Electrical Control of Optical Plasmon Resonance with GrapheneClick to copy article linkArticle link copied!
- Jonghwan Kim
- Hyungmok Son
- David J. Cho
- Baisong Geng
- Will Regan
- Sufei Shi
- Kwanpyo Kim
- Alex Zettl
- Yuen-Ron Shen
- Feng Wang
Abstract
Surface plasmon has the unique capability to concentrate light into subwavelength volume. (1-5) Active plasmon devices using electrostatic gating can enable flexible control of the plasmon excitations, (6) which has been demonstrated recently in terahertz plasmonic structures. (7-9) Controlling plasmon resonance at optical frequencies, however, remains a significant challenge because gate-induced free electrons have very weak responses at optical frequencies. (10) Here we achieve efficient control of near-infrared plasmon resonance in a hybrid graphene-gold nanorod system. Exploiting the uniquely strong (11, 12) and gate-tunable optical transitions (13, 14) of graphene, we are able to significantly modulate both the resonance frequency and quality factor of gold nanorod plasmon. Our analysis shows that the plasmon–graphene coupling is remarkably strong: even a single electron in graphene at the plasmonic hotspot could have an observable effect on plasmon scattering intensity. Such hybrid graphene–nanometallic structure provides a powerful way for electrical control of plasmon resonances at optical frequencies and could enable novel plasmonic sensing down to single charge transfer events.
Cited By
This article is cited by 267 publications.
- Julia Lawless, Oisín McCormack, Joshua Pepper, Niall McEvoy, A. Louise Bradley. Spectral Tuning of a Nanoparticle-on-Mirror System by Graphene Doping and Gap Control with Nitric Acid. ACS Applied Materials & Interfaces 2023, 15
(32)
, 38901-38909. https://doi.org/10.1021/acsami.3c05302
- Piero Lafiosca, Luca Nicoli, Luca Bonatti, Tommaso Giovannini, Stefano Corni, Chiara Cappelli. QM/Classical Modeling of Surface Enhanced Raman Scattering Based on Atomistic Electromagnetic Models. Journal of Chemical Theory and Computation 2023, 19
(12)
, 3616-3633. https://doi.org/10.1021/acs.jctc.3c00177
- Nikolaos Matthaiakakis, Sotiris Droulias, George Kakarantzas. Dynamic Control of Nonlinearly Generated Light Chirality with Nanostructured Graphene. ACS Applied Optical Materials 2023, 1
(5)
, 952-959. https://doi.org/10.1021/acsaom.3c00032
- Zhen-Ting Huang, Ting-Wei Chien, Chang-Wei Cheng, Cheng-Ching Li, Kuo-Ping Chen, Shangjr Gwo, Tien-Chang Lu. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers. ACS Nano 2023, 17
(7)
, 6488-6496. https://doi.org/10.1021/acsnano.2c11716
- Donatello Pagnotto, Alina Muravitskaya, David M. Benoit, Jean-Sebastien G. Bouillard, Ali M. Adawi. Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps Containing an Organic Semiconductor. ACS Applied Optical Materials 2023, 1
(1)
, 500-506. https://doi.org/10.1021/acsaom.2c00135
- Zhiguang Sun, Yurui Fang. Fabry-Pérot Interference Cavity Length Tuned by Plasmonic Nanoparticle Metasurface for Nanophotonic Device Design. ACS Applied Nano Materials 2020, 3
(11)
, 10732-10738. https://doi.org/10.1021/acsanm.0c01967
- Nikolaos Matthaiakakis, Takumi Sannomiya. Boundary Element Method Simulations of Tunable Chiral Radiation and Active Chirality Switching from Rectangular Graphene Nanosheets: Implications for Dynamic Control of Light Chirality. ACS Applied Nano Materials 2020, 3
(7)
, 6816-6826. https://doi.org/10.1021/acsanm.0c01202
- U. Celano, N. Maccaferri. Chasing Plasmons in Flatland. Nano Letters 2019, 19
