ACS Publications. Most Trusted. Most Cited. Most Read
Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment
My Activity
    Letter

    Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment
    Click to copy article linkArticle link copied!

    View Author Information
    Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, P.O. Box 80.000, 3508 TA, Utrecht, The Netherlands
    EMAT, Department of Physics, University of Antwerpen, Groenenborgerlaan 171, 2010 Antwerpen, Belgium
    § Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, P.O. Box 80.000, 3508 TA, Utrecht, The Netherlands
    Institute for Theorectical Physics, Utrecht University, Leuvenlaan 4, P.O. Box 80.000, 3508 TA, Utrecht, The Netherlands
    Other Access OptionsSupporting Information (2)

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 6, 2317–2323
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl303322k
    Published October 11, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Oriented attachment, the process in which nanometer-sized crystals fuse by atomic bonding of specific crystal facets, is expected to be more difficult to control than nanocrystal self-assembly that is driven by entropic factors or weak van der Waals attractions. Here, we present a study of oriented attachment of PbSe nanocrystals that counteract this tuition. The reaction was studied in a thin film of the suspension casted on an immiscible liquid at a given temperature. We report that attachment can be controlled such that it occurs with one type of facets exclusively. By control of the temperature and particle concentration we obtain one- or two-dimensional PbSe single crystals, the latter with a honeycomb or square superimposed periodicity in the nanometer range. We demonstrate the ability to convert these PbSe superstructures into other semiconductor compounds with the preservation of crystallinity and geometry.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional experimental results and methods are available, including synthesis, characterization of the shapes, oriented attachment of PbSe rods and stars, study of defects and conversion of PbSe sheets to CdSe or Cu2–xSe sheets by ion exchange. Additionally, a theoretical study of the adsorption of PbSe cubes on a liquid–air interface is given. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 227 publications.

    1. Meng Deng, Ziyan Zhang, Lei Liu, Hongchao Yang, Chuncheng Li, Zhaochuan Fan. Ligand–Solvent Library Design for Tailoring Interparticle Interactions in Colloidal Nanocrystals. ACS Nano 2025, Article ASAP.
    2. Jacopo Pinna, Elisa Pili, Razieh Mehrabi Koushki, Dnyaneshwar S. Gavhane, Francesco Carlà, Bart J. Kooi, Giuseppe Portale, Maria Antonietta Loi. PbI2 Passivation of Three Dimensional PbS Quantum Dot Superlattices Toward Optoelectronic Metamaterials. ACS Nano 2024, 18 (29) , 19124-19136. https://doi.org/10.1021/acsnano.4c04076
    3. Jongchan Kim, Yeonghun Lee, Van Long Nguyen, Chu Thi Thu Huong, Dongwook Kim, Kyeongjae Cho, Myung Mo Sung. Self-Organized Phase-Composite Nanocrystal Solids with Superior Charge Transport. ACS Applied Materials & Interfaces 2023, 15 (46) , 53835-53846. https://doi.org/10.1021/acsami.3c12282
    4. Feiyue Ge, Yingying Han, Changsheng Feng, Han Zhang, Feifan Chen, Dan Xu, Chen-Lei Tao, Fang Cheng, Xue-Jun Wu. Halide Ions Regulating the Morphologies of PbS and Au@PbS Core–Shell Nanocrystals: Synthesis, Self-Assembly, and Electrical Transport Properties. The Journal of Physical Chemistry Letters 2023, 14 (42) , 9521-9530. https://doi.org/10.1021/acs.jpclett.3c02614
    5. Mengdi Zuo, Qimeng Song, Nigar Hajiyeva, Holger Lerch, Jens Bolten, Ulrich Plachetka, Max C. Lemme, Holger Schönherr. Effect of Particle Size on the Orientation and Order of Assemblies of Functionalized Microscale Cubes Formed at the Water/Air Interface. Langmuir 2023, 39 (25) , 8658-8667. https://doi.org/10.1021/acs.langmuir.3c00518
