ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Human Taste Receptor-Functionalized Field Effect Transistor as a Human-Like Nanobioelectronic Tongue

View Author Information
School of Chemical and Biological Engineering, Bio-MAX Institute, Seoul National University, Seoul 151-744, Republic of Korea
World Class University program of Chemical Convergence for Energy & Environment, School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea
§ Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
Cite this: Nano Lett. 2013, 13, 1, 172–178
Publication Date (Web):November 26, 2012
https://doi.org/10.1021/nl3038147
Copyright © 2012 American Chemical Society

    Article Views

    3149

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In this study, we developed a human taste receptor protein, hTAS2R38-functionalized carboxylated polypyrrole nanotube (CPNT)-field effect transistor (FET) as a nanobioelectronic tongue (nbe-tongue) that displayed human-like performance with high sensitivity and selectivity. Taster type (PAV) and nontaster type (AVI) hTAS2R38s were expressed in Escherichia coli (E. coli) at a high level and immobilized on a CPNT-FET sensor platform. Among the various tastants examined, PAV-CPNT-FET exclusively responded to target bitterness compounds, phenylthiocarbamide (PTC) and propylthiouracil (PROP), with high sensitivity at concentrations as low as 1 fM. However, no significant changes were observed in the AVI-CPNT-FET in response to the target bitter tastants. This nbe-tongue exhibited different bitter-taste perception of compounds containing thiourea (N–C═S) moieties such as PTC, PROP, and antithyroid toxin in vegetables, which corresponded to the haplotype of hTAS2R38 immobilized on CPNTs. This correlation with the type of receptor is very similar to the human taste system. Thus, the artificial taste sensor developed in this study allowed for the efficient detection of target tastants in mixture and real food sample with a human-like performance and high sensitivity. Furthermore, our nbe-tongue could be utilized as a substitute for cell-based assays and to better understand the mechanisms of human taste.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional information about production of the receptor and fabrication and stability of the sensor platform. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 100 publications.

    1. Sophia Nazir, Kyung Ho Kim, Lina Kim, Sung Eun Seo, Pan Kee Bae, Jai Eun An, Oh Seok Kwon. Discrimination of the H1N1 and H5N2 Variants of Influenza A Virus Using an Isomeric Sialic Acid-Conjugated Graphene Field-Effect Transistor. Analytical Chemistry 2023, 95 (13) , 5532-5541. https://doi.org/10.1021/acs.analchem.2c04273
    2. Jin-Young Jeong, Yeon Kyung Cha, Sae Ryun Ahn, Junghyun Shin, Yoonji Choi, Tai Hyun Park, Seunghun Hong. Ultrasensitive Bioelectronic Tongue Based on the Venus Flytrap Domain of a Human Sweet Taste Receptor. ACS Applied Materials & Interfaces 2022, 14 (2) , 2478-2487. https://doi.org/10.1021/acsami.1c17349
    3. Seyede Somayeh Hosseini Abdollah Salimi Mohsen Adeli . Nanoscale Sensors Based on Conductive Polymers. , 219-254. https://doi.org/10.1021/bk-2022-1405.ch009
    4. Yoav Y. Broza, Xi Zhou, Miaomiao Yuan, Danyao Qu, Youbing Zheng, Rotem Vishinkin, Muhammad Khatib, Weiwei Wu, Hossam Haick. Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors. Chemical Reviews 2019, 119 (22) , 11761-11817. https://doi.org/10.1021/acs.chemrev.9b00437