(11)
, 7549-7552. https://doi.org/10.1021/acs.nanolett.9b04349
- Heng Li, Jhu-Hong Li, Kuo-Bin Hong, Min-Wen Yu, Yi-Cheng Chung, Chu-Yuan Hsu, Jhen-Hong Yang, Chang-Wei Cheng, Zhen-Ting Huang, Kuo-Ping Chen, Tzy-Rong Lin, Shangjr Gwo, Tien-Chang Lu. Plasmonic Nanolasers Enhanced by Hybrid Graphene–Insulator–Metal Structures. Nano Letters 2019, 19
(8)
, 5017-5024. https://doi.org/10.1021/acs.nanolett.9b01260
- Omer Salihoglu, Nurbek Kakenov, Osman Balci, Sinan Balci, Coskun Kocabas. Graphene-Quantum Dot Hybrid Optoelectronics at Visible Wavelengths. ACS Photonics 2018, 5
(6)
, 2384-2390. https://doi.org/10.1021/acsphotonics.8b00163
- Nina Jiang, Xiaolu Zhuo, Jianfang Wang. Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews 2018, 118
(6)
, 3054-3099. https://doi.org/10.1021/acs.chemrev.7b00252
- Wade M. Wilson, Jon W. Stewart, and Maiken H. Mikkelsen . Surpassing Single Line Width Active Tuning with Photochromic Molecules Coupled to Plasmonic Nanoantennas. Nano Letters 2018, 18
(2)
, 853-858. https://doi.org/10.1021/acs.nanolett.7b04109
- Jiahao Yan, Churong Ma, Pu Liu, Chengxin Wang, and Guowei Yang . Electrically Controlled Scattering in a Hybrid Dielectric-Plasmonic Nanoantenna. Nano Letters 2017, 17
(8)
, 4793-4800. https://doi.org/10.1021/acs.nanolett.7b01566
- Min-Soo Hwang, Ha-Reem Kim, Kyoung-Ho Kim, Kwang-Yong Jeong, Jin-Sung Park, Jae-Hyuck Choi, Ju-Hyung Kang, Jung Min Lee, Won Il Park, Jung-Hwan Song, Min-Kyo Seo, and Hong-Gyu Park . Switching of Photonic Crystal Lasers by Graphene. Nano Letters 2017, 17
(3)
, 1892-1898. https://doi.org/10.1021/acs.nanolett.6b05207
- Zachary S. Ballard, Daniel Shir, Aashish Bhardwaj, Sarah Bazargan, Shyama Sathianathan, and Aydogan Ozcan . Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning. ACS Nano 2017, 11
(2)
, 2266-2274. https://doi.org/10.1021/acsnano.7b00105
- Masashi Miyata, Akira Kaijima, Yusuke Nagasaki, and Junichi Takahara . Electromechanically Tunable Plasmonic Nanowires Operating in Visible Wavelengths. ACS Photonics 2016, 3
(12)
, 2268-2274. https://doi.org/10.1021/acsphotonics.6b00691
- Andrea Arcangeli, Francesco Rossella, Andrea Tomadin, Jihua Xu, Daniele Ercolani, Lucia Sorba, Fabio Beltram, Alessandro Tredicucci, Marco Polini, and Stefano Roddaro . Gate-Tunable Spatial Modulation of Localized Plasmon Resonances. Nano Letters 2016, 16
(9)
, 5688-5693. https://doi.org/10.1021/acs.nanolett.6b02351
- Petr A. Ledin, Ju-Won Jeon, Jeffrey A. Geldmeier, James F. Ponder, Jr., Mahmoud A. Mahmoud, Mostafa El-Sayed, John R. Reynolds, and Vladimir V. Tsukruk . Design of Hybrid Electrochromic Materials with Large Electrical Modulation of Plasmonic Resonances. ACS Applied Materials & Interfaces 2016, 8
(20)
, 13064-13075. https://doi.org/10.1021/acsami.6b02953
- Ju-Won Jeon, Petr A. Ledin, Jeffrey A. Geldmeier, James F. Ponder, Jr., Mahmoud A. Mahmoud, Mostafa El-Sayed, John R. Reynolds, and Vladimir V. Tsukruk . Electrically Controlled Plasmonic Behavior of Gold Nanocube@Polyaniline Nanostructures: Transparent Plasmonic Aggregates. Chemistry of Materials 2016, 28
(8)
, 2868-2881. https://doi.org/10.1021/acs.chemmater.6b00882
- Dinesh Kumar, Ahreum Lee, Taegon Lee, Manho Lim, and Dong-Kwon Lim . Ultrafast and Efficient Transport of Hot Plasmonic Electrons by Graphene for Pt Free, Highly Efficient Visible-Light Responsive Photocatalyst. Nano Letters 2016, 16
(3)
, 1760-1767. https://doi.org/10.1021/acs.nanolett.5b04764
- Akhilesh Kumar Mishra, Satyendra Kumar Mishra, and Rajneesh Kumar Verma . Graphene and Beyond Graphene MoS2: A New Window in Surface-Plasmon-Resonance-Based Fiber Optic Sensing. The Journal of Physical Chemistry C 2016, 120
(5)
, 2893-2900. https://doi.org/10.1021/acs.jpcc.5b08955
- J. Švanda, Y. Kalachyova, P. Slepička, V. Švorčík, and O. Lyutakov . Smart Component for Switching of Plasmon Resonance by External Electric Field. ACS Applied Materials & Interfaces 2016, 8
(1)
, 225-231. https://doi.org/10.1021/acsami.5b08334
- Kenneth M. Goodfellow, Chitraleema Chakraborty, Ryan Beams, Lukas Novotny, and A. Nick Vamivakas . Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor. Nano Letters 2015, 15
(8)
, 5477-5481. https://doi.org/10.1021/acs.nanolett.5b01898
- Yunhong Ding, Xiaolong Zhu, Sanshui Xiao, Hao Hu, Lars Hagedorn Frandsen, N. Asger Mortensen, and Kresten Yvind . Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene–Silicon Microring Resonator. Nano Letters 2015, 15
(7)
, 4393-4400. https://doi.org/10.1021/acs.nanolett.5b00630
- Benjamin D. Thackray, Philip A. Thomas, Gregory H. Auton, Francisco J. Rodriguez, Owen P. Marshall, Vasyl G. Kravets, and Alexander N. Grigorenko . Super-Narrow, Extremely High Quality Collective Plasmon Resonances at Telecom Wavelengths and Their Application in a Hybrid Graphene-Plasmonic Modulator. Nano Letters 2015, 15
(5)
, 3519-3523. https://doi.org/10.1021/acs.nanolett.5b00930
- Nima Dabidian, Iskandar Kholmanov, Alexander B. Khanikaev, Kaya Tatar, Simeon Trendafilov, S. Hossein Mousavi, Carl Magnuson, Rodney S. Ruoff, and Gennady Shvets . Electrical Switching of Infrared Light Using Graphene Integration with Plasmonic Fano Resonant Metasurfaces. ACS Photonics 2015, 2
(2)
, 216-227. https://doi.org/10.1021/ph5003279
- Daniel O. Sigle, Jan Mertens, Lars O. Herrmann, Richard W. Bowman, Sandrine Ithurria, Benoit Dubertret, Yumeng Shi, Hui Ying Yang, Christos Tserkezis, Javier Aizpurua, and Jeremy J. Baumberg . Monitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavities. ACS Nano 2015, 9
(1)
, 825-830. https://doi.org/10.1021/nn5064198
- Ciyuan Qiu, Weilu Gao, Robert Vajtai, Pulickel M. Ajayan, Junichiro Kono, and Qianfan Xu . Efficient Modulation of 1.55 μm Radiation with Gated Graphene on a Silicon Microring Resonator. Nano Letters 2014, 14
(12)
, 6811-6815. https://doi.org/10.1021/nl502363u
- Yu Yao, Raji Shankar, Mikhail A. Kats, Yi Song, Jing Kong, Marko Loncar, and Federico Capasso . Electrically Tunable Metasurface Perfect Absorbers for Ultrathin Mid-Infrared Optical Modulators. Nano Letters 2014, 14
(11)
, 6526-6532. https://doi.org/10.1021/nl503104n
- Young-Mi Bahk, Gopakumar Ramakrishnan, Jongho Choi, Hyelynn Song, Geunchang Choi, Yong Hyup Kim, Kwang Jun Ahn, Dai-Sik Kim, and Paul C. M. Planken . Plasmon Enhanced Terahertz Emission from Single Layer Graphene. ACS Nano 2014, 8
(9)
, 9089-9096. https://doi.org/10.1021/nn5025237
- Haoliang Qian, Yaoguang Ma, Qing Yang, Bigeng Chen, Ying Liu, Xin Guo, Shisheng Lin, Jili Ruan, Xu Liu, Limin Tong, and Zhong Lin Wang . Electrical Tuning of Surface Plasmon Polariton Propagation in Graphene–Nanowire Hybrid Structure. ACS Nano 2014, 8
(3)
, 2584-2589. https://doi.org/10.1021/nn406221s
- Naresh K. Emani, Ting-Fung Chung, Alexander V. Kildishev, Vladimir M. Shalaev, Yong P. Chen, and Alexandra Boltasseva . Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene. Nano Letters 2014, 14
(1)
, 78-82. https://doi.org/10.1021/nl403253c