    6. Ming Qiu, Zhongpeng Zhu, Dianyu Wang, Zhe Xu, Weining Miao, Lei Jiang, Ye Tian. Large-Scale Metal–Organic Framework Nanoparticle Monolayers with Controlled Orientation for Selective Transport of Rare-Earth Elements. Journal of the American Chemical Society 2023, 145 (22) , 12275-12283. https://doi.org/10.1021/jacs.3c02716
    7. Dongsheng Li, Qian Chen, Jaehun Chun, Kristen Fichthorn, James De Yoreo, Haimei Zheng. Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chemical Reviews 2023, 123 (6) , 3127-3159. https://doi.org/10.1021/acs.chemrev.2c00700
    8. Maria Taplick, Charlotte Ruhmlieb, Tobias Kipp, Alf Mews. Two-Dimensional Superstructures from the Gas Phase: Directed Assembly of Copper-Sulfide Nanoplatelets. Nano Letters 2023, 23 (4) , 1313-1319. https://doi.org/10.1021/acs.nanolett.2c04531
    9. Alex Abelson, Caroline Qian, Zachary Crawford, Gergely T. Zimanyi, Matt Law. High-Mobility Hole Transport in Single-Grain PbSe Quantum Dot Superlattice Transistors. Nano Letters 2022, 22 (23) , 9578-9585. https://doi.org/10.1021/acs.nanolett.2c03657
    10. Saoirsé E. Freeney, Marlou R. Slot, Thomas S. Gardenier, Ingmar Swart, Daniel Vanmaekelbergh. Electronic Quantum Materials Simulated with Artificial Model Lattices. ACS Nanoscience Au 2022, 2 (3) , 198-224. https://doi.org/10.1021/acsnanoscienceau.1c00054
    11. Caroline Qian, Alex Abelson, Anneka Miller-Casas, Robert Capp, Ilya Vinogradov, Nina S. Udagawa, Nien-Hui Ge, Matt Law. Photobase-Triggered Formation of 3D Epitaxially Fused Quantum Dot Superlattices with High Uniformity and Low Bulk Defect Densities. ACS Nano 2022, 16 (2) , 3239-3250. https://doi.org/10.1021/acsnano.1c11130
    12. U. Gupta, F. A. Escobedo. Ligand Interactions and Nanoparticle Shapes Guide the Pathways toward Interfacial Self-Assembly. Langmuir 2022, 38 (5) , 1738-1747. https://doi.org/10.1021/acs.langmuir.1c02804
    13. Jiakai Liu, Xiaopeng Zheng, Omar F. Mohammed, Osman M. Bakr. Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Accounts of Chemical Research 2022, 55 (3) , 262-274. https://doi.org/10.1021/acs.accounts.1c00651
    14. Maaike M. van der Sluijs, Dinja Sanders, Kevin J. Jansen, Giuseppe Soligno, Daniel Vanmaekelbergh, Joep L. Peters. On the Formation of Honeycomb Superlattices from PbSe Quantum Dots: The Role of Solvent-Mediated Repulsion and Facet-to-Facet Attraction in NC Self-Assembly and Alignment. The Journal of Physical Chemistry C 2022, 126 (2) , 986-996. https://doi.org/10.1021/acs.jpcc.1c07430
    15. Jessica Cimada daSilva, Daniel M. Balazs, Tyler A. Dunbar, Tobias Hanrath. Fundamental Processes and Practical Considerations of Lead Chalcogenide Mesocrystals Formed via Self-Assembly and Directed Attachment of Nanocrystals at a Fluid Interface. Chemistry of Materials 2021, 33 (24) , 9457-9472. https://doi.org/10.1021/acs.chemmater.1c02910
    16. Jiabin Cui, Somnath Koley, Yossef E. Panfil, Adar Levi, Yonatan Ossia, Nir Waiskopf, Sergei Remennik, Meirav Oded, Uri Banin. Neck Barrier Engineering in Quantum Dot Dimer Molecules via Intraparticle Ripening. Journal of the American Chemical Society 2021, 143 (47) , 19816-19823. https://doi.org/10.1021/jacs.1c08863
    17. P. Tim Prins, Maryam Alimoradi Jazi, Niall A. Killilea, Wiel H. Evers, Pieter Geiregat, Wolfgang Heiss, Arjan J. Houtepen, Christophe Delerue, Zeger Hens, Daniel Vanmaekelbergh. The Fine-Structure Constant as a Ruler for the Band-Edge Light Absorption Strength of Bulk and Quantum-Confined Semiconductors. Nano Letters 2021, 21 (22) , 9426-9432. https://doi.org/10.1021/acs.nanolett.1c02682
    18. Arin Bhakat, Ayan Pal, Raveesh Siddaramaiah, Arun Chattopadhyay. Complexation-Based Super Crystalline Assembly of Zinc Oxide Quantum Dots for Sensitive Carbon Dioxide Gas Sensing. The Journal of Physical Chemistry C 2021, 125 (22) , 12316-12323. https://doi.org/10.1021/acs.jpcc.1c02104
