodríguez, Xavier Batlle. Imaging of Antiferroelectric Dark Modes in an Inverted Plasmonic Lattice. ACS Nano 2023, 17
(9)
, 8123-8132. https://doi.org/10.1021/acsnano.2c11016
- Egor Kokin, Hyun Ji An, Donghoon Koo, Seungyeon Han, Keumrai Whang, Taewook Kang, Inhee Choi, Luke P. Lee. Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity. Nano Letters 2022, 22
(24)
, 9861-9868. https://doi.org/10.1021/acs.nanolett.2c02917
- Jesil Jose, Ludmilla Schumacher, Mandana Jalali, Georg Haberfehlner, Jan Taro Svejda, Daniel Erni, Sebastian Schlücker. Particle Size-Dependent Onset of the Tunneling Regime in Ideal Dimers of Gold Nanospheres. ACS Nano 2022, 16
(12)
, 21377-21387. https://doi.org/10.1021/acsnano.2c09680
- Dong Su, Siqi Yang, Yuxuan Xiong, Xi Yang, Xie Yu, Pei Zeng, Yuqing Wu, Yutian Cheng, Tao Zhang, Haiping Shen, Huageng Liang, Guangzu Zhang, Boxiang Song, Shenglin Jiang. Ordered Gold Nanocluster-Based Plasmonic Hotspot Arrays for SERS Detection of Single Molecules. ACS Applied Nano Materials 2022, 5
(11)
, 17067-17077. https://doi.org/10.1021/acsanm.2c03959
- Nhat M. Ngo, Hung-Vu Tran, T. Randall Lee. Plasmonic Nanostars: Systematic Review of their Synthesis and Applications. ACS Applied Nano Materials 2022, 5
(10)
, 14051-14091. https://doi.org/10.1021/acsanm.2c02533
- Tommaso Giovannini, Luca Bonatti, Piero Lafiosca, Luca Nicoli, Matteo Castagnola, Pablo Grobas Illobre, Stefano Corni, Chiara Cappelli. Do We Really Need Quantum Mechanics to Describe Plasmonic Properties of Metal Nanostructures?. ACS Photonics 2022, 9
(9)
, 3025-3034. https://doi.org/10.1021/acsphotonics.2c00761
- Stephen J. Bauman, Ahmad A. Darweesh, Miles Furr, Meredith Magee, Christos Argyropoulos, Joseph B. Herzog. Tunable SERS Enhancement via Sub-nanometer Gap Metasurfaces. ACS Applied Materials & Interfaces 2022, 14
(13)
, 15541-15548. https://doi.org/10.1021/acsami.2c01335
- Angela L. Paoletta, E-Dean Fung, Latha Venkataraman. Gap Size-Dependent Plasmonic Enhancement in Electroluminescent Tunnel Junctions. ACS Photonics 2022, 9
(2)
, 688-693. https://doi.org/10.1021/acsphotonics.1c01757
- Maxime S. Maurice, Noémi Barros, Hamid Kachkachi. Orientational Selectivity of Hot Electrons Generated by a Dimer of Plasmonic Nanoparticles. The Journal of Physical Chemistry C 2021, 125
(43)
, 23991-24000. https://doi.org/10.1021/acs.jpcc.1c04172
- Antton Babaze, Ruben Esteban, Andrei G. Borisov, Javier Aizpurua. Electronic Exciton–Plasmon Coupling in a Nanocavity Beyond the Electromagnetic Interaction Picture. Nano Letters 2021, 21
(19)
, 8466-8473. https://doi.org/10.1021/acs.nanolett.1c03202
- Giulia Giannone, Szymon Śmiga, Stefania D’Agostino, Eduardo Fabiano, Fabio Della Sala. Plasmon Couplings from Subsystem Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2021, 125
(33)
, 7246-7259. https://doi.org/10.1021/acs.jpca.1c05384
- Krishna Prasad Koirala, Hernando Garcia, Venkatanarayana Prasad Sandireddy, Ramki Kalyanaraman, Gerd Duscher. Bimetallic Fe–Ag Nanopyramid Arrays for Optical Communication Applications. ACS Applied Nano Materials 2021, 4
(6)
, 5758-5767. https://doi.org/10.1021/acsanm.1c00547