- Yu Yao, Mikhail A. Kats, Raji Shankar, Yi Song, Jing Kong, Marko Loncar, and Federico Capasso . Wide Wavelength Tuning of Optical Antennas on Graphene with Nanosecond Response Time. Nano Letters 2014, 14
(1)
, 214-219. https://doi.org/10.1021/nl403751p
- Anneli Hoggard, Lin-Yung Wang, Lulu Ma, Ying Fang, Ge You, Jana Olson, Zheng Liu, Wei-Shun Chang, Pulickel M. Ajayan, and Stephan Link . Using the Plasmon Linewidth To Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene. ACS Nano 2013, 7
(12)
, 11209-11217. https://doi.org/10.1021/nn404985h
- Emre O. Polat and Coskun Kocabas . Broadband Optical Modulators Based on Graphene Supercapacitors. Nano Letters 2013, 13
(12)
, 5851-5857. https://doi.org/10.1021/nl402616t
- Federico Valmorra, Giacomo Scalari, Curdin Maissen, Wangyang Fu, Christian Schönenberger, Jong Won Choi, Hyung Gyu Park, Mattias Beck, and Jérôme Faist . Low-Bias Active Control of Terahertz Waves by Coupling Large-Area CVD Graphene to a Terahertz Metamaterial. Nano Letters 2013, 13
(7)
, 3193-3198. https://doi.org/10.1021/nl4012547
- Yu Yao, Mikhail A. Kats, Patrice Genevet, Nanfang Yu, Yi Song, Jing Kong, and Federico Capasso . Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas. Nano Letters 2013, 13
(3)
, 1257-1264. https://doi.org/10.1021/nl3047943
- Arka Majumdar, Jonghwan Kim, Jelena Vuckovic, and Feng Wang . Electrical Control of Silicon Photonic Crystal Cavity by Graphene. Nano Letters 2013, 13
(2)
, 515-518. https://doi.org/10.1021/nl3039212
- Gaurav Kumar Soni, Dinesh Yadav, Ashok Kumar, Prince Jain, Amit Rathi. Design and SAR analysis of DGS based deformed microstrip antenna for ON/OFF body smart wearable IoT applications. Physica Scripta 2025, 100
(1)
, 015536. https://doi.org/10.1088/1402-4896/ad9d89
- Adriano Colombelli, Daniela Lospinoso, Roberto Rella, Maria Grazia Manera. Exploring metal nanostructures magneto-optical properties as innovative local refractive index transducers. Surfaces and Interfaces 2025, 56 , 105694. https://doi.org/10.1016/j.surfin.2024.105694
- Himani Bhatia, Sanjay R. Dhakate, Kiran M. Subhedar. Enhanced SERS signal in the hybrid substrate through electronic modulation of CVD grown single-layer graphene. Diamond and Related Materials 2024, 150 , 111734. https://doi.org/10.1016/j.diamond.2024.111734
- Wei Zou, Tianjing Guo, Christos Argyropoulos. Ultrabroadband coherent perfect absorption with composite graphene metasurfaces. Optics Express 2024, 32
(19)
, 32667. https://doi.org/10.1364/OE.534828
- Prabhat Kumar, Martin Šilhavík, Manas R. Parida, Petr Kužel, Jiří Červenka. 3D Graphene Straintronics for Broadband Terahertz Modulation. Advanced Electronic Materials 2024, 10
(8)
https://doi.org/10.1002/aelm.202300853
- DongJun Kang, Chibuzo Onwukaeme, KiJeong Park, KyeongPyo Jeon, Han-Youl Ryu, SeokJae Yoo. Nanophotonic route to control electron behaviors in 2D materials. Nanophotonics 2024, 13
(16)
, 2865-2878. https://doi.org/10.1515/nanoph-2024-0074
- Nikolaos Matthaiakakis, Sotiris Droulias, George Kakarantzas. Ultrafast All‐Optical Control of Light Chirality with Nanostructured Graphene. Advanced Optical Materials 2024, 12
(16)
https://doi.org/10.1002/adom.202303181
- Jintao Chen, Lujun Hong, Jiangtao Lei, Yun Shen, Xiaohua Deng, Jing Chen, Tianjing Guo. High-Performance Terahertz Coherent Perfect Absorption with Asymmetric Graphene Metasurface. Photonics 2024, 11
(6)
, 544. https://doi.org/10.3390/photonics11060544
- Sehnaz Kanli. Tunable Fano resonance in mid-infrared region based on asymmetric graphene nanoribbon arrays. The European Physical Journal D 2024, 78