    5. Jungkyun Oh, Heehong Yang, Go Een Jeong, Dongseok Moon, Oh Seok Kwon, Sooyeol Phyo, Jiwon Lee, Hyun Seok Song, Tai Hyun Park, Jyongsik Jang. Ultrasensitive, Selective, and Highly Stable Bioelectronic Nose That Detects the Liquid and Gaseous Cadaverine. Analytical Chemistry 2019, 91 (19) , 12181-12190. https://doi.org/10.1021/acs.analchem.9b01068
    6. Oh Seok Kwon, Hyun Seok Song, Tai Hyun Park, Jyongsik Jang. Conducting Nanomaterial Sensor Using Natural Receptors. Chemical Reviews 2019, 119 (1) , 36-93. https://doi.org/10.1021/acs.chemrev.8b00159
    7. Vera Schroeder, Suchol Savagatrup, Maggie He, Sibo Lin, Timothy M. Swager. Carbon Nanotube Chemical Sensors. Chemical Reviews 2019, 119 (1) , 599-663. https://doi.org/10.1021/acs.chemrev.8b00340
    8. Elena Polo, Tadeusz T. Nitka, Elsa Neubert, Luise Erpenbeck, Lela Vuković, Sebastian Kruss. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes. ACS Applied Materials & Interfaces 2018, 10 (21) , 17693-17703. https://doi.org/10.1021/acsami.8b04373
    9. Seon Joo Park, Heehong Yang, Seung Hwan Lee, Hyun Seok Song, Chul Soon Park, Joonwon Bae, Oh Seok Kwon, Tai Hyun Park, and Jyongsik Jang . Dopamine Receptor D1 Agonism and Antagonism Using a Field-Effect Transistor Assay. ACS Nano 2017, 11 (6) , 5950-5959. https://doi.org/10.1021/acsnano.7b01722
    10. Beatriz Pelaz, Christoph Alexiou, Ramon A. Alvarez-Puebla, Frauke Alves, Anne M. Andrews, Sumaira Ashraf, Lajos P. Balogh, Laura Ballerini, Alessandra Bestetti, Cornelia Brendel, Susanna Bosi, Monica Carril, Warren C. W. Chan, Chunying Chen, Xiaodong Chen, Xiaoyuan Chen, Zhen Cheng, Daxiang Cui, Jianzhong Du, Christian Dullin, Alberto Escudero, Neus Feliu, Mingyuan Gao, Michael George, Yury Gogotsi, Arnold Grünweller, Zhongwei Gu, Naomi J. Halas, Norbert Hampp, Roland K. Hartmann, Mark C. Hersam, Patrick Hunziker, Ji Jian, Xingyu Jiang, Philipp Jungebluth, Pranav Kadhiresan, Kazunori Kataoka, Ali Khademhosseini, Jindřich Kopeček, Nicholas A. Kotov, Harald F. Krug, Dong Soo Lee, Claus-Michael Lehr, Kam W. Leong, Xing-Jie Liang, Mei Ling Lim, Luis M. Liz-Marzán, Xiaowei Ma, Paolo Macchiarini, Huan Meng, Helmuth Möhwald, Paul Mulvaney, Andre E. Nel, Shuming Nie, Peter Nordlander, Teruo Okano, Jose Oliveira, Tai Hyun Park, Reginald M. Penner, Maurizio Prato, Victor Puntes, Vincent M. Rotello, Amila Samarakoon, Raymond E. Schaak, Youqing Shen, Sebastian Sjöqvist, Andre G. Skirtach, Mahmoud G. Soliman, Molly M. Stevens, Hsing-Wen Sung, Ben Zhong Tang, Rainer Tietze, Buddhisha N. Udugama, J. Scott VanEpps, Tanja Weil, Paul S. Weiss, Itamar Willner, Yuzhou Wu, Lily Yang, Zhao Yue, Qian Zhang, Qiang Zhang, Xian-En Zhang, Yuliang Zhao, Xin Zhou, and Wolfgang J. Parak . Diverse Applications of Nanomedicine. ACS Nano 2017, 11 (3) , 2313-2381. https://doi.org/10.1021/acsnano.6b06040
    11. Girija Thesma Chandran, Xiaowei Li, Alana Ogata, and Reginald M. Penner . Electrically Transduced Sensors Based on Nanomaterials (2012–2016). Analytical Chemistry 2017, 89 (1) , 249-275. https://doi.org/10.1021/acs.analchem.6b04687
    12. Jaemoon Jun, Jungkyun Oh, Dong Hoon Shin, Sung Gun Kim, Jun Seop Lee, Wooyoung Kim, and Jyongsik Jang . Wireless, Room Temperature Volatile Organic Compound Sensor Based on Polypyrrole Nanoparticle Immobilized Ultrahigh Frequency Radio Frequency Identification Tag. ACS Applied Materials & Interfaces 2016, 8 (48) , 33139-33147. https://doi.org/10.1021/acsami.6b08344