- Vladimir Smirnov, Sven Stephan, Michael Westphal, Daniel Emmrich, André Beyer, Armin Gölzhäuser, Christoph Lienau, Martin Silies. Transmitting Surface Plasmon Polaritons across Nanometer-Sized Gaps by Optical near-Field Coupling. ACS Photonics 2021, 8
(3)
, 832-840. https://doi.org/10.1021/acsphotonics.0c01797
- Mengjie Zheng, Yi Yang, Di Zhu, Yiqin Chen, Zhiwen Shu, Karl K. Berggren, Marin Soljačić, Huigao Duan. Enhancing Plasmonic Spectral Tunability with Anomalous Material Dispersion. Nano Letters 2021, 21
(1)
, 91-98. https://doi.org/10.1021/acs.nanolett.0c03293
- Duoduo Zhang, Hao Cui, Chenyang Zhu, Kefan Lv, Haoran Zhang, Xiaofeng Liu, Jianrong Qiu. Nanoscale Engineering of Optical nonlinearity Based on a Metal Nitride/Oxide Heterostructure. ACS Applied Materials & Interfaces 2021, 13
(1)
, 1253-1260. https://doi.org/10.1021/acsami.0c18431
- François Aguillon, Dana Codruta Marinica, Andrei G. Borisov. Molecule Detection with Graphene Dimer Nanoantennas. The Journal of Physical Chemistry C 2020, 124
(51)
, 28210-28219. https://doi.org/10.1021/acs.jpcc.0c09026
- Boxiang Song, Zhihao Jiang, Zerui Liu, Yunxiang Wang, Fanxin Liu, Stephen B. Cronin, Hao Yang, Deming Meng, Buyun Chen, Pan Hu, Adam M. Schwartzberg, Stefano Cabrini, Stephan Haas, Wei Wu. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision. ACS Nano 2020, 14
(11)
, 14769-14778. https://doi.org/10.1021/acsnano.0c01973
- Chih-Feng Wang, Brian T. O’Callahan, Dmitry Kurouski, Andrey Krayev, Zachary D. Schultz, Patrick Z. El-Khoury. Suppressing Molecular Charging, Nanochemistry, and Optical Rectification in the Tip-Enhanced Raman Geometry. The Journal of Physical Chemistry Letters 2020, 11
(15)
, 5890-5895. https://doi.org/10.1021/acs.jpclett.0c01413
- Elli Selenius, Sami Malola, Mikael Kuisma, Hannu Häkkinen. Charge Transfer Plasmons in Dimeric Electron Clusters. The Journal of Physical Chemistry C 2020, 124
(23)
, 12645-12654. https://doi.org/10.1021/acs.jpcc.0c02889
- Ding-Feng Zhang, Shuang Li, Qing-Hua Xu, Yong Cao. Aggregation-Induced Plasmon Coupling-Enhanced One- and Two-Photon Excitation Fluorescence by Silver Nanoparticles. Langmuir 2020, 36
(17)
, 4721-4727. https://doi.org/10.1021/acs.langmuir.0c00712
- Sian Sloan-Dennison, Chelsea M. Zoltowski, Patrick Z. El-Khoury, Zachary D. Schultz. Surface Enhanced Raman Scattering Selectivity in Proteins Arises from Electron Capture and Resonant Enhancement of Radical Species. The Journal of Physical Chemistry C 2020, 124
(17)
, 9548-9558. https://doi.org/10.1021/acs.jpcc.0c01436
- Narges Asadi-Aghbolaghi, Robert Rüger, Zahra Jamshidi, Lucas Visscher. TD-DFT+TB: An Efficient and Fast Approach for Quantum Plasmonic Excitations. The Journal of Physical Chemistry C 2020, 124
(14)
, 7946-7955. https://doi.org/10.1021/acs.jpcc.0c00979
- Antton Babaze, Ruben Esteban, Javier Aizpurua, Andrei G. Borisov. Second-Harmonic Generation from a Quantum Emitter Coupled to a Metallic Nanoantenna. ACS Photonics 2020, 7
(3)
, 701-713. https://doi.org/10.1021/acsphotonics.9b01569