(6)
https://doi.org/10.1140/epjd/s10053-024-00857-z
- M. Soroosh, M. Shahbaznia, M. J. Maleki, J. Ganji. Designing a compact photonic crystal decoder using graphene-SiO2 stack. Optical and Quantum Electronics 2024, 56
(5)
https://doi.org/10.1007/s11082-024-06703-1
- A Abdollahi Parsa, M B Tavakoli, F Setoudeh, M Dousti. Design and numerical simulation of modified tunable THz filter based on periodic graphene-PVC ribbons. Physica Scripta 2024, 99
(4)
, 045519. https://doi.org/10.1088/1402-4896/ad2e63
- Rashmi Singh, Melvin S. Samuel, Madhumita Ravikumar, Selvarajan Ethiraj, Mohanraj Kumar. Graphene materials in pollution trace detection and environmental improvement. Environmental Research 2024, 243 , 117830. https://doi.org/10.1016/j.envres.2023.117830
- Xixi Yuan, Leiming Wu, Yuwen Qin. Advancing Sensitivity in Guided-Wave Surface Plasmon Resonance Sensor through Integration of 2D BlueP/MoS2 Hybrid Layers. Biosensors 2024, 14
(1)
, 25. https://doi.org/10.3390/bios14010025
- 冰霜 田. Study of the Response Characteristics of Metamaterial Multilayer Structures in the Terahertz and Visible Light Bands. Modeling and Simulation 2024, 13
(03)
, 3272-3280. https://doi.org/10.12677/mos.2024.133298
- Hamed Abbasian. Modulating Optical Properties of Graphene with the help of Two‐Dimensional Metal‐Organic Networks. Advanced Theory and Simulations 2023, 13 https://doi.org/10.1002/adts.202300600
- Rohan D. Chakraborty, William M. Postiglione, Supriya Ghosh, K. Andre Mkhoyan, Chris Leighton, Vivian E. Ferry. Optical Properties of Electrochemically Gated La
1−
x
Sr
x
CoO
3−
δ
as a Topotactic Phase‐Change Material. Advanced Optical Materials 2023, 11
(16)
https://doi.org/10.1002/adom.202300098
- Guanchao Wang, Li Li, Chenxiang Liu, Shuai Li, Wenpeng Guo, Yueying Jia, Zhenghao Li, Hao Tian. Tunable terahertz slow light with hybrid coupling of a magnetic toroidal and electric dipole metasurface. Photonics Research 2023, 11
(4)
, 494. https://doi.org/10.1364/PRJ.480671
- Sofyan A. Taya, Malek G. Daher, Ilhami Colak, Shobhit K. Patel, Amrindra Pal, Abdulkarem H.M. Almawgani, Ghassan Ahmed Ali. Highly sensitive sensor based on SPR nanostructure employing graphene and perovskite layers for the determination of blood hemoglobin concentration. Optik 2023, 120 , 170857. https://doi.org/10.1016/j.ijleo.2023.170857
- Wangfan Yang, Jiangwei Lu, Wenbo Zhuang, Jianfei Qi, Chunyang Wang, Huachao Wang, Guowen Su, Kai Xiong, Yong Mao, Xiaoxia Gong, Jun Yuan, Dengke Wang, Jiehe Sui, Genlin Zhang, Yanfen Wan, Peng Yang. PtS2 metamaterials: Fabrication and physical properties. Applied Surface Science 2023, 614 , 156277. https://doi.org/10.1016/j.apsusc.2022.156277
- Yuan Wan, Xiaoxue Li, Yucan Wang, Zhihao Li, XianLong Liu, Yangjian Cai. Low-threshold random lasers based on the DCM-DEG gain system with graphene nanosheets. Optics Express 2023, 31
(4)
, 6713. https://doi.org/10.1364/OE.484786
- Hamed Emami-Nejad, Ali Mir, Ali Farmani, Reza Talebzadeh. A silicene-based plasmonic electro-optical switch in THz range. Physica Scripta 2023, 98
(1)
, 015803. https://doi.org/10.1088/1402-4896/aca448
- 郑皓天 Zheng Haotian, 张松 Zhang Song, 徐挺 Xu Ting. 可调谐电磁超表面研究进展. Acta Optica Sinica 2023, 43
(8)
, 0822004. https://doi.org/10.3788/AOS222101
- Zhichao Zhang, Yeageun Lee, Md Farhadul Haque, Juyoung Leem, Ezekiel Y. Hsieh, SungWoo Nam. Plasmonic sensors based on graphene and graphene hybrid materials. Nano Convergence 2022, 9
(1)