    13. Seon Joo Park, Seung Hwan Lee, Heehong Yang, Chul Soon Park, Chang-Soo Lee, Oh Seok Kwon, Tai Hyun Park, and Jyongsik Jang . Human Dopamine Receptor-Conjugated Multidimensional Conducting Polymer Nanofiber Membrane for Dopamine Detection. ACS Applied Materials & Interfaces 2016, 8 (42) , 28897-28903. https://doi.org/10.1021/acsami.6b10437
    14. Sae Ryun Ahn, Ji Hyun An, Hyun Seok Song, Jin Wook Park, Sang Hun Lee, Jae Hyun Kim, Jyongsik Jang, and Tai Hyun Park . Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on Human Taste Receptor Nanovesicles. ACS Nano 2016, 10 (8) , 7287-7296. https://doi.org/10.1021/acsnano.6b02547
    15. Yanjun Zhang, Jan Clausmeyer, Babak Babakinejad, Ainara López Córdoba, Tayyibah Ali, Andrew Shevchuk, Yasufumi Takahashi, Pavel Novak, Christopher Edwards, Max Lab, Sahana Gopal, Ciro Chiappini, Uma Anand, Luca Magnani, R. Charles Coombes, Julia Gorelik, Tomokazu Matsue, Wolfgang Schuhmann, David Klenerman, Elena V. Sviderskaya, and Yuri Korchev . Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. ACS Nano 2016, 10 (3) , 3214-3221. https://doi.org/10.1021/acsnano.5b05211
    16. Oh Seok Kwon, Hyun Seok Song, Seon Joo Park, Seung Hwan Lee, Ji Hyun An, Jin Wook Park, Heehong Yang, Hyeonseok Yoon, Joonwon Bae, Tai Hyun Park, and Jyongsik Jang . An Ultrasensitive, Selective, Multiplexed Superbioelectronic Nose That Mimics the Human Sense of Smell. Nano Letters 2015, 15 (10) , 6559-6567. https://doi.org/10.1021/acs.nanolett.5b02286
    17. Hyun Seok Song, Hye Jun Jin, Sae Ryun Ahn, Daesan Kim, Sang Hun Lee, Un-Kyung Kim, Christopher T. Simons, Seunghun Hong, and Tai Hyun Park . Bioelectronic Tongue Using Heterodimeric Human Taste Receptor for the Discrimination of Sweeteners with Human-like Performance. ACS Nano 2014, 8 (10) , 9781-9789. https://doi.org/10.1021/nn502926x
    18. Shawn P. Mulvaney and Paul E. Sheehan . Nature Inspires Sensors To Do More with Less. ACS Nano 2014, 8 (10) , 9729-9732. https://doi.org/10.1021/nn505365b
    19. Yang Bai, Youlong Xu, Jie Wang, Mingqi Gao, and Jingping Wang . Interface Effect on the Electropolymerized Polypyrrole Films with Hollow Micro/Nanohorn Arrays. ACS Applied Materials & Interfaces 2014, 6 (7) , 4693-4704. https://doi.org/10.1021/am500513u
    20. Wenli Zhang, Kush Patel, Andrew Schexnider, Shirin Banu, and Adarsh D. Radadia . Nanostructuring of Biosensing Electrodes with Nanodiamonds for Antibody Immobilization. ACS Nano 2014, 8 (2) , 1419-1428. https://doi.org/10.1021/nn405240g
    21. Ji Hyun An, Seon Joo Park, Oh Seok Kwon, Joonwon Bae, and Jyongsik Jang . High-Performance Flexible Graphene Aptasensor for Mercury Detection in Mussels. ACS Nano 2013, 7 (12) , 10563-10571. https://doi.org/10.1021/nn402702w
    22. Jun Seop Lee, Dong Hoon Shin, Jaemoon Jun, and Jyongsik Jang . Multidimensional Polypyrrole/Iron Oxyhydroxide Hybrid Nanoparticles for Chemical Nerve Gas Agent Sensing Application. ACS Nano 2013, 7 (11) , 10139-10147. https://doi.org/10.1021/nn404353w
    23. Jing Ye, Minzhi Fan, Xiaoyu Zhang, Qi Liang, Yunshan Zhang, Xiaoyu Zhao, Cheng-Te Lin, Diming Zhang. A novel biomimetic electrochemical taste-biosensor based on conformational changes of the taste receptor. Biosensors and Bioelectronics 2024, 249 , 116001. https://doi.org/10.1016/j.bios.2024.116001
    24. Jun Young Hwang, Kyung Ho Kim, Sung Eun Seo, Youngju Nam, Sanghee Jwa, Inwoo Yang, Tai Hyun Park, Oh Seok Kwon, Seung Hwan Lee. Bioelectronic Tongue for Identifying and Masking Bitterness Based on Bitter Taste Receptor Agonism and Antagonism. Advanced Functional Materials 2023, 33 (52) https://doi.org/10.1002/adfm.202304997