- Ashish Bhattarai, Zhihua Cheng, Alan G. Joly, Irina V. Novikova, James E. Evans, Zachary D. Schultz, Matthew R. Jones, Patrick Z. El-Khoury. Tip-Enhanced Raman Nanospectroscopy of Smooth Spherical Gold Nanoparticles. The Journal of Physical Chemistry Letters 2020, 11
(5)
, 1795-1801. https://doi.org/10.1021/acs.jpclett.0c00217
- Ashish Bhattarai, Kevin T. Crampton, Alan G. Joly, Chih-Feng Wang, Zachary D. Schultz, Patrick Z. El-Khoury. A Closer Look at Corrugated Au Tips. The Journal of Physical Chemistry Letters 2020, 11
(5)
, 1915-1920. https://doi.org/10.1021/acs.jpclett.0c00305
- Yun-Hang Qiu, Si-Jing Ding, Yong-Jie Lin, Kai Chen, Da-Jie Yang, Song Ma, Xiaoguang Li, Hai-qing Lin, Jianfang Wang, Qu-Quan Wang. Growth of Au Hollow Stars and Harmonic Excitation Energy Transfer. ACS Nano 2020, 14
(1)
, 736-745. https://doi.org/10.1021/acsnano.9b07686
- Shuang Li, Jiangling He, Qing-Hua Xu. Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing. ACS Omega 2020, 5
(1)
, 41-48. https://doi.org/10.1021/acsomega.9b03560
- Hongping Xiang, Zhilue Wang, Lin Xu, Xu Zhang, Gang Lu. Quantum Plasmonics in Nanorods: A Time-Dependent Orbital-Free Density Functional Theory Study with Thousands of Atoms. The Journal of Physical Chemistry C 2020, 124
(1)
, 945-951. https://doi.org/10.1021/acs.jpcc.9b10510
- Laetitia Dalstein, Christophe Humbert, Maroua Ben Haddada, Souhir Boujday, Grégory Barbillon, Bertrand Busson. The Prevailing Role of Hotspots in Plasmon-Enhanced Sum-Frequency Generation Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10
(24)
, 7706-7711. https://doi.org/10.1021/acs.jpclett.9b03064
- Richard
E. Darienzo, Jingming Wang, Olivia Chen, Maurinne Sullivan, Tatsiana Mironava, Hyungjin Kim, Rina Tannenbaum. Surface-Enhanced Raman Spectroscopy Characterization of Breast Cell Phenotypes: Effect of Nanoparticle Geometry. ACS Applied Nano Materials 2019, 2
(11)
, 6960-6970. https://doi.org/10.1021/acsanm.9b01436
- Ehsan Nahvi, Iñigo Liberal, Nader Engheta. Nonperturbative Effective Magnetic Nonlinearity in ENZ Media Doped with Kerr Dielectric Inclusions. ACS Photonics 2019, 6
(11)
, 2823-2831. https://doi.org/10.1021/acsphotonics.9b00913
- Takashi Takeuchi, Masashi Noda, Kazuhiro Yabana. Operation of Quantum Plasmonic Metasurfaces Using Electron Transport through Subnanometer Gaps. ACS Photonics 2019, 6
(10)
, 2517-2522. https://doi.org/10.1021/acsphotonics.9b00889
- Darby
A. Nelson, Zachary D. Schultz. Impact of Plasmon-Induced Optically Rectified Electric Fields on Second Harmonic Generation. The Journal of Physical Chemistry C 2019, 123
(33)
, 20639-20648. https://doi.org/10.1021/acs.jpcc.9b05685
- Yu Zhang Tammie Nelson Sergei Tretiak . Atomistic Simulations of Plasmon Mediated Photochemistry. 2019, 239-256. https://doi.org/10.1021/bk-2019-1331.ch011
- Ximin Cui, Feng Qin, Yunhe Lai, Hao Wang, Lei Shao, Huanjun Chen, Jianfang Wang, Hai-qing Lin. Molecular Tunnel Junction-Controlled High-Order Charge Transfer Plasmon and Fano Resonances. ACS Nano 2018, 12
(12)
, 12541-12550. https://doi.org/10.1021/acsnano.8b07066
- Fahri Alkan, Christine M. Aikens. TD-DFT and TD-DFTB Investigation of the Optical Properties and Electronic Structure of Silver Nanorods and Nanorod Dimers. The Journal of Physical Chemistry C 2018, 122
(41)