    19. Jiawei Liu, Jingtao Huang, Wenxin Niu, Chaoliang Tan, Hua Zhang. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chemical Reviews 2021, 121 (10) , 5830-5888. https://doi.org/10.1021/acs.chemrev.0c01047
    20. Hannah-Noa Barad, Hyunah Kwon, Mariana Alarcón-Correa, Peer Fischer. Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects. ACS Nano 2021, 15 (4) , 5861-5875. https://doi.org/10.1021/acsnano.0c09999
    21. Charlie Gréboval, Audrey Chu, Nicolas Goubet, Clément Livache, Sandrine Ithurria, Emmanuel Lhuillier. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chemical Reviews 2021, 121 (7) , 3627-3700. https://doi.org/10.1021/acs.chemrev.0c01120
    22. Justin C. Ondry, A. Paul Alivisatos. Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks. Accounts of Chemical Research 2021, 54 (6) , 1419-1429. https://doi.org/10.1021/acs.accounts.0c00719
    23. Bastiaan B. V. Salzmann, Maaike M. van der Sluijs, Giuseppe Soligno, Daniel Vanmaekelbergh. Oriented Attachment: From Natural Crystal Growth to a Materials Engineering Tool. Accounts of Chemical Research 2021, 54 (4) , 787-797. https://doi.org/10.1021/acs.accounts.0c00739
    24. Sebastian Volk, Nuri Yazdani, Vanessa Wood. Manipulating Electronic Structure from the Bottom-Up: Colloidal Nanocrystal-Based Semiconductors. The Journal of Physical Chemistry Letters 2020, 11 (21) , 9255-9264. https://doi.org/10.1021/acs.jpclett.0c01417
    25. U. Gupta, F. A. Escobedo. An Implicit-Solvent Model for the Interfacial Configuration of Colloidal Nanoparticles and Application to the Self-Assembly of Truncated Cubes. Journal of Chemical Theory and Computation 2020, 16 (9) , 5866-5875. https://doi.org/10.1021/acs.jctc.0c00283
    26. Daniel M. Balazs, Tyler A. Dunbar, Detlef-M. Smilgies, Tobias Hanrath. Coupled Dynamics of Colloidal Nanoparticle Spreading and Self-Assembly at a Fluid–Fluid Interface. Langmuir 2020, 36 (22) , 6106-6115. https://doi.org/10.1021/acs.langmuir.0c00524
    27. Sebastian Volk, Nuri Yazdani, Olesya Yarema, Maksym Yarema, Vanessa Wood. Dopants and Traps in Nanocrystal-Based Semiconductor Thin Films: Origins and Measurement of Electronic Midgap States. ACS Applied Electronic Materials 2020, 2 (2) , 398-404. https://doi.org/10.1021/acsaelm.9b00685
    28. Harshal Agrawal, Biplab K. Patra, Thomas Altantzis, Annick De Backer, Erik C. Garnett. Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy. ACS Applied Materials & Interfaces 2020, 12 (7) , 8788-8794. https://doi.org/10.1021/acsami.9b17779
    29. Justin C. Ondry, John P. Philbin, Michael Lostica, Eran Rabani, A. Paul Alivisatos. Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks. ACS Nano 2019, 13 (11) , 12322-12344. https://doi.org/10.1021/acsnano.9b03052
    30. Willem Walravens, Eduardo Solano, Filip Geenen, Jolien Dendooven, Oleg Gorobtsov, Athmane Tadjine, Nayyera Mahmoud, Patrick Peiwen Ding, Jacob P. C. Ruff, Andrej Singer, Gunther Roelkens, Christophe Delerue, Christophe Detavernier, Zeger Hens. Setting Carriers Free: Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids. ACS Nano 2019, 13 (11) , 12774-12786. https://doi.org/10.1021/acsnano.9b04757
    31. Arthur R. C. McCray, Benjamin H. Savitzky, Kevin Whitham, Tobias Hanrath, Lena F. Kourkoutis. Orientational Disorder in Epitaxially Connected Quantum Dot Solids. ACS Nano 2019, 13 (10) , 11460-11468. https://doi.org/10.1021/acsnano.9b04951
    32. Santanu Maiti, Alexander André, Sonam Maiti, Martin Hodas, Maciej Jankowski, Marcus Scheele, Frank Schreiber. Revealing Structure and Crystallographic Orientation of Soft Epitaxial Assembly of Nanocrystals by Grazing Incidence X-ray Scattering. The Journal of Physical Chemistry Letters 2019, 10 (20) , 6324-6330. https://doi.org/10.1021/acs.jpclett.9b02373
    33. Yun Liu, Nolan Peard, Jeffrey C. Grossman. Bandlike Transport in PbS Quantum Dot Superlattices with Quantum Confinement. The Journal of Physical Chemistry Letters 2019, 10 (13) , 3756-3762. https://doi.org/10.1021/acs.jpclett.9b01282
    34. Feng Bai, Kaifu Bian, Xin Huang, Zhongwu Wang, Hongyou Fan. Pressure Induced Nanoparticle Phase Behavior, Property, and Applications. Chemical Reviews 2019, 119 (12) , 7673-7717. https://doi.org/10.1021/acs.chemrev.9b00023
    35. Qimeng Song, Mengdi Zuo, Holger Schönherr. Reconfigurable Microcube Assemblies at the Liquid/Air Interface: The Impact of Surface Tension on Orientation and Capillary-Force-Interaction-Driven Assembly. Langmuir 2019, 35 (24) , 7791-7797. https://doi.org/10.1021/acs.langmuir.9b01104
    36. Hua Zhu, Zhaochuan Fan, Long Yu, Mitchell A. Wilson, Yasutaka Nagaoka, Dennis Eggert, Can Cao, Yuzi Liu, Zichao Wei, Xudong Wang, Jie He, Jing Zhao, Ruipeng Li, Zhongwu Wang, Michael Grünwald, Ou Chen. Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals. Journal of the American Chemical Society 2019, 141 (14) , 6013-6021. https://doi.org/10.1021/jacs.9b01033
    37. Joep L. Peters, Jur de Wit, Daniël Vanmaekelbergh. Sizing Curve, Absorption Coefficient, Surface Chemistry, and Aliphatic Chain Structure of PbTe Nanocrystals. Chemistry of Materials 2019, 31 (5) , 1672-1680. https://doi.org/10.1021/acs.chemmater.8b05050
    38. Xinxing Peng, Alex Abelson, Yu Wang, Caroline Qian, Junyi Shangguan, Qiubo Zhang, Lei Yu, Zu-Wei Yin, Wenjing Zheng, Karen C. Bustillo, Xuyun Guo, Hong-Gang Liao, Shi-Gang Sun, Matt Law, Haimei Zheng. In Situ TEM Study of the Degradation of PbSe Nanocrystals in Air. Chemistry of Materials 2019, 31 (1) , 190-199. https://doi.org/10.1021/acs.chemmater.8b04052
    39. Abhyuday Paliwal, Satya Veer Singh, Anand Sharma, Anumol Sugathan, Shun-Wei Liu, Sajal Biring, Bhola N. Pal. Microwave-Polyol Synthesis of Sub-10-nm PbS Nanocrystals for Metal Oxide/Nanocrystal Heterojunction Photodetectors. ACS Applied Nano Materials 2018, 1 (11) , 6063-6072. https://doi.org/10.1021/acsanm.8b01194
    40. Kaifu Bian, Ruipeng Li, Hongyou Fan. Controlled Self-Assembly and Tuning of Large PbS Nanoparticle Supercrystals. Chemistry of Materials 2018, 30 (19) , 6788-6793. https://doi.org/10.1021/acs.chemmater.8b02691
    41. Joep L. Peters, Thomas Altantzis, Ivan Lobato, Maryam Alimoradi Jazi, Carlo van Overbeek, Sara Bals, Daniel Vanmaekelbergh, Sophia Buhbut Sinai. Mono- and Multilayer Silicene-Type Honeycomb Lattices by Oriented Attachment of PbSe Nanocrystals: Synthesis, Structural Characterization, and Analysis of the Disorder. Chemistry of Materials 2018, 30 (14) , 4831-4837. https://doi.org/10.1021/acs.chemmater.8b02178
    42. Julia S. van der Burgt, Jaco J. Geuchies, Berend van der Meer, Hans Vanrompay, Daniele Zanaga, Yang Zhang, Wiebke Albrecht, Andrei V. Petukhov, Laura Filion, Sara Bals, Ingmar Swart, Daniël Vanmaekelbergh. Cuboidal Supraparticles Self-Assembled from Cubic CsPbBr3 Perovskite Nanocrystals. The Journal of Physical Chemistry C 2018, 122 (27) , 15706-15712. https://doi.org/10.1021/acs.jpcc.8b02699
    43. Anouck M. Champsaur, Taylor J. Hochuli, Daniel W. Paley, Colin Nuckolls, Michael L. Steigerwald. Superatom Fusion and the Nature of Quantum Confinement. Nano Letters 2018, 18 (7) , 4564-4569. https://doi.org/10.1021/acs.nanolett.8b01824
    44. Jorick Maes, Nicolo Castro, Kim De Nolf, Willem Walravens, Benjamin Abécassis, Zeger Hens. Size and Concentration Determination of Colloidal Nanocrystals by Small-Angle X-ray Scattering. Chemistry of Materials 2018, 30 (12) , 3952-3962. https://doi.org/10.1021/acs.chemmater.8b00903
    45. Carlo van Overbeek, Joep L. Peters, Susan A. P. van Rossum, Marc Smits, Marijn A. van Huis, Daniel Vanmaekelbergh. Interfacial Self-Assembly and Oriented Attachment in the Family of PbX (X = S, Se, Te) Nanocrystals. The Journal of Physical Chemistry C 2018, 122 (23) , 12464-12473. https://doi.org/10.1021/acs.jpcc.8b01876