    25. Kurmendra. Nanomaterial Gas Sensors for Biosensing Applications: A Review. Recent Patents on Nanotechnology 2023, 17 (2) , 104-118. https://doi.org/10.2174/1872210515666211129115229
    26. He Li, Li-Feng Li, Zhi-Jun Zhang, Chun-Jian Wu, Shu-Juan Yu. Sensory evaluation, chemical structures, and threshold concentrations of bitter-tasting compounds in common foodstuffs derived from plants and maillard reaction: A review. Critical Reviews in Food Science and Nutrition 2023, 63 (14) , 2277-2317. https://doi.org/10.1080/10408398.2021.1973956
    27. Jin Wang, Kenji Sakai, Toshihiko Kiwa. All-in-one terahertz taste sensor: integrated electronic and bioelectronic tongues. Sensors & Diagnostics 2023, 2 (3) , 620-626. https://doi.org/10.1039/D3SD00038A
    28. Yanqi Li, Nigel Langley, Jiantao Zhang. Recent Advances in Bitterness-Sensing Systems. Biosensors 2023, 13 (4) , 414. https://doi.org/10.3390/bios13040414
    29. Chan Jae Shin, Sung Eun Seo, Youngju Nam, Kyung Ho Kim, Lina Kim, Jinyeong Kim, Eunsu Ryu, Jun Young Hwang, Gyeong-Ji Kim, Min-Woong Jung, Seung Hwan Lee, Oh Seok Kwon. Real-time monitoring of cyanobacterial harmful algal blooms by graphene field-effect transistor. Chemical Engineering Journal 2023, 459 , 141419. https://doi.org/10.1016/j.cej.2023.141419
    30. Clara Pérez-González, Coral Salvo-Comino, Fernando Martín-Pedrosa, Cristina García-Cabezón, María Luz Rodríguez-Méndez. Bioelectronic tongue dedicated to the analysis of milk using enzymes linked to carboxylated-PVC membranes modified with gold nanoparticles. Food Control 2023, 145 , 109425. https://doi.org/10.1016/j.foodcont.2022.109425
    31. Gopal Sanyal, Rimpa Jaiswal, Brahmananda Chakraborty. 2D materials-conducting polymers-based hybrids for electrochemical sensing. 2023, 325-354. https://doi.org/10.1016/B978-0-443-15293-1.00012-4
    32. Charles Oluwaseun Adetunji, Frank Abimbola Ogundolie, Modupe Doris Ajiboye, John Tsado Mathew, Abel Inobeme, Olotu Titilayo, Olugbemi Tope Olaniyan, Oluwatosin Ademola Ijabadeniyi, Oluope Olufemi Ajayi, Wadzani Palnam Dauda, Shakira Ghazanfar, Juliana Bunmi Adetunji. Bio- and Nanosensors in the Food Industry. 2022, 22-36. https://doi.org/10.1039/9781839167966-00022
    33. Kyung Ho Kim, Sung Eun Seo, Oh Seok Kwon. A Portable Graphene Micropatterned Field-Effect Transistor Device for Rapid Real-Time Monitoring of Serotonin. Applied Science and Convergence Technology 2022, 31 (4) , 89-92. https://doi.org/10.5757/ASCT.2022.31.4.89
    34. Abhishek Kanugo, Rajat Goyal, Sanjay Sharma, Rupesh Kumar Gautam. Recent Advancement of Nanotechnology in Functional Foods. 2022, 293-328. https://doi.org/10.1002/9781119905059.ch12
    35. Jin Yoo, Daesan Kim, Heehong Yang, Minju Lee, So-ong Kim, Hwi Jin Ko, Seunghun Hong, Tai Hyun Park. Olfactory receptor-based CNT-FET sensor for the detection of DMMP as a simulant of sarin. Sensors and Actuators B: Chemical 2022, 354 , 131188. https://doi.org/10.1016/j.snb.2021.131188
    36. Aksa Fathima, Tafadzwa Justin Chiome, Archer Ann Catherine, Chukwuebuka Egbuna, Raghu Ram Achar, Asha Srinivasan. Smart Use of Nanomaterials as Sensors for Detection and Monitoring of Food Spoilage. 2022, 169-188. https://doi.org/10.1007/978-3-030-98820-3_11
    37. Prakash Sengodu. Conjugated polymers-based biosensors. 2022, 401-446. https://doi.org/10.1016/B978-0-12-823442-6.00015-5
    38. Shaziya Siddiqui, Amit Chattree, Prerna Higgins, K. Kavipriya, Tuan Anh Nguyen, Susai Rajendran. Food products safety. 2022, 757-768. https://doi.org/10.1016/B978-0-12-824554-5.00031-8