, 23639-23650. https://doi.org/10.1021/acs.jpcc.8b05196
- Stefania D’Agostino, Rosaria Rinaldi, Gianaurelio Cuniberti, Fabio Della Sala. Density Functional Tight Binding for Quantum Plasmonics. The Journal of Physical Chemistry C 2018, 122
(34)
, 19756-19766. https://doi.org/10.1021/acs.jpcc.8b05278
- Yu Zhang, Tammie Nelson, Sergei Tretiak, Hua Guo, George C. Schatz. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions. ACS Nano 2018, 12
(8)
, 8415-8422. https://doi.org/10.1021/acsnano.8b03830
- Ari D. Mayevsky, Alison M. Funston. Control of Electric Field Localization by Three-Dimensional Bowtie Nanoantennae. The Journal of Physical Chemistry C 2018, 122
(31)
, 18012-18020. https://doi.org/10.1021/acs.jpcc.8b05805
- Chao Chen, Shuzhou Li. Valence Electron Density-Dependent Pseudopermittivity for Nonlocal Effects in Optical Properties of Metallic Nanoparticles. ACS Photonics 2018, 5
(6)
, 2295-2304. https://doi.org/10.1021/acsphotonics.8b00122
- Gilad Haran, Lev Chuntonov. Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews 2018, 118
(11)
, 5539-5580. https://doi.org/10.1021/acs.chemrev.7b00647
- Uriel
N. Morzan, Diego J. Alonso de Armiño, Nicolás
O. Foglia, Francisco Ramírez, Mariano C. González Lebrero, Damián A. Scherlis, Darío A. Estrin. Spectroscopy in Complex Environments from QM–MM Simulations. Chemical Reviews 2018, 118
(7)
, 4071-4113. https://doi.org/10.1021/acs.chemrev.8b00026
- Mattin Urbieta, Marc Barbry, Yao Zhang, Peter Koval, Daniel Sánchez-Portal, Nerea Zabala, and Javier Aizpurua . Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect. ACS Nano 2018, 12
(1)
, 585-595. https://doi.org/10.1021/acsnano.7b07401
- Hannes Böckmann, Sylwester Gawinkowski, Jacek Waluk, Markus B. Raschke, Martin Wolf, and Takashi Kumagai . Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction. Nano Letters 2018, 18
(1)
, 152-157. https://doi.org/10.1021/acs.nanolett.7b03720
- Elli Selenius, Sami Malola, and Hannu Häkkinen . Analysis of Localized Surface Plasmon Resonances in Spherical Jellium Clusters and Their Assemblies. The Journal of Physical Chemistry C 2017, 121
(48)
, 27036-27052. https://doi.org/10.1021/acs.jpcc.7b10154
- Shuai Yuan, Xingzhi Qiu, Chengcong Cui, Liangqiu Zhu, Yuxi Wang, Yi Li, Jinwen Song, Qingzhong Huang, and Jinsong Xia . Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor. ACS Nano 2017, 11
(11)
, 10704-10711. https://doi.org/10.1021/acsnano.7b04810
- B. Wells, Zh. A. Kudyshev, N. Litchinitser, and V. A. Podolskiy . Nonlocal Effects in Transition Hyperbolic Metamaterials. ACS Photonics 2017, 4
(10)
, 2470-2478. https://doi.org/10.1021/acsphotonics.7b00690
- Radoslaw Jurga, Stefania D’Agostino, Fabio Della Sala, and Cristian Ciracì . Plasmonic Nonlocal Response Effects on Dipole Decay Dynamics in the Weak- and Strong-Coupling Regimes. The Journal of Physical Chemistry C 2017, 121
(40)
, 22361-22368. https://doi.org/10.1021/acs.jpcc.7b07462
- Tuomas P. Rossi, Mikael Kuisma, Martti J. Puska, Risto M. Nieminen, and Paul Erhart . Kohn–Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations. Journal of Chemical Theory and Computation 2017, 13
(10)