https://doi.org/10.1186/s40580-022-00319-5
- Malek G. Daher, Youssef Trabelsi, Naser M. Ahmed, Yogenra Kumar Prajapati, Vishal Sorathiya, Sk Hasane Ahammad, P. Poorna Priya, Osama S. Faragallah, Ahmed Nabih Zaki Rashed. Detection of Basal Cancer Cells using Photodetector Based on a Novel Surface Plasmon Resonance Nanostructure Employing Perovskite Layer with an Ultra High Sensitivity. Plasmonics 2022, 17
(6)
, 2365-2373. https://doi.org/10.1007/s11468-022-01727-3
- Hui‐Lei Hou, Cosimo Anichini, Paolo Samorì, Alejandro Criado, Maurizio Prato. 2D Van der Waals Heterostructures for Chemical Sensing. Advanced Functional Materials 2022, 32
(49)
https://doi.org/10.1002/adfm.202207065
- Mohamed El barghouti, Abdellatif Akjouj, Abdellah Mir. Modeling of surface plasmon resonance biosensor based on Ag/BiFeO3/Ni using 2D nanomaterial perovskite MAPbBr3. Materials Today Communications 2022, 33 , 104591. https://doi.org/10.1016/j.mtcomm.2022.104591
- Asieh Karimi, Masoud Jabbari, Ghahraman Solookinejad. Band-stop filter based on metal–insulator-metal hybridized with graphene layer in telecommunication regime. Laser Physics 2022, 32
(11)
, 116206. https://doi.org/10.1088/1555-6611/ac9789
- Ciyuan Qiu, Huiying Zeng, Yikai Su. Recent progress in graphene-based optical modulators on silicon photonics platform. National Science Open 2022, 1
(3)
, 20220031. https://doi.org/10.1360/nso/20220031
- Zi‐xuan Ding, Hao‐tian Xu, Yi‐feng Xiong, Kang‐hu Zhou, Ye Chen, Yan‐qing Lu, Fei Xu. Gate‐Tunable Graphene Optical Modulator on Fiber Tip: Design and Demonstration. Advanced Optical Materials 2022, 10
(22)
https://doi.org/10.1002/adom.202201724
- Xiaoling Lu, Pavel Damborský, Walid-Madhat Munief, Jessica Ka-Yan Law, Xianping Chen, Jaroslav Katrlík, Vivek Pachauri, Sven Ingebrandt. Electrical SPR biosensor with thermal annealed graphene oxide: Concept of highly sensitive biomolecule detection. Biosensors and Bioelectronics: X 2022, 11 , 100152. https://doi.org/10.1016/j.biosx.2022.100152
- Fan-Li Zhang, Jun Yi, Weiyi Lin, En-Ming You, Jia-Sheng Lin, Huaizhou Jin, Weiwei Cai, Zhong-Qun Tian, Jian-Feng Li. Gap-mode plasmons at 2 nm spatial-resolution under a graphene-mediated hot spot. Nano Today 2022, 44 , 101464. https://doi.org/10.1016/j.nantod.2022.101464
- Yikai Su, Yong Zhang. Silicon-Family Materials and Waveguides. 2022, 2-1-2-26. https://doi.org/10.1063/9780735424319_002
- Neda Biranvand, Ali Bahari, Hanieh Yazdanfar, Ahmed Kadem Kodeary, Seyedeh Mehri Hamidi. Nonlinear refractive index of the gold nanoparticle/silicon quantum dot hybrid structure. Physica Scripta 2022, 97
(3)
, 030001. https://doi.org/10.1088/1402-4896/ac52fb
- Bumjoo Lee, Chihun In, Jisoo Moon, Tae Hoon Kim, Seongshik Oh, Tae Won Noh, Hyunyong Choi. Terahertz-driven hot Dirac fermion and plasmon dynamics in the bulk-insulating topological insulator
Bi
2
Se
3
. Physical Review B 2022, 105
(4)
https://doi.org/10.1103/PhysRevB.105.045307
- Arthur A. Melo, Eloise P. Rodrigues, Antonio Marcus N. Lima. In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers. 2021, 1-4. https://doi.org/10.1109/BioSMART54244.2021.9677846
- Alka Jakhar, Prabhat Kumar, Sajid Husain, Veerendra Dhyani, Abhilasha Chouksey, Prashant Kumar Rai, J S Rawat, Samaresh Das. Bilayer MoS
2
on silicon for higher terahertz amplitude modulation. Nano Express 2021, 2
(4)
, 040004. https://doi.org/10.1088/2632-959X/ac1ef6
- Yuan Wan, Hongwen Li, Zhaozhong Meng, Jing Lyu, Xinyu Zhang. Active Manipulation of Fano Resonance at Visible and Near-Infrared Wavelengths in Metal Plasmonic Nanodevices Using Graphene. Plasmonics 2021, 16