    46. Justin C. Ondry, Matthew R. Hauwiller, A. Paul Alivisatos. Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs: Toward Design Rules for Oriented Attachment. ACS Nano 2018, 12 (4) , 3178-3189. https://doi.org/10.1021/acsnano.8b00638
    47. Liang Xu, Hai-Wei Liang, Yuan Yang, Shu-Hong Yu. Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. Chemical Reviews 2018, 118 (7) , 3209-3250. https://doi.org/10.1021/acs.chemrev.7b00208
    48. Aditya Kulkarni, Wiel H. Evers, Stanko Tomić, Matthew C. Beard, Daniel Vanmaekelbergh, and Laurens D. A. Siebbeles . Efficient Steplike Carrier Multiplication in Percolative Networks of Epitaxially Connected PbSe Nanocrystals. ACS Nano 2018, 12 (1) , 378-384. https://doi.org/10.1021/acsnano.7b06511
    49. Wenxiong Shi, Zhonghan Zhang, and Shuzhou Li . Quantitative Prediction of Position and Orientation for Platonic Nanoparticles at Liquid/Liquid Interfaces. The Journal of Physical Chemistry Letters 2018, 9 (2) , 373-382. https://doi.org/10.1021/acs.jpclett.7b03187
    50. Kevin Whitham, Detlef-M. Smilgies, and Tobias Hanrath . Entropic, Enthalpic, and Kinetic Aspects of Interfacial Nanocrystal Superlattice Assembly and Attachment. Chemistry of Materials 2018, 30 (1) , 54-63. https://doi.org/10.1021/acs.chemmater.7b04223
    51. Zhongwu Wang, Kaifu Bian, Yasutaka Nagaoka, Hongyou Fan, and Y. Charles Cao . Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices. Journal of the American Chemical Society 2017, 139 (41) , 14476-14482. https://doi.org/10.1021/jacs.7b06908
    52. M. Alimoradi Jazi, V. A. E. C. Janssen, W. H. Evers, A. Tadjine, C. Delerue, L. D. A. Siebbeles, H. S. J. van der Zant, A. J. Houtepen, and D. Vanmaekelbergh . Transport Properties of a Two-Dimensional PbSe Square Superstructure in an Electrolyte-Gated Transistor. Nano Letters 2017, 17 (9) , 5238-5243. https://doi.org/10.1021/acs.nanolett.7b01348
    53. Kevin Whitham and Tobias Hanrath . Formation of Epitaxially Connected Quantum Dot Solids: Nucleation and Coherent Phase Transition. The Journal of Physical Chemistry Letters 2017, 8 (12) , 2623-2628. https://doi.org/10.1021/acs.jpclett.7b00846
    54. Ivan A. Zaluzhnyy, Ruslan P. Kurta, Alexander André, Oleg Y. Gorobtsov, Max Rose, Petr Skopintsev, Ilya Besedin, Alexey V. Zozulya, Michael Sprung, Frank Schreiber, Ivan A. Vartanyants, and Marcus Scheele . Quantifying Angular Correlations between the Atomic Lattice and the Superlattice of Nanocrystals Assembled with Directional Linking. Nano Letters 2017, 17 (6) , 3511-3517. https://doi.org/10.1021/acs.nanolett.7b00584
    55. Yunan Gao, Mark C. Weidman, and William A. Tisdale . CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. Nano Letters 2017, 17 (6) , 3837-3843. https://doi.org/10.1021/acs.nanolett.7b01237
    56. Chaoliang Tan, Xiehong Cao, Xue-Jun Wu, Qiyuan He, Jian Yang, Xiao Zhang, Junze Chen, Wei Zhao, Shikui Han, Gwang-Hyeon Nam, Melinda Sindoro, and Hua Zhang . Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews 2017, 117 (9) , 6225-6331. https://doi.org/10.1021/acs.chemrev.6b00558
    57. Joep L. Peters, Karel H. W. van den Bos, Sandra Van Aert, Bart Goris, Sara Bals, and Daniël Vanmaekelbergh . Ligand-Induced Shape Transformation of PbSe Nanocrystals. Chemistry of Materials 2017, 29 (9) , 4122-4128. https://doi.org/10.1021/acs.chemmater.7b01103
    58. Benjamin E. Treml, Benjamin H. Savitzky, Ali M. Tirmzi, Jessica Cimada DaSilva, Lena F. Kourkoutis, and Tobias Hanrath . Successive Ionic Layer Absorption and Reaction for Postassembly Control over Inorganic Interdot Bonds in Long-Range Ordered Nanocrystal Films. ACS Applied Materials & Interfaces 2017, 9 (15) , 13500-13507. https://doi.org/10.1021/acsami.7b01588