, 4779-4790. https://doi.org/10.1021/acs.jctc.7b00589
- Boxiang Song, Yuhan Yao, Roelof E. Groenewald, Yunxiang Wang, He Liu, Yifei Wang, Yuanrui Li, Fanxin Liu, Stephen B. Cronin, Adam M. Schwartzberg, Stefano Cabrini, Stephan Haas, and Wei Wu . Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. ACS Nano 2017, 11
(6)
, 5836-5843. https://doi.org/10.1021/acsnano.7b01468
- Alyssa B. Zrimsek, Naihao Chiang, Michael Mattei, Stephanie Zaleski, Michael O. McAnally, Craig T. Chapman, Anne-Isabelle Henry, George C. Schatz, and Richard P. Van Duyne . Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chemical Reviews 2017, 117
(11)
, 7583-7613. https://doi.org/10.1021/acs.chemrev.6b00552
- Yang Huang, Ya Min Wu, and Lei Gao . Nonlocality-Broaden Optical Bistability in a Nonlinear Plasmonic Core–Shell Cylinder. The Journal of Physical Chemistry C 2017, 121
(16)
, 8952-8960. https://doi.org/10.1021/acs.jpcc.6b12546
- Eric A. Pozzi, Guillaume Goubert, Naihao Chiang, Nan Jiang, Craig T. Chapman, Michael O. McAnally, Anne-Isabelle Henry, Tamar Seideman, George C. Schatz, Mark C. Hersam, and Richard P. Van Duyne . Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. Chemical Reviews 2017, 117
(7)
, 4961-4982. https://doi.org/10.1021/acs.chemrev.6b00343
- Dao Xiang, Jian Wu, and Reuven Gordon . Coulomb Blockade Plasmonic Switch. Nano Letters 2017, 17
(4)
, 2584-2588. https://doi.org/10.1021/acs.nanolett.7b00360
- Garikoitz Aguirregabiria, Dana Codruta Marinica, Ruben Esteban, Andrey K. Kazansky, Javier Aizpurua, and Andrei G. Borisov . Electric Field-Induced High Order Nonlinearity in Plasmonic Nanoparticles Retrieved with Time-Dependent Density Functional Theory. ACS Photonics 2017, 4
(3)
, 613-620. https://doi.org/10.1021/acsphotonics.6b00953
- Sanghoon Han, Joon-Yeon Kim, Taehee Kang, Young-Mi Bahk, Jiyeah Rhie, Bong Joo Kang, Yong Seung Kim, Joohyun Park, Won Tae Kim, Hyeongtag Jeon, Fabian Rotermund, and Dai-Sik Kim . Colossal Terahertz Nonlinearity in Angstrom- and Nanometer-Sized Gaps. ACS Photonics 2016, 3
(8)
, 1440-1445. https://doi.org/10.1021/acsphotonics.6b00103
- Maryam Zahedian, Xinlei Huang, Irina B. Tsvetkova, Vincent M. Rotello, William L. Schaich, and Bogdan Dragnea . Toward Virus-Like Surface Plasmon Strain Sensors. The Journal of Physical Chemistry B 2016, 120
(26)
, 5896-5906. https://doi.org/10.1021/acs.jpcb.6b01023
- Hongping Xiang, Mingliang Zhang, Xu Zhang, and Gang Lu . Understanding Quantum Plasmonics from Time-Dependent Orbital-Free Density Functional Theory. The Journal of Physical Chemistry C 2016, 120
(26)
, 14330-14336. https://doi.org/10.1021/acs.jpcc.6b05841
- Jean-François Lemineur, Silvere Schuermans, Joseph Marae-Djouda, Thomas Maurer, and Anna M. Ritcey . Size-Modulation of Plasmonic Nanorings Obtained by the Self-Assembly of Gold Nanoparticles and Block Copolymers. The Journal of Physical Chemistry C 2016, 120
(16)
, 8883-8890. https://doi.org/10.1021/acs.jpcc.6b01689
- Mario Zapata Herrera, Javier Aizpurua, Andrey K. Kazansky, and Andrei G. Borisov . Plasmon Response and Electron Dynamics in Charged Metallic Nanoparticles. Langmuir 2016, 32
(11)