(6)
, 1929-1935. https://doi.org/10.1007/s11468-021-01451-4
- Sheng Wang, SeokJae Yoo, Sihan Zhao, Wenyu Zhao, Salman Kahn, Dingzhou Cui, Fanqi Wu, Lili Jiang, M. Iqbal Bakti Utama, Hongyuan Li, Shaowei Li, Alexander Zibrov, Emma Regan, Danqing Wang, Zuocheng Zhang, Kenji Watanabe, Takashi Taniguchi, Chongwu Zhou, Feng Wang. Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-25269-0
- Michael Shur, Gregory Aizin, Taiichi Otsuji, Victor Ryzhii. Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications. Sensors 2021, 21
(23)
, 7907. https://doi.org/10.3390/s21237907
- Yurong Liu, Wenzheng Lu, Xizhe Cheng, Jianfang Wang, Wai-Yeung Wong. A new cobalt(
ii
) complex nanosheet as an electroactive medium for plasmonic switching on Au nanoparticles. Dalton Transactions 2021, 50
(43)
, 15900-15905. https://doi.org/10.1039/D1DT02780H
- Shiliang Guo, Xin Li, Zechen Guo, Xingtao Zhao, Shuhan Meng, Zhiquan Li. Polarization-Independent Optoelectronic Modulator Based on Graphene Ridge Structure. Nanomaterials 2021, 11
(10)
, 2559. https://doi.org/10.3390/nano11102559
- Xunjun He, Chenguang Sun, Yue Wang, Guangjun Lu, Jiuxing Jiang, Yuqiang Yang, Yachen Gao. Graphene-Modulated Terahertz Metasurfaces for Selective and Active Control of Dual-Band Electromagnetic Induced Reflection (EIR) Windows. Nanomaterials 2021, 11
(9)
, 2420. https://doi.org/10.3390/nano11092420
- Qilin Duan, Yineng Liu, Shanshan Chang, Huanyang Chen, Jin-hui Chen. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21
(16)
, 5262. https://doi.org/10.3390/s21165262
- Tao Guo, Sai Gao, Huiying Zeng, Linlong Tang, Ciyuan Qiu. All-Optical Control of a Single Resonance in a Graphene-On-Silicon Nanobeam Cavity Using Thermo-Optic Effect. Journal of Lightwave Technology 2021, 39
(14)
, 4710-4716. https://doi.org/10.1109/JLT.2021.3077559
- Yoonhee Kim, Seungsang Cha, Jae-Ho Kim, Jeong-Wook Oh, Jwa-Min Nam. Electrochromic response and control of plasmonic metal nanoparticles. Nanoscale 2021, 13
(21)
, 9541-9552. https://doi.org/10.1039/D1NR01055G
- Abdelhak Dhibi, Jabir Hakami, Amel Abassi. Performance analysis of surface plasmon resonance sensors using bimetallic alloy-perovskite-bimetallic alloy and perovskite-bimetallic alloy-perovskite nanostructures. Physica Scripta 2021, 96
(6)
, 065505. https://doi.org/10.1088/1402-4896/abf067
- Carlos F. Guimarães, Rajib Ahmed, Alexandra P. Marques, Rui L. Reis, Utkan Demirci. Engineering Hydrogel‐Based Biomedical Photonics: Design, Fabrication, and Applications. Advanced Materials 2021, 33
(23)
, 2006582. https://doi.org/10.1002/adma.202006582
- Hossein Karimkhani, Hamid Vahed. An optical modulator with ridge-type silicon waveguide based on graphene and MoS2 layers and improved modulation depth. Optical and Quantum Electronics 2021, 53
(5)
https://doi.org/10.1007/s11082-021-02901-3
- Jabir Hakami, Amel Abassi, Abdelhak Dhibi. Performance enhancement of surface plasmon resonance sensor based on Ag-TiO2-MAPbX3-graphene for the detection of glucose in water. Optical and Quantum Electronics 2021, 53
(4)
https://doi.org/10.1007/s11082-021-02822-1
- Mohammad Mahdi Ghods, Majid Afsahi. Design and simulation of the optical amplitude-shift keying modulator using Fabry–Perot resonator coupled with graphene at near-infrared frequencies. Journal of Nanophotonics 2021, 15
(02)
https://doi.org/10.1117/1.JNP.15.026006
- Biswajit Dey, Md. Sherajul Islam, Jeongwon Park. Numerical design of high-performance WS2/metal/WS2/graphene heterostructure based surface plasmon resonance refractive index sensor. Results in Physics 2021, 23 , 104021. https://doi.org/10.1016/j.rinp.2021.104021
- Yonghua Wang, Lei Lei, Junbin Zang, Wenchan Dong, Xinliang Zhang, Ping Xu. High Efficiency Electro-Optic Modulation in a Graphene Silicon Hybrid Tapered Microring Resonator. IEEE Access 2021, 9 , 87869-87876. https://doi.org/10.1109/ACCESS.2021.3089465
- Xitao Guo, Xiaoguang Luo, Amina Zafar, Yonghao Tan, Zhidong Wang. Fluorescence manipulation from graphene and hydrogen-terminated graphene covered Au nanoparticles. AIP Advances 2021, 11
(1)
https://doi.org/10.1063/5.0032470
- Erdem ASLAN, Ekin ASLAN. GRAPHENE-TUNABLE MID-INFRARED METAMATERIALS BASED ON TITANIUM NITRIDE NANORODS. Mühendislik Bilimleri ve Tasarım Dergisi 2020, 8
(4)
, 1269-1277. https://doi.org/10.21923/jesd.816906
- Francesca Limosani, Ramandeep Kaur, Antonino Cataldo, Stefano Bellucci, Federico Micciulla, Robertino Zanoni, Angelo Lembo, Bingzhe Wang, Roberto Pizzoferrato, Dirk M. Guldi, Pietro Tagliatesta. Designing Cascades of Electron Transfer Processes in Multicomponent Graphene Conjugates. Angewandte Chemie International Edition 2020, 59
(52)
, 23706-23715. https://doi.org/10.1002/anie.202008820
- Francesca Limosani, Ramandeep Kaur, Antonino Cataldo, Stefano Bellucci, Federico Micciulla, Robertino Zanoni, Angelo Lembo, Bingzhe Wang, Roberto Pizzoferrato, Dirk M. Guldi, Pietro Tagliatesta. Designing Cascades of Electron Transfer Processes in Multicomponent Graphene Conjugates. Angewandte Chemie 2020, 132
(52)
, 23914-23923. https://doi.org/10.1002/ange.202008820
- Heng Li, Zhen‐Ting Huang, Kuo‐Bin Hong, Chu‐Yuan Hsu, Jia‐Wei Chen, Chang‐Wei Cheng, Kuo‐Ping Chen, Tzy‐Rong Lin, Shang‐Jr Gwo, Tien‐Chang Lu. Current Modulation of Plasmonic Nanolasers by Breaking Reciprocity on Hybrid Graphene–Insulator–Metal Platforms. Advanced Science 2020, 7
(24)
https://doi.org/10.1002/advs.202001823
- Mohamad Najafi-Hajivar, Mahmood Hosseini-Farzad. Broadband polarization-insensitive amplitude and phase modulators based on graphene-covered buried and ridge silicon waveguides. Optics Communications 2020, 472 , 125860. https://doi.org/10.1016/j.optcom.2020.125860
- Behnam Jafari, Hadi Soofi, Karim Abbasian. Low voltage, high modulation depth graphene THz modulator employing Fabry–Perot resonance in a metal/dielectric/graphene sandwich structure. Optics Communications 2020, 472 , 125911. https://doi.org/10.1016/j.optcom.2020.125911
- Victor Dmitriev, Geraldo Melo, Wagner Castro. Tunable THz and Infrared Plasmonic Filters and Switches Based on Circular Graphene Resonator With 90$^\circ$ Bending of Output Port. IEEE Photonics Journal 2020, 12
(5)
, 1-13. https://doi.org/10.1109/JPHOT.2020.3024118
- Kazem Zhour, José M. Otero-Mato, Fouad El Haj Hassan, Hussein Fahs, Majid Vaezzadeh, E. López-Lago, Luis J. Gallego, Luis M. Varela. Electronic and optical properties of borophene and graphene with an adsorbed ionic liquid: A density functional theory study. Journal of Molecular Liquids 2020, 316 , 113803. https://doi.org/10.1016/j.molliq.2020.113803
- Tianjing Guo, Christos Argyropoulos. Tunable and broadband coherent perfect absorbers with nonlinear and amplification performance based on asymmetric bifacial graphene metasurfaces. Journal of Optics 2020, 22
(8)
, 084003. https://doi.org/10.1088/2040-8986/ab9cdc
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.