    39. Pranveer Singh. Electrochemical biosensors: Biomonitoring of food adulterants, allergens, and pathogens. 2022, 141-192. https://doi.org/10.1016/B978-0-323-90632-6.00001-7
    40. Waleed A. El-Said, Jin-Ha Choi, Dina Hajjar, Arwa A. Makki, Jeong-Woo Choi. Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker. Polymers 2022, 14 (1) , 183. https://doi.org/10.3390/polym14010183
    41. Chunsheng Wu, Ping Zhu, Yage Liu, Liping Du, Ping Wang. Field-Effect Sensors Using Biomaterials for Chemical Sensing. Sensors 2021, 21 (23) , 7874. https://doi.org/10.3390/s21237874
    42. Marcello Berto, Matteo Di Giosia, Martina Giordani, Matteo Sensi, Francesco Valle, Andrea Alessandrini, Claudia Menozzi, Andrea Cantelli, Gian Carlo Gazzadi, Francesco Zerbetto, Matteo Calvaresi, Fabio Biscarini, Carlo Augusto Bortolotti. Green Fabrication of (6,5)Carbon Nanotube/Protein Transistor Endowed with Specific Recognition. Advanced Electronic Materials 2021, 7 (5) https://doi.org/10.1002/aelm.202001114
    43. Jia Yang, Gongxin Li, Wenxue Wang, Jialin Shi, Meng Li, Ning Xi, Mingjun Zhang, Lianqing Liu. A bio-syncretic phototransistor based on optogenetically engineered living cells. Biosensors and Bioelectronics 2021, 178 , 113050. https://doi.org/10.1016/j.bios.2021.113050
    44. Sindhu Thalappan Manikkoth, Deepthi Panoth, Kunnambeth M. Thulasi, Fabeena Jahan, Anjali Paravannoor, Baiju Kizhakkekilikoodayil Vijayan. Flexible smart nanosensors. 2021, 145-182. https://doi.org/10.1016/B978-0-12-823358-0.00009-5
    45. Revathi Kottappara, Anjali Paravannoor, Baiju Kizhakkekilikoodayil Vijayan. Nanobiosensors for smart manufacturing. 2021, 289-306. https://doi.org/10.1016/B978-0-12-823358-0.00015-0
    46. Samet Şahin, Mustafa Oguzhan Caglayan, Zafer Üstündağ. A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020, 220 , 121437. https://doi.org/10.1016/j.talanta.2020.121437
    47. Sae Ryun Ahn, Ji Hyun An, Seung Hwan Lee, Hyun Seok Song, Jyongsik Jang, Tai Hyun Park. Peptide hormone sensors using human hormone receptor-carrying nanovesicles and graphene FETs. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-019-57339-1
    48. Kyung Ho Kim, Seon Joo Park, Chul Soon Park, Sung Eun Seo, Jiyeon Lee, Jinyeong Kim, Seung Hwan Lee, Soohyun Lee, Jun-Seob Kim, Choong-Min Ryu, Dongeun Yong, Hyeonseok Yoon, Hyun Seok Song, Sang Hun Lee, Oh Seok Kwon. High-performance portable graphene field-effect transistor device for detecting Gram-positive and -negative bacteria. Biosensors and Bioelectronics 2020, 167 , 112514. https://doi.org/10.1016/j.bios.2020.112514
    49. Sunghun Cho, Jun Seop Lee. Recent Development of Morphology Controlled Conducting Polymer Nanomaterial-Based Biosensor. Applied Sciences 2020, 10 (17) , 5889. https://doi.org/10.3390/app10175889
    50. Dongseok Moon, Yeon Kyung Cha, So-ong Kim, Seongyeon Cho, Hwi Jin Ko, Tai Hyun Park. FET-based nanobiosensors for the detection of smell and taste. Science China Life Sciences 2020, 63 (8) , 1159-1167. https://doi.org/10.1007/s11427-019-1571-8
    51. Amirhossein Hasani, Ha Huu Do, Mahider Tekalgne, Sung Hyun Hong, Ho Won Jang, Soo Young Kim. Recent progress of two-dimensional materials and metal–organic framework-based taste sensors. Journal of the Korean Ceramic Society 2020, 57 (4) , 353-367. https://doi.org/10.1007/s43207-020-00047-8
    52. Tomasz Wasilewski, Wojciech Kamysz, Jacek Gębicki. Bioelectronic tongue: Current status and perspectives. Biosensors and Bioelectronics 2020, 150 , 111923. https://doi.org/10.1016/j.bios.2019.111923