, 2829-2840. https://doi.org/10.1021/acs.langmuir.6b00112
- Kargal L. Gurunatha, Agathe C. Fournier, Agathe Urvoas, Marie Valerio-Lepiniec, Valérie Marchi, Philippe Minard, and Erik Dujardin . Nanoparticles Self-Assembly Driven by High Affinity Repeat Protein Pairing. ACS Nano 2016, 10
(3)
, 3176-3185. https://doi.org/10.1021/acsnano.5b04531
- Federico Marchesin, Peter Koval, Marc Barbry, Javier Aizpurua, and Daniel Sánchez-Portal . Plasmonic Response of Metallic Nanojunctions Driven by Single Atom Motion: Quantum Transport Revealed in Optics. ACS Photonics 2016, 3
(2)
, 269-277. https://doi.org/10.1021/acsphotonics.5b00609
- Jonathan A. Scholl, Aitzol Garcia-Etxarri, Garikoitz Aguirregabiria, Ruben Esteban, Tarun C. Narayan, Ai Leen Koh, Javier Aizpurua, and Jennifer A. Dionne . Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime. ACS Nano 2016, 10
(1)
, 1346-1354. https://doi.org/10.1021/acsnano.5b06738
- Longkun Yang, Hancong Wang, Yan Fang, and Zhipeng Li . Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas. ACS Nano 2016, 10
(1)
, 1580-1588. https://doi.org/10.1021/acsnano.5b07223
- Andreas Hille, Matthias Moeferdt, Christian Wolff, Christian Matyssek, Rogelio Rodríguez-Oliveros, Cristopher Prohm, Jens Niegemann, Stefan Grafström, Lukas M. Eng, and Kurt Busch . Second Harmonic Generation from Metal Nano-Particle Resonators: Numerical Analysis On the Basis of the Hydrodynamic Drude Model. The Journal of Physical Chemistry C 2016, 120
(2)
, 1163-1169. https://doi.org/10.1021/acs.jpcc.5b08348
- Heesun Jung, Hoon Cha, Daedu Lee, and Sangwoon Yoon . Bridging the Nanogap with Light: Continuous Tuning of Plasmon Coupling between Gold Nanoparticles. ACS Nano 2015, 9
(12)
, 12292-12300. https://doi.org/10.1021/acsnano.5b05568
- Li Lin, Mario Zapata, Min Xiong, Zhonghui Liu, Shanshan Wang, Hong Xu, Andrei G. Borisov, Hongchen Gu, Peter Nordlander, Javier Aizpurua, and Jian Ye . Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core–Shell Junction to Subnanometer. Nano Letters 2015, 15
(10)
, 6419-6428. https://doi.org/10.1021/acs.nanolett.5b02931
- Vikram Kulkarni and Alejandro Manjavacas . Quantum Effects in Charge Transfer Plasmons. ACS Photonics 2015, 2
(7)
, 987-992. https://doi.org/10.1021/acsphotonics.5b00246
- Chua-Zu Huang, Ming-Jing Wu, and Shiuan-Yeh Chen . High Order Gap Modes of Film-Coupled Nanospheres. The Journal of Physical Chemistry C 2015, 119
(24)
, 13799-13806. https://doi.org/10.1021/acs.jpcc.5b01948
- Alejandro Varas, Pablo García-González, F. J. García-Vidal, and Angel Rubio . Anisotropy Effects on the Plasmonic Response of Nanoparticle Dimers. The Journal of Physical Chemistry Letters 2015, 6
(10)
, 1891-1898. https://doi.org/10.1021/acs.jpclett.5b00573
- M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G. Borisov, J. Aizpurua, and D. Sánchez-Portal . Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics. Nano Letters 2015, 15
(5)
, 3410-3419. https://doi.org/10.1021/acs.nanolett.5b00759
- Patrick Z. El-Khoury, Yu Gong, Patricia Abellan, Bruce W. Arey, Alan G. Joly, Dehong Hu, James E. Evans, Nigel D. Browning, and Wayne P. Hess . Tip-Enhanced Raman Nanographs: Mapping Topography and Local Electric Fields. Nano Letters 2015, 15