    59. Emily Asenath-Smith, Jade M. Noble, Robert Hovden, Amanda M. Uhl, Allessandra DiCorato, Yi-Yeoun Kim, Alexander N. Kulak, Fiona C. Meldrum, Lena F. Kourkoutis, and Lara A. Estroff . Physical Confinement Promoting Formation of Cu2O–Au Heterostructures with Au Nanoparticles Entrapped within Crystalline Cu2O Nanorods. Chemistry of Materials 2017, 29 (2) , 555-563. https://doi.org/10.1021/acs.chemmater.6b03653
    60. Francisco M. Gómez-Campos, Salvador Rodríguez-Bolívar, and Marco Califano . High-Mobility Toolkit for Quantum Dot Films. ACS Photonics 2016, 3 (11) , 2059-2067. https://doi.org/10.1021/acsphotonics.6b00377
    61. Pralay K Santra, Axel F. Palmstrom, Christopher J. Tassone, and Stacey F. Bent . Molecular Ligands Control Superlattice Structure and Crystallite Orientation in Colloidal Quantum Dot Solids. Chemistry of Materials 2016, 28 (19) , 7072-7081. https://doi.org/10.1021/acs.chemmater.6b03076
    62. Ingmar Swart, Peter Liljeroth, and Daniel Vanmaekelbergh . Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews 2016, 116 (18) , 11181-11219. https://doi.org/10.1021/acs.chemrev.5b00678
    63. Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, and Benoit Dubertret . Two-Dimensional Colloidal Nanocrystals. Chemical Reviews 2016, 116 (18) , 10934-10982. https://doi.org/10.1021/acs.chemrev.6b00164
    64. Michael A. Boles, Michael Engel, and Dmitri V. Talapin . Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews 2016, 116 (18) , 11220-11289. https://doi.org/10.1021/acs.chemrev.6b00196
    65. Philipp M. Konze, Volker L. Deringer, and Richard Dronskowski . Understanding the Shape of GeTe Nanocrystals from First Principles. Chemistry of Materials 2016, 28 (18) , 6682-6688. https://doi.org/10.1021/acs.chemmater.6b02940
    66. Benjamin H. Savitzky, Robert Hovden, Kevin Whitham, Jun Yang, Frank Wise, Tobias Hanrath, and Lena F. Kourkoutis . Propagation of Structural Disorder in Epitaxially Connected Quantum Dot Solids from Atomic to Micron Scale. Nano Letters 2016, 16 (9) , 5714-5718. https://doi.org/10.1021/acs.nanolett.6b02382
    67. Willem Walravens, Jonathan De Roo, Emile Drijvers, Stephanie ten Brinck, Eduardo Solano, Jolien Dendooven, Christophe Detavernier, Ivan Infante, and Zeger Hens . Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices. ACS Nano 2016, 10 (7) , 6861-6870. https://doi.org/10.1021/acsnano.6b02562
    68. Volker L. Deringer and Richard Dronskowski . Stabilities and Reconstructions of Clean PbS and PbSe Surfaces: DFT Results and the Role of Dispersion Forces. The Journal of Physical Chemistry C 2016, 120 (16) , 8813-8820. https://doi.org/10.1021/acs.jpcc.6b02173
    69. Thomas Bielewicz, Mohammad Mehdi Ramin Moayed, Vera Lebedeva, Christian Strelow, Angelique Rieckmann, and Christian Klinke . From Dots to Stripes to Sheets: Shape Control of Lead Sulfide Nanostructures. Chemistry of Materials 2015, 27 (24) , 8248-8254. https://doi.org/10.1021/acs.chemmater.5b03088
    70. Jun Yang and F. W. Wise . Electronic States of Lead-Salt Nanosheets. The Journal of Physical Chemistry C 2015, 119 (48) , 26809-26816. https://doi.org/10.1021/acs.jpcc.5b08207
    71. Benjamin E. Treml, Andrew B. Robbins, Kevin Whitham, Detlef-M. Smilgies, Michael O. Thompson, and Tobias Hanrath . Processing–Structure–Property Relationships in Laser-Annealed PbSe Nanocrystal Thin Films. ACS Nano 2015, 9 (4) , 4096-4102. https://doi.org/10.1021/acsnano.5b00167
    72. Elsa Javon, Meriem Gaceur, Walid Dachraoui, Olivier Margeat, Jörg Ackermann, Maria Ilenia Saba, Pietro Delugas, Alessandro Mattoni, Sara Bals, and Gustaaf Van Tendeloo . Competing Forces in the Self-Assembly of Coupled ZnO Nanopyramids. ACS Nano 2015, 9 (4) , 3685-3694. https://doi.org/10.1021/acsnano.5b00809
    73. Jun Yang and Frank W. Wise . Effects of Disorder on Electronic Properties of Nanocrystal Assemblies. The Journal of Physical Chemistry C 2015, 119 (6) , 3338-3347. https://doi.org/10.1021/jp5098469