    53. Mahak Bansal, Alok Kumar, Madhu Malinee, Tarun Kumar Sharma. Nanomedicine: Diagnosis, Treatment, and Potential Prospects. 2020, 297-331. https://doi.org/10.1007/978-3-030-29207-2_9
    54. Gamze Toydemir, Sema Demirci Cekic, Gulay Ozkan, Seda Uzunboy, Asli Neslihan Avan, Esra Capanoglu, Resat Apak. Nanosensors for Foods. 2020, 327-375. https://doi.org/10.1007/978-3-030-44552-2_12
    55. Caroline Y. Nakiri Nicoliche, Osvaldo N. Oliveira, Renato S. Lima. Multidimensional sensors: Classification, nanoprobes, and microfluidics. 2020, 185-219. https://doi.org/10.1016/B978-0-12-819763-9.00009-X
    56. Jian Wang, Shu Kong, Fangming Chen, Wei Chen, Liping Du, Wen Cai, Liquan Huang, Chunsheng Wu, De-Wen Zhang. A bioelectronic taste sensor based on bioengineered Escherichia coli cells combined with ITO-constructed electrochemical sensors. Analytica Chimica Acta 2019, 1079 , 73-78. https://doi.org/10.1016/j.aca.2019.06.023
    57. Jia Yang, Wenxue Wang, Gongxin Li, Guangyong Li, Ning Xi, Lianqing Liu. Bio-Syncretic Light-gated Field-Effect Transistor: Fabrication and Characterization. 2019, 360-363. https://doi.org/10.1109/NANO46743.2019.8993868
    58. Cut Rullyani, Muthaiah Shellaiah, Mohan Ramesh, Hong-Cheu Lin, Chih-Wei Chu. Pyrene-SH functionalized OTFT for detection of Hg2+ ions in aquatic environments. Organic Electronics 2019, 69 , 275-280. https://doi.org/10.1016/j.orgel.2019.03.015
    59. Caroline Yumi Nakiri Nicoliche, Gabriel Floriano Costa, Angelo Luiz Gobbi, Flavio Makoto Shimizu, Renato Sousa Lima. Pencil graphite core for pattern recognition applications. Chemical Communications 2019, 55 (32) , 4623-4626. https://doi.org/10.1039/C9CC01595G
    60. Mihaela Cristina Baican. Polymeric Nanobiosensors. 2019, 151-181. https://doi.org/10.1016/B978-0-12-813932-5.00004-2
    61. Gopalan Anantha-Iyengar, Komathi Shanmugasundaram, Muthuchamy Nallal, Kwang-Pill Lee, Michael J. Whitcombe, Dhana Lakshmi, Gopalan Sai-Anand. Functionalized conjugated polymers for sensing and molecular imprinting applications. Progress in Polymer Science 2019, 88 , 1-129. https://doi.org/10.1016/j.progpolymsci.2018.08.001
    62. Sae Ryun Ahn, Ji Hyun An, Il Ha Jang, Wonjoo Na, Heehong Yang, Kyung Hee Cho, Sang Hun Lee, Hyun Seok Song, Jyongsik Jang, Tai Hyun Park. High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosensors and Bioelectronics 2018, 117 , 628-636. https://doi.org/10.1016/j.bios.2018.06.028
    63. Byeongho Park, Heehong Yang, Tai Hwan Ha, Hyun Seo Park, Seung Ja Oh, Yong‐Sang Ryu, Youngho Cho, Hyo‐Suk Kim, Juyeong Oh, Dong Kyu Lee, Chulki Kim, Taikjin Lee, Minah Seo, Jaebin Choi, Young Min Jhon, Deok Ha Woo, Seok Lee, Seok Hwan Kim, Hyuk‐Jae Lee, Seong Chan Jun, Hyun Seok Song, Tai Hyun Park, Jae Hun Kim. Artificial Rod and Cone Photoreceptors with Human‐Like Spectral Sensitivities. Advanced Materials 2018, 30 (27) https://doi.org/10.1002/adma.201706764
    64. Manki Son, Tai Hyun Park. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment. Biotechnology Advances 2018, 36 (2) , 371-379. https://doi.org/10.1016/j.biotechadv.2017.12.017
    65. Frank Davis, Flavio M. Shimizu, Zeynep Altintas. Smart Nanomaterials. 2018, 219-276. https://doi.org/10.1002/9781119065036.ch11
    66. Kapil Manoharan, Anubhuti Saha, Shantanu Bhattacharya. Nanoparticles-Based Diagnostics. 2018, 253-269. https://doi.org/10.1007/978-981-10-7751-7_11
    67. Jung Seung Lee, Ann-Na Cho, Yoonhee Jin, Jin Kim, Suran Kim, Seung-Woo Cho. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials 2018, 151 , 24-37. https://doi.org/10.1016/j.biomaterials.2017.10.019
    68. Teruyuki Nagamune. Biomolecular engineering for nanobio/bionanotechnology. Nano Convergence 2017, 4 (1) https://doi.org/10.1186/s40580-017-0103-4
    69. Thanh-Hai Le, Yukyung Kim, Hyeonseok Yoon. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9 (12) , 150. https://doi.org/10.3390/polym9040150
    70. Yoon Ho Lee, Moonjeong Jang, Moo Yeol Lee, O. Young Kweon, Joon Hak Oh. Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. Chem 2017, 3 (5) , 724-763. https://doi.org/10.1016/j.chempr.2017.10.005
    71. Xiao Wu, Hideya Onitake, Zhiqin Huang, Takeshi Shiino, Yusuke Tahara, Rui Yatabe, Hidekazu Ikezaki, Kiyoshi Toko. Improved Durability and Sensitivity of Bitterness-Sensing Membrane for Medicines. Sensors 2017, 17 (11) , 2541. https://doi.org/10.3390/s17112541
    72. Vineet Kumar, Praveen Guleria, Surinder Kumar Mehta. Nanosensors for food quality and safety assessment. Environmental Chemistry Letters 2017, 15 (2) , 165-177. https://doi.org/10.1007/s10311-017-0616-4
    73. Hyun Seok Song, Oh Seok Kwon, Jae-Hong Kim, João Conde, Natalie Artzi. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosensors and Bioelectronics 2017, 89 , 187-200. https://doi.org/10.1016/j.bios.2016.03.045
    74. Lin Lu, Xianqiao Hu, Zhiwei Zhu. Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. TrAC Trends in Analytical Chemistry 2017, 87 , 58-70. https://doi.org/10.1016/j.trac.2016.12.007
    75. Do Hoon Lee, Wonbin Song, Byung Yang Lee. Biomimetic Materials and Structures for Sensor Applications. 2017, 3-25. https://doi.org/10.1007/978-3-319-33201-7_1
    76. Anisha A. D’Souza, Durga Kumari, Rinti Banerjee. Nanocomposite biosensors for point-of-care—evaluation of food quality and safety. 2017, 629-676. https://doi.org/10.1016/B978-0-12-804301-1.00015-1
    77. Rocio B. Dominguez, Akhtar Hayat, Gustavo A. Alonso, Juan M. Gutiérrez, Roberto Muñoz, Jean-Louis Marty. Nanomaterial-based biosensors for food contaminant assessment. 2017, 805-839. https://doi.org/10.1016/B978-0-12-804301-1.00019-9
    78. Manki Son, Daesan Kim, Hwi Jin Ko, Seunghun Hong, Tai Hyun Park. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors. Biosensors and Bioelectronics 2017, 87 , 901-907. https://doi.org/10.1016/j.bios.2016.09.040
    79. Kang-Hoon Kim, Hyeung-Jin Jang. Development of GLP-1 secretagogue using microarray in enteroendocrine L cells. BioChip Journal 2016, 10 (4) , 272-276. https://doi.org/10.1007/s13206-016-0403-5
    80. Nidhin Joy, Geethy P. Gopalan, Joby Eldho, Raju Francis. Conducting Polymers: Biomedical Applications. 2016, 37-89. https://doi.org/10.1002/9783527690916.ch3
    81. Chul Park, Changsoo Lee, Oh Kwon. Conducting Polymer Based Nanobiosensors. Polymers 2016, 8 (7) , 249. https://doi.org/10.3390/polym8070249
    82. M. Fathollahzadeh, M. Hosseini, B. Haghighi, M. Kolahdouz, M. Fathipour. Fabrication of a liquid-gated enzyme field effect device for sensitive glucose detection. Analytica Chimica Acta 2016, 924 , 99-105. https://doi.org/10.1016/j.aca.2016.04.018
    83. Vineet Kumar, Praveen Guleria, Surinder Kumar Mehta. Nanoparticles to Sense Food Quality. 2016, 145-181. https://doi.org/10.1007/978-3-319-48009-1_6
    84. J. E. Fitzgerald, H. Fenniri. Biomimetic cross-reactive sensor arrays: prospects in biodiagnostics. RSC Advances 2016, 6 (84) , 80468-80484. https://doi.org/10.1039/C6RA16403J
    85. Susanne Löffler, Ben Libberton, Agneta Richter-Dahlfors. Organic Bioelectronic Tools for Biomedical Applications. Electronics 2015, 4 (4) , 879-908. https://doi.org/10.3390/electronics4040879