(4)
, 2385-2390. https://doi.org/10.1021/acs.nanolett.5b00609
- Bo Peng, David B. Lingerfelt, Feizhi Ding, Christine M. Aikens, and Xiaosong Li . Real-Time TDDFT Studies of Exciton Decay and Transfer in Silver Nanowire Arrays. The Journal of Physical Chemistry C 2015, 119
(11)
, 6421-6427. https://doi.org/10.1021/acs.jpcc.5b00263
- Rubén Esteban, Garikoitz Aguirregabiria, Andrey G. Borisov, Yumin M. Wang, Peter Nordlander, Garnett W. Bryant, and Javier Aizpurua . The Morphology of Narrow Gaps Modifies the Plasmonic Response. ACS Photonics 2015, 2
(2)
, 295-305. https://doi.org/10.1021/ph5004016
- Y. Huang and L. Gao . Superscattering of Light from Core–Shell Nonlocal Plasmonic Nanoparticles. The Journal of Physical Chemistry C 2014, 118
(51)
, 30170-30178. https://doi.org/10.1021/jp508289z
- Ghazal Hajisalem, Mohammedreza S. Nezami, and Reuven Gordon . Probing the Quantum Tunneling Limit of Plasmonic Enhancement by Third Harmonic Generation. Nano Letters 2014, 14
(11)
, 6651-6654. https://doi.org/10.1021/nl503324g
- Siyam M. Ansar, Manuel Gadogbe, Kumudu Siriwardana, Jane Y. Howe, Stas Dogel, Hooman Hosseinkhannazer, Willard E. Collier, Jose Rodriguez, Shengli Zou, and Dongmao Zhang . Dispersion Stability, Ligand Structure and Conformation, and SERS Activities of 1-Alkanethiol Functionalized Gold and Silver Nanoparticles. The Journal of Physical Chemistry C 2014, 118
(43)
, 24925-24934. https://doi.org/10.1021/jp507142v
- Peiyan Yuan, Rizhao Ma, Zhenping Guan, Nengyue Gao, and Qing-Hua Xu . Tuning Two-Photon Photoluminescence of Gold Nanoparticle Aggregates with DNA and Its Application as Turn-on Photoluminescence Probe for DNA Sequence Detection. ACS Applied Materials & Interfaces 2014, 6
(15)
, 13149-13156. https://doi.org/10.1021/am502988u
- J. Wirth, F. Garwe, R. Meyer, A. Csáki, O. Stranik, and W. Fritzsche . Plasmonically Enhanced Electron Escape from Gold Nanoparticles and Their Polarization-Dependent Excitation Transfer along DNA Nanowires. Nano Letters 2014, 14
(7)
, 3809-3816. https://doi.org/10.1021/nl5009184
- Patrick Z. El-Khoury and Wayne P. Hess . Vibronic Raman Scattering at the Quantum Limit of Plasmons. Nano Letters 2014, 14
(7)
, 4114-4118. https://doi.org/10.1021/nl501690u
- Nir Zohar and Gilad Haran . Modular Plasmonic Antennas Built of Ultrathin Silica-Shell Silver-Core Nanoparticles. Langmuir 2014, 30
(26)
, 7919-7927. https://doi.org/10.1021/la5017033
- Arnaud Stolz, Johann Berthelot, Marie-Maxime Mennemanteuil, Gérard Colas des Francs, Laurent Markey, Vincent Meunier, and Alexandre Bouhelier . Nonlinear Photon-Assisted Tunneling Transport in Optical Gap Antennas. Nano Letters 2014, 14
(5)
, 2330-2338. https://doi.org/10.1021/nl404707t
- Luca Sementa, Andrea Marini, Giovanni Barcaro, Fabio R. Negreiros, and Alessandro Fortunelli . Atomistic Quantum Plasmonics of Gold Nanowire Arrays. ACS Photonics 2014, 1
(4)
, 315-322. https://doi.org/10.1021/ph500038z
- Hongping Xiang, Xu Zhang, Daniel Neuhauser, and Gang Lu . Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations. The Journal of Physical Chemistry Letters 2014, 5
(7)
, 1163-1169. https://doi.org/10.1021/jz500216t
- D. C. Marinica, H. Lourenço-Martins, J. Aizpurua, and A. G. Borisov . Plexciton Quenching by Resonant Electron Transfer from Quantum Emitter to Metallic Nanoantenna. Nano Letters 2013, 13
(12)
, 5972-5978. https://doi.org/10.1021/nl403160s
- Sebastian Thomas, Michael Krüger, Michael Förster, Markus Schenk, and Peter Hommelhoff . Probing of Optical Near-Fields by Electron Rescattering on the 1 nm Scale. Nano Letters 2013, 13
(10)
, 4790-4794. https://doi.org/10.1021/nl402407r
- Julibeth M. Martinez de la Hoz, Gustavo E. Ramirez-Caballero, and Perla B. Balbuena . Characterization of Electronic States inside Metallic Nanopores. The Journal of Physical Chemistry C 2013, 117
(36)
, 18406-18413. https://doi.org/10.1021/jp404288f
- Rasoul Alaee, Christoph Menzel, Uwe Huebner, Ekaterina Pshenay-Severin, Shakeeb Bin Hasan, Thomas Pertsch, Carsten Rockstuhl, and Falk Lederer . Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling. Nano Letters 2013, 13
(8)
, 3482-3486. https://doi.org/10.1021/nl4007694
- Vassilios Yannopapas . Fluctuational-Electrodynamics Calculations of the van der Waals Potential in Nanoparticle Superlattices. The Journal of Physical Chemistry C 2013, 117
(29)
, 15342-15346. https://doi.org/10.1021/jp403875k
- Tianhong Chen, Mahshid Pourmand, Amin Feizpour, Bradford Cushman, and Björn M. Reinhard . Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation. The Journal of Physical Chemistry Letters 2013, 4
(13)
, 2147-2152. https://doi.org/10.1021/jz401066g
- Cuifeng Jiang, Tingting Zhao, Peiyan Yuan, Nengyue Gao, Yanlin Pan, Zhenping Guan, Na Zhou, and Qing-Hua Xu . Two-Photon Induced Photoluminescence and Singlet Oxygen Generation from Aggregated Gold Nanoparticles. ACS Applied Materials & Interfaces 2013, 5
(11)
, 4972-4977. https://doi.org/10.1021/am4007403
- Pavel Ginzburg and Anatoly V. Zayats . Localized Surface Plasmon Resonances in Spatially Dispersive Nano-Objects: Phenomenological Treatise. ACS Nano 2013, 7
(5)
, 4334-4342. https://doi.org/10.1021/nn400842m
- Sushmita Biswas, Jinsong Duan, Dhriti Nepal, Ruth Pachter, and Richard Vaia . Plasmonic Resonances in Self-Assembled Reduced Symmetry Gold Nanorod Structures. Nano Letters 2013, 13
(5)
, 2220-2225. https://doi.org/10.1021/nl4007358
- Lorenzo Stella, Pu Zhang, F. J. García-Vidal, Angel Rubio, and P. García-González . Performance of Nonlocal Optics When Applied to Plasmonic Nanostructures. The Journal of Physical Chemistry C 2013, 117
(17)
, 8941-8949. https://doi.org/10.1021/jp401887y
- Patrick Z. El-Khoury, Samuel J. Peppernick, Dehong Hu, Alan G. Joly, and Wayne P. Hess . The Origin of Surface-Enhanced Raman Scattering of 4,4′-Biphenyldicarboxylate on Silver Substrates. The Journal of Physical Chemistry C 2013, 117
(14)
, 7260-7268. https://doi.org/10.1021/jp401026x
- Jérémy Butet, Krishnan Thyagarajan, and Olivier J. F. Martin . Ultrasensitive Optical Shape Characterization of Gold Nanoantennas Using Second Harmonic Generation. Nano Letters 2013, 13
(4)
, 1787-1792. https://doi.org/10.1021/nl400393e
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.