    74. Dahin Kim, Whi Dong Kim, Moon Sung Kang, Shin-Hyun Kim, and Doh C. Lee . Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters 2015, 15 (1) , 714-720. https://doi.org/10.1021/nl504259v
    75. Alexander V. Baranov, Elena V. Ushakova, Valery V. Golubkov, Aleksandr P. Litvin, Peter S. Parfenov, Anatoly V. Fedorov, and Kevin Berwick . Self-Organization of Colloidal PbS Quantum Dots into Highly Ordered Superlattices. Langmuir 2015, 31 (1) , 506-513. https://doi.org/10.1021/la503913z
    76. C. S. Suchand Sandeep, Jon Mikel Azpiroz, Wiel H. Evers, Simon C. Boehme, Iwan Moreels, Sachin Kinge, Laurens D. A. Siebbeles, Ivan Infante, and Arjan J. Houtepen . Epitaxially Connected PbSe Quantum-Dot Films: Controlled Neck Formation and Optoelectronic Properties. ACS Nano 2014, 8 (11) , 11499-11511. https://doi.org/10.1021/nn504679k
    77. Francesca Pietra, Freddy T. Rabouw, Peter G. van Rhee, Jos van Rijssel, Andrei V. Petukhov, Ben H. Erné, Peter C. M. Christianen, Celso de Mello Donegá, and Daniël Vanmaekelbergh . Self-Assembled CdSe/CdS Nanorod Sheets Studied in the Bulk Suspension by Magnetic Alignment. ACS Nano 2014, 8 (10) , 10486-10495. https://doi.org/10.1021/nn503857t
    78. Guohua Jia and Uri Banin . A General Strategy for Synthesizing Colloidal Semiconductor Zinc Chalcogenide Quantum Rods. Journal of the American Chemical Society 2014, 136 (31) , 11121-11127. https://doi.org/10.1021/ja505541q
    79. Cécile Bouet, Donatien Laufer, Benoit Mahler, Brice Nadal, Hadrien Heuclin, Silvia Pedetti, Gilles Patriarche, and Benoit Dubertret . Synthesis of Zinc and Lead Chalcogenide Core and Core/Shell Nanoplatelets Using Sequential Cation Exchange Reactions. Chemistry of Materials 2014, 26 (9) , 3002-3008. https://doi.org/10.1021/cm5008608
    80. Barbara K. Hughes, Jeffrey L. Blackburn, Daniel Kroupa, Andrew Shabaev, Steven C. Erwin, Alexander L. Efros, Arthur J. Nozik, Joseph M. Luther, and Matthew C. Beard . Synthesis and Spectroscopy of PbSe Fused Quantum-Dot Dimers. Journal of the American Chemical Society 2014, 136 (12) , 4670-4679. https://doi.org/10.1021/ja413026h
    81. Yoshitaka Nakagawa, Hiroyuki Kageyama, Yuya Oaki, and Hiroaki Imai . Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks. Journal of the American Chemical Society 2014, 136 (10) , 3716-3719. https://doi.org/10.1021/ja410183q
    82. Soong Ju Oh, Nathaniel E. Berry, Ji-Hyuk Choi, E. Ashley Gaulding, Hangfei Lin, Taejong Paik, Benjamin. T. Diroll, Shin Muramoto, Christopher B. Murray, and Cherie R. Kagan . Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition. Nano Letters 2014, 14 (3) , 1559-1566. https://doi.org/10.1021/nl404818z
    83. Ward van der Stam, Anjan P. Gantapara, Quinten A. Akkerman, Giuseppe Soligno, Johannes D. Meeldijk, René van Roij, Marjolein Dijkstra, and Celso de Mello Donega . Self-Assembly of Colloidal Hexagonal Bipyramid- and Bifrustum-Shaped ZnS Nanocrystals into Two-Dimensional Superstructures. Nano Letters 2014, 14 (2) , 1032-1037. https://doi.org/10.1021/nl4046069
    84. Milena P. Arciniegas, Mee R. Kim, Joost De Graaf, Rosaria Brescia, Sergio Marras, Karol Miszta, Marjolein Dijkstra, René van Roij, and Liberato Manna . Self-Assembly of Octapod-Shaped Colloidal Nanocrystals into a Hexagonal Ballerina Network Embedded in a Thin Polymer Film. Nano Letters 2014, 14 (2) , 1056-1063. https://doi.org/10.1021/nl404732m
    85. Jianbing Zhang, Jianbo Gao, Elisa M. Miller, Joseph M. Luther, and Matthew C. Beard . Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells. ACS Nano 2014, 8 (1) , 614-622. https://doi.org/10.1021/nn405236k
    86. Frank C. J. M. van Veggel . Near-Infrared Quantum Dots and Their Delicate Synthesis, Challenging Characterization, and Exciting Potential Applications. Chemistry of Materials 2014, 26 (1) , 111-122. https://doi.org/10.1021/cm4021436
    87. Illan J. Kramer and Edward H. Sargent . The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chemical Reviews 2014, 114 (1) , 863-882. https://doi.org/10.1021/cr400299t
    88. Angang Dong, Yucong Jiao, and Delia J. Milliron . Electronically Coupled Nanocrystal Superlattice Films by in Situ Ligand Exchange at the Liquid–Air Interface. ACS Nano 2013, 7 (12) , 10978-10984. https://doi.org/10.1021/nn404566b
    89. Xingchen Ye, Jaime A. Millan, Michael Engel, Jun Chen, Benjamin T. Diroll, Sharon C. Glotzer, and Christopher B. Murray . Shape Alloys of Nanorods and Nanospheres from Self-Assembly. Nano Letters 2013, 13 (10) , 4980-4988. https://doi.org/10.1021/nl403149u
    90. William J. Baumgardner, Kevin Whitham, and Tobias Hanrath . Confined-but-Connected Quantum Solids via Controlled Ligand Displacement. Nano Letters 2013, 13 (7) , 3225-3231. https://doi.org/10.1021/nl401298s
    91. Maryna I. Bodnarchuk, Rolf Erni, Frank Krumeich, and Maksym V. Kovalenko . Binary Superlattices from Colloidal Nanocrystals and Giant Polyoxometalate Clusters. Nano Letters 2013, 13 (4) , 1699-1705. https://doi.org/10.1021/nl4002475
    92. Maria Antonietta Loi, Jacopo Pinna, Alexandru Mednicov, Razieh Mehrabi Koushki, Majid Ahmadi, José Ruiz-Franco, Andrea Giuntoli, Bart Kooi, Giuseppe Portale. 2D PbS Quantum Dot Superlattices with Unprecedented Area Coverage and Homogeneity via Langmuir-Schaefer Deposition. 2025https://doi.org/10.21203/rs.3.rs-5860939/v1
    93. Zheng Liu, Xiya Chen, Ruizhao Yao, Lihui Li, Huanteng Luo, Guangcan Li, Xiao Liu. Pyramid-shaped quantum dot superlattice exhibiting tunable room-temperature coherent emission via oriented attachment. Materials Horizons 2025, 47 https://doi.org/10.1039/D4MH01748J
    94. Jara F. Vliem, Jesper R. Moes, Ingmar Swart, Daniel Vanmaekelbergh. Colloidal nanocrystals: Viable model systems for electronic quantum materials?. Nano Research 2024, 17 (12) , 10511-10524. https://doi.org/10.1007/s12274-024-6986-6
    95. N. A. Rauf, M. S. Omar, Botan Jawdat Abdullah, Ibrahim Nazem Qader. The grain boundary and alloy-based system to calculate lattice thermal conductivity in InAs/GaAs multi-layered superlattices. International Journal of Modern Physics B 2024, 2 https://doi.org/10.1142/S0217979225400491
    96. D. Ya. Bayramdurdyev, R. F. Malikov. Optical dynamics of a supercrystal of V-type quantum emitters: effects of the electronic states' dephasing. Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 2024, 88 (6) , 869-875. https://doi.org/10.31857/S0367676524060049
    97. D. Ya. Bayramdurdyev, R. F. Malikov. Optical Dynamics of a Supercrystal of V-Type Quantum Emitters: Effects of the Dephasing of Electronic States. Bulletin of the Russian Academy of Sciences: Physics 2024, 88 (6) , 828-834. https://doi.org/10.1134/S106287382470669X
    98. I. V. Ryzhov, E. S. Kovyneva, A. M. Devyatkov. Superradiation in a Medium Consisting of Two Ultra-Thin Layers, Considering the Influence of Homogeneous and Inhomogeneous Spectral Line Broadening. Bulletin of the Russian Academy of Sciences: Physics 2024, 88 (6) , 909-921. https://doi.org/10.1134/S1062873824706810
    99. Xiao Liu, Zheng Liu, Xiya Chen, Ruizhao Yao, Lihui Li, Huanteng Luo, Byung-Ryool Hyun, Guangcan Li. Pyramid-Shaped Quantum Dot Superlattice Exhibiting Tunable Room-Temperature Superfluorescence via Oriented Attachment. 2024https://doi.org/10.21203/rs.3.rs-4329418/v1
    100. Guanzhou He, Tengfei Qiu, Xin Wang, Mingliang Jin, Guofu Zhou, Michael Giersig, Krzysztof Kempa, Eser Metin Akinoglu. Regulating two-dimensional colloidal crystal assembly through contactless acoustic annealing. Journal of Applied Physics 2024, 135 (14) https://doi.org/10.1063/5.0185692
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 6, 2317–2323
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl303322k
    Published October 11, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    7132

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.