    86. Zhiyuan Liu, Dianpeng Qi, Peizhi Guo, Yan Liu, Bowen Zhu, Hui Yang, Yaqing Liu, Bin Li, Chenguang Zhang, Jiancan Yu, Bo Liedberg, Xiaodong Chen. Thickness‐Gradient Films for High Gauge Factor Stretchable Strain Sensors. Advanced Materials 2015, 27 (40) , 6230-6237. https://doi.org/10.1002/adma.201503288
    87. Da Ha, Qiyong Sun, Kaiqi Su, Hao Wan, Haibo Li, Ning Xu, Fei Sun, Liujing Zhuang, Ning Hu, Ping Wang. Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sensors and Actuators B: Chemical 2015, 207 , 1136-1146. https://doi.org/10.1016/j.snb.2014.09.077
    88. Ling Zou, Chunsheng Wu, Liping Du. Gustatory Receptor-Based Taste Sensors. 2015, 241-263. https://doi.org/10.1007/978-94-017-7333-1_12
    89. Adil Sultan, Sharique Ahmad, Tarique Anwer, Faiz Mohammad. Binary doped polypyrrole and polypyrrole/boron nitride nanocomposites: preparation, characterization and application in detection of liquefied petroleum gas leaks. RSC Advances 2015, 5 (128) , 105980-105991. https://doi.org/10.1039/C5RA21173E
    90. Seon Joo Park, Hyun Seok Song, Oh Seok Kwon, Ji Hyun Chung, Seung Hwan Lee, Ji Hyun An, Sae Ryun Ahn, Ji Eun Lee, Hyeonseok Yoon, Tai Hyun Park, Jyongsik Jang. Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep04342
    91. Keith Warriner, Subrayal M. Reddy, Azadeh Namvar, Suresh Neethirajan. Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends in Food Science & Technology 2014, 40 (2) , 183-199. https://doi.org/10.1016/j.tifs.2014.07.008
    92. Eduardo Antonio Della Pia, Randi Westh Hansen, Manuela Zoonens, Karen L. Martinez. Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology. The Journal of Membrane Biology 2014, 247 (9-10) , 815-826. https://doi.org/10.1007/s00232-014-9663-y
    93. Chunsheng Wu, Liping Du, Ling Zou, Luhang Zhao, Liquan Huang, Ping Wang. Recent advances in taste cell- and receptor-based biosensors. Sensors and Actuators B: Chemical 2014, 201 , 75-85. https://doi.org/10.1016/j.snb.2014.04.021
    94. Jong Hyun Lim, Tai Hyun Park. Concept of Bioelectronic Nose. 2014, 1-22. https://doi.org/10.1007/978-94-017-8613-3_1
    95. Oh Seok Kwon, Jyongsik Jang. Conducting Polymer Nanomaterial-Based Sensor Platform for Bioelectronic Nose. 2014, 243-262. https://doi.org/10.1007/978-94-017-8613-3_13
    96. Hyun Seok Song, Tai Hyun Park. Production of Olfactory Receptors and Nanovesicles Using Heterologous Cell Systems for Bioelectronic Nose. 2014, 145-170. https://doi.org/10.1007/978-94-017-8613-3_9
    97. Weiguo Huang, Kalpana Besar, Rachel LeCover, Pratima Dulloor, Jasmine Sinha, Josue F. Martínez Hardigree, Christian Pick, Julia Swavola, Allen D. Everett, Joelle Frechette, Michael Bevan, Howard E. Katz. Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chem. Sci. 2014, 5 (1) , 416-426. https://doi.org/10.1039/C3SC52638K
    98. Jin Wook Park, Seon Joo Park, Oh Seok Kwon, Choonghyen Lee, Jyongsik Jang. High-performance Hg 2+ FET-type sensors based on reduced graphene oxide–polyfuran nanohybrids. The Analyst 2014, 139 (16) , 3852-3855. https://doi.org/10.1039/C4AN00403E
    99. Hyeonseok Yoon. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials 2013, 3 (3) , 524-549. https://doi.org/10.3390/nano3030524
    100. Wan-Kyu Oh, Oh Seok Kwon, Jyongsik Jang. Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing. Polymer Reviews 2013, 53 (3) , 407-442. https://doi.org/10.1080/15583724.2013.805771

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect