ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Helquat-Induced Chiroselective Aggregation of Au NPs

View Author Information
Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v. v. i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic
*(F.T.) E-mail: [email protected]. Phone: 420-220-183412. Fax: 420-220-183578. (I.W.) E-mail: [email protected]. Phone: 972-2-6585272. Fax: 972-2-6527715.
Cite this: Nano Lett. 2012, 12, 11, 5835–5839
Publication Date (Web):October 8, 2012
https://doi.org/10.1021/nl303179s
Copyright © 2012 American Chemical Society

    Article Views

    2000

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Au nanoparticles (NPs) are functionalized with chiral (R) or (S) binaphthol phenylboronic acid ligands, (1a) or (1b). The (R)- or (S)-binaphthol phenylboronic acid ligands form donor–acceptor complexes with the chiral dicationic helicene, helquat (P)-HQ2+ or (M)-HQ2+, (2a) or (2b). The association constants between (1a)/(2a) and (1a)/(2b) correspond to (7.0 ± 0.5) × 105 M–1 and (2.5 ± 0.3) × 105 M–1, respectively, whereas the association constants between (1b)/(2b) and (1b)/(2a) correspond to (4.0 ± 0.5) × 105 M–1 and (1.8 ± 0.3) × 105 M–1, respectively. Chiroselective aggregation of chiral binaphthol phenylboronic acid-capped Au NPs triggered by the chiral helquats, is demonstrated.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    CD spectra of the (R)- and the (S)-modified Au NPs, determination of the loading of the Au NPs with the respective binaphthol phenylboronic acid ligands, cyclic voltammogram of the helquat, determination of the binding constants, and Job’s plots corresponding to the binding of the (S)- or (R)-modified Au NPs in the presence of the different helquats. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 25 publications.

    1. Giuseppina Raffaini. Adsorption and Self-Aggregation of Chiral [5]-Aza[6]helicenes on DNA Architecture: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2023, 127 (39) , 8285-8295. https://doi.org/10.1021/acs.jpcb.3c02487
    2. Michael Fadeev, Gilad Davidson-Rozenfeld, Zhenzhen Li, Itamar Willner. Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads. ACS Applied Materials & Interfaces 2023, 15 (30) , 37011-37025. https://doi.org/10.1021/acsami.3c06230
    3. Kais Dhbaibi, Ludovic Favereau, Jeanne Crassous. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). Chemical Reviews 2019, 119 (14) , 8846-8953. https://doi.org/10.1021/acs.chemrev.9b00033
    4. Margaret N. Holme, Subinoy Rana, Hanna M. G. Barriga, Ulrike Kauscher, Nicholas J. Brooks, Molly M. Stevens. A Robust Liposomal Platform for Direct Colorimetric Detection of Sphingomyelinase Enzyme and Inhibitors. ACS Nano 2018, 12 (8) , 8197-8207. https://doi.org/10.1021/acsnano.8b03308
    5. Wei Ma, Liguang Xu, André F. de Moura, Xiaoling Wu, Hua Kuang, Chuanlai Xu, and Nicholas A. Kotov . Chiral Inorganic Nanostructures. Chemical Reviews 2017, 117 (12) , 8041-8093. https://doi.org/10.1021/acs.chemrev.6b00755
    6. Lubomír Pospíšil, Lucie Bednárová, Petr Štěpánek, Petr Slavíček, Jan Vávra, Magdaléna Hromadová, Helena Dlouhá, Ján Tarábek, and Filip Teplý . Intense Chiroptical Switching in a Dicationic Helicene-Like Derivative: Exploration of a Viologen-Type Redox Manifold of a Non-Racemic Helquat. Journal of the American Chemical Society 2014, 136 (31) , 10826-10829. https://doi.org/10.1021/ja500220j
    7. Etery Sharon, Eyal Golub, Angelica Niazov-Elkan, Dora Balogh, and Itamar Willner . Analysis of Telomerase by the Telomeric Hemin/G-Quadruplex-Controlled Aggregation of Au Nanoparticles in the Presence of Cysteine. Analytical Chemistry 2014, 86 (6) , 3153-3158. https://doi.org/10.1021/ac5000152
    8. Fuan Wang, Xiaoqing Liu, Chun-Hua Lu, and Itamar Willner . Cysteine-Mediated Aggregation of Au Nanoparticles: The Development of a H2O2 Sensor and Oxidase-Based Biosensors. ACS Nano 2013, 7 (8) , 7278-7286. https://doi.org/10.1021/nn402810x
    9. Longhua Guo, Yang Xu, Abdul Rahim Ferhan, Guonan Chen, and Dong-Hwan Kim . Oriented Gold Nanoparticle Aggregation for Colorimetric Sensors with Surprisingly High Analytical Figures of Merit. Journal of the American Chemical Society 2013, 135 (33) , 12338-12345. https://doi.org/10.1021/ja405371g
    10. Blessy Rajan, Ashutosh V. Bedekar. Effect of methyl substituent in the fjord region on the conformational stability of aza[5]helicenes. Journal of Molecular Structure 2021, 1234 , 130178. https://doi.org/10.1016/j.molstruc.2021.130178
    11. Tommaso Taroni, Silvia Cauteruccio, Riccardo Vago, Stefano Franchi, Nadia Barbero, Emanuela Licandro, Silvia Ardizzone, Daniela Meroni. Thiahelicene-grafted halloysite nanotubes: Characterization, biological studies and pH triggered release. Applied Surface Science 2020, 520 , 146351. https://doi.org/10.1016/j.apsusc.2020.146351
    12. Lukáš Severa, Petra Sázelová, Ivana Císařová, David Šaman, Dušan Koval, Pradeep Devadig, Václav Kašička, Filip Teplý. Dutch Resolution of a configurationally stable [5]helquat. Chirality 2018, 30 (3) , 254-260. https://doi.org/10.1002/chir.22789
    13. Alessandro Cecconello, Lucas V. Besteiro, Alexander O. Govorov, Itamar Willner. Chiroplasmonic DNA-based nanostructures. Nature Reviews Materials 2017, 2 (9) https://doi.org/10.1038/natrevmats.2017.39
    14. Chuan-Feng Chen, Yun Shen. Recognition, Sensors, and Responsive Switches. 2017, 201-220. https://doi.org/10.1007/978-3-662-53168-6_10
    15. Jaroslav Šebestík, Filip Teplý, Ivana Císařová, Jan Vávra, Dušan Koval, Petr Bouř. Intense chirality induction in nitrile solvents by a helquat dye monitored by near resonance Raman scattering. Chemical Communications 2016, 52 (37) , 6257-6260. https://doi.org/10.1039/C6CC01606E
    16. Jitendra Satija, Nirmal Punjabi, Debasish Mishra, Soumyo Mukherji. Plasmonic-ELISA: expanding horizons. RSC Advances 2016, 6 (88) , 85440-85456. https://doi.org/10.1039/C6RA16750K
    17. Ran Tel-Vered, Jason S. Kahn, Itamar Willner. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications. Small 2016, 12 (1) , 51-75. https://doi.org/10.1002/smll.201501367
    18. Naba K. Nath, Lukáš Severa, Roman A. Kunetskiy, Ivana Císařová, Michal Fulem, Květoslav Růžička, Dušan Koval, Václav Kašička, Filip Teplý, Panče Naumov. Single‐Crystal‐to‐Single‐Crystal Transition in an Enantiopure [7]Helquat Salt: The First Observation of a Reversible Phase Transition in a Helicene‐Like Compound. Chemistry – A European Journal 2015, 21 (39) , 13508-13512. https://doi.org/10.1002/chem.201502094
    19. Gourav M. Upadhyay, Ashutosh V. Bedekar. Synthesis and photophysical properties of bi-aza[5]helicene and bi-aza[6]helicene. Tetrahedron 2015, 71 (34) , 5644-5649. https://doi.org/10.1016/j.tet.2015.06.040
    20. Paul E. Reyes-Gutiérrez, Michael Jirásek, Lukáš Severa, Pavlína Novotná, Dušan Koval, Petra Sázelová, Jan Vávra, Andreas Meyer, Ivana Císařová, David Šaman, Radek Pohl, Petr Štěpánek, Petr Slavíček, Benjamin J. Coe, Miroslav Hájek, Václav Kašička, Marie Urbanová, Filip Teplý. Functional helquats: helical cationic dyes with marked, switchable chiroptical properties in the visible region. Chemical Communications 2015, 51 (9) , 1583-1586. https://doi.org/10.1039/C4CC08967G
    21. Gourav M. Upadhyay, Harish R. Talele, Sibaprasad Sahoo, Ashutosh V. Bedekar. Synthesis of carbazole derived aza[7]helicenes. Tetrahedron Letters 2014, 55 (39) , 5394-5399. https://doi.org/10.1016/j.tetlet.2014.07.116
    22. Martina Čížková, David Šaman, Dušan Koval, Václav Kašička, Blanka Klepetářová, Ivana Císařová, Filip Teplý. Modular Synthesis of Helicene‐Like Compounds Based on the Imidazolium Motif. European Journal of Organic Chemistry 2014, 2014 (26) , 5681-5685. https://doi.org/10.1002/ejoc.201402746
    23. Angelica Niazov-Elkan, Eyal Golub, Etery Sharon, Dora Balogh, Itamar Willner. DNA Sensors and Aptasensors Based on the Hemin/G-quadruplex-Controlled Aggregation of Au NPs in the Presence of L-Cysteine. Small 2014, 10 (14) , 2883-2891. https://doi.org/10.1002/smll.201400002
    24. Seong Hyeok Seo, Sudeok Kim, Min Su Han. Gold nanoparticle-based colorimetric chiral discrimination of histidine: application to determining the enantiomeric excess of histidine. Anal. Methods 2014, 6 (1) , 73-76. https://doi.org/10.1039/C3AY41735B
    25. Weili Wei, Li Wu, Can Xu, Jinsong Ren, Xiaogang Qu. A general approach using spiroborate reversible cross-linked Au nanoparticles for visual high-throughput screening of chiral vicinal diols. Chemical Science 2013, 4 (3) , 1156. https://doi.org/10.1039/c2sc21571c

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect