ACS Publications. Most Trusted. Most Cited. Most Read
Nanostructured Li2S–C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries
My Activity
    Letter

    Nanostructured Li2S–C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries
    Click to copy article linkArticle link copied!

    View Author Information
    The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    § Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 12, 6474–6479
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl303965a
    Published November 28, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    With a theoretical capacity of 1166 mA·h·g–1, lithium sulfide (Li2S) has received much attention as a promising cathode material for high specific energy lithium/sulfur cells. However, the insulating nature of Li2S prevents the achievement of high utilization (or high capacity) and good rate capability. Various efforts have been made to ameliorate this problem by improving the contact between Li2S and electronic conductors. In the literature, however, a relatively high capacity was only obtained with the Li2S content below 50 wt %; therefore, the estimated cell specific energy values are often below 350 W·h·kg–1, which is insufficient to meet the ever-increasing requirements of newly emerging technologies. Here, we report a cost-effective way of preparing nanostructured Li2S-carbon composite cathodes by high-energy dry ball milling of commercially available micrometer-sized Li2S powder together with carbon additives. A simple but effective electrochemical activation process was used to dramatically improve the utilization and reversibility of the Li2S–C electrodes, which was confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. We further improved the cycling stability of the Li2S–C electrodes by adding multiwalled carbon nanotubes to the nanocomposites. With a very high specific capacity of 1144 mA·h·g–1 (98% of the theoretical value) obtained at a high Li2S content (67.5 wt %), the estimated specific energy of our cell was ∼610 W·h·kg–1, which is the highest demonstrated so far for the Li/Li2S cells. The cells also maintained good rate capability and improved cycle life. With further improvement in capacity retention, nanostructured Li2S–C composite cathodes may offer a significant opportunity for the development of rechargeable cells with a much higher specific energy.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional figures and experimental details are included. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 288 publications.

    1. Gokul Raj Deivendran, She-Huang Wu, Yi-Shiuan Wu, Jeng-Kuei Chang, Rajan Jose, Kim Hoong Ng, Mrinal Poddar, Chia-Liang Sun, Chun-Chen Yang. Suppression of Polysulfides by Carbonized Polyacrylonitrile Modified Polypropylene Janus Separator for Li2S/r-GONR/CNT-Based Li–S Batteries. ACS Applied Energy Materials 2024, 7 (8) , 3321-3338. https://doi.org/10.1021/acsaem.4c00093
    2. Yujiang Sun, Qiaran Zhang, Shunjin Yang, Xiao Sun, Yongan Yang. Making the Unfeasible Feasible: Synthesis of the Battery Material Lithium Sulfide via the Metathetic Reaction between Lithium Sulfate and Sodium Sulfide. Inorganic Chemistry 2024, 63 (1) , 485-493. https://doi.org/10.1021/acs.inorgchem.3c03345
    3. Hun Kim, Jang-Yeon Hwang, Young-Geun Ham, Ha-Neul Choi, Muhammad Hilmy Alfaruqi, Jaekook Kim, Chong Seung Yoon, Yang-Kook Sun. Turning on Lithium–Sulfur Full Batteries at −10 °C. ACS Nano 2023, 17 (14) , 14032-14042. https://doi.org/10.1021/acsnano.3c04213
    4. Lewis Kien Juen Ting, Yulin Gao, Haimei Wang, Tuo Wang, Jianguo Sun, John Wang. Lithium Sulfide Batteries: Addressing the Kinetic Barriers and High First Charge Overpotential. ACS Omega 2022, 7 (45) , 40682-40700. https://doi.org/10.1021/acsomega.2c05477
    5. Dong Zheng, Dantong Qiu, Tianyao Ding, Deyang Qu. Examining the Chemical Stability of Battery Components with Polysulfide Species by High-Performance Liquid Chromatography and X-ray Photoelectron Spectroscopy. Industrial & Engineering Chemistry Research 2022, 61 (8) , 3055-3062. https://doi.org/10.1021/acs.iecr.1c04698
    6. Ravindra Kumar Bhardwaj, Homen Lahan, Venkataraman Sekkar, Bibin John, Aninda J. Bhattacharyya. High-Performance Li-Metal-Free Sulfur Battery Employing a Lithiated Anatase TiO2 Anode and a Freestanding Li2S–Carbon Aerogel Cathode. ACS Sustainable Chemistry & Engineering 2022, 10 (1) , 410-420. https://doi.org/10.1021/acssuschemeng.1c06581
    7. Hongpeng Jia, Dashuai Wang, Yanjuan Li, Lihuai Liu, Hongfei Gu, Shun Yang, Qiang Fu, Xiao Yan, Yingjin Wei. Mesoporous Niobium Nitride Nanowires Encapsulated in Carbon for High-Performance Lithium–Sulfur Batteries. ACS Applied Nano Materials 2021, 4 (3) , 2606-2613. https://doi.org/10.1021/acsanm.0c03256
    8. Woosung Choi, Yun Seok Choi, Hyunwoo Kim, Jaesang Yoon, Yelim Kwon, Taewhan Kim, Ju-Hyun Ryu, Ji Hye Lee, Wontae Lee, Joonsuk Huh, Ji Man Kim, Won-Sub Yoon. Evidence for the Coexistence of Polysulfide and Conversion Reactions in the Lithium Storage Mechanism of MoS2 Anode Material. Chemistry of Materials 2021, 33 (6) , 1935-1945. https://doi.org/10.1021/acs.chemmater.0c02992
    9. Hee Min Kim, Jang-Yeon Hwang, Sangin Bang, Hun Kim, Muhammad Hilmy Alfaruqi, Jaekook Kim, Chong Seung Yoon, Yang-Kook Sun. Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance Lithium–Sulfur Batteries. ACS Energy Letters 2020, 5 (10) , 3168-3175. https://doi.org/10.1021/acsenergylett.0c01511
    10. Jicheng Jiang, Qining Fan, Zhi Zheng, Mohammad Rejaul Kaiser, Qinfen Gu, Shulei Chou, Konstantin Konstantinov, Jiazhao Wang. Nanostructured CoS2-Decorated Hollow Carbon Spheres: A Performance Booster for Li-Ion/Sulfur Batteries. ACS Applied Energy Materials 2020, 3 (7) , 6447-6459. https://doi.org/10.1021/acsaem.0c00699
    11. Hualin Ye, Matthew Li, Tongchao Liu, Yanguang Li, Jun Lu. Activating Li2S as the Lithium-Containing Cathode in Lithium–Sulfur Batteries. ACS Energy Letters 2020, 5 (7) , 2234-2245. https://doi.org/10.1021/acsenergylett.0c00936
    12. Niaz Ahmad, Lei Zhou, Muhammad Faheem, Muhammad Khurram Tufail, Le Yang, Renjie Chen, Yaodan Zhou, Wen Yang. Enhanced Air Stability and High Li-Ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass–Ceramic Electrolyte for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2020, 12 (19) , 21548-21558. https://doi.org/10.1021/acsami.0c00393
    13. Jian Wang, Lujie Jia, Haitao Liu, Chong Wang, Jun Zhong, Qingbo Xiao, Jin Yang, Shaorong Duan, Kun Feng, Na Liu, Wenhui Duan, Hongzhen Lin, Yuegang Zhang. Multi-ion Modulated Single-Step Synthesis of a Nanocarbon Embedded with a Defect-Rich Nanoparticle Catalyst for a High Loading Sulfur Cathode. ACS Applied Materials & Interfaces 2020, 12 (11) , 12727-12735. https://doi.org/10.1021/acsami.9b21509
    14. Taisho Seita, Yoshiharu Matsumae, Jiali Liu, Ryoichi Tatara, Kazuhide Ueno, Kaoru Dokko, Masayoshi Watanabe. Graphite–Lithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. ACS Energy Letters 2020, 5 (1) , 1-7. https://doi.org/10.1021/acsenergylett.9b02347
    15. Yifei Shen, Jingmin Zhang, Yongfeng Pu, Hui Wang, Bo Wang, Jiangfeng Qian, Yuliang Cao, Faping Zhong, Xinping Ai, Hanxi Yang. Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Letters 2019, 4 (7) , 1717-1724. https://doi.org/10.1021/acsenergylett.9b00889
    16. Yangzhi Zhao, Yongan Yang, Colin A. Wolden. Scalable Synthesis of Size-Controlled Li2S Nanocrystals for Next-Generation Battery Technologies. ACS Applied Energy Materials 2019, 2 (3) , 2246-2254. https://doi.org/10.1021/acsaem.9b00032
    17. Ying Li, Nichols A. Romero, Kah Chun Lau. Structure–Property of Lithium–Sulfur Nanoparticles via Molecular Dynamics Simulation. ACS Applied Materials & Interfaces 2018, 10 (43) , 37575-37585. https://doi.org/10.1021/acsami.8b09128
    18. Kristen Hietala, Yangzhi Zhao, Yongan Yang, Colin A. Wolden. Scalable Synthesis of Alkali Sulfide Nanocrystals Using a Bubble Column Reactor. Industrial & Engineering Chemistry Research 2018, 57 (25) , 8436-8442. https://doi.org/10.1021/acs.iecr.8b01600
    19. Xinran Wang, Xuanxuan Bi, Shaona Wang, Yi Zhang, Hao Du, Jun Lu. High-Rate and Long-Term Cycle Stability of Li–S Batteries Enabled by Li2S/TiO2-Impregnated Hollow Carbon Nanofiber Cathodes. ACS Applied Materials & Interfaces 2018, 10 (19) , 16552-16560. https://doi.org/10.1021/acsami.8b03201
    20. Wen Luo, Feng Li, Qidong Li, Xuanpeng Wang, Wei Yang, Liang Zhou, and Liqiang Mai . Heterostructured Bi2S3–Bi2O3 Nanosheets with a Built-In Electric Field for Improved Sodium Storage. ACS Applied Materials & Interfaces 2018, 10 (8) , 7201-7207. https://doi.org/10.1021/acsami.8b01613
    21. Liang Zhang, Dan Sun, Jun Feng, Elton J. Cairns, and Jinghua Guo . Revealing the Electrochemical Charging Mechanism of Nanosized Li2S by in Situ and Operando X-ray Absorption Spectroscopy. Nano Letters 2017, 17 (8) , 5084-5091. https://doi.org/10.1021/acs.nanolett.7b02381
    22. Joshua Lochala, Dianying Liu, Bingbin Wu, Cynthia Robinson, and Jie Xiao . Research Progress toward the Practical Applications of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2017, 9 (29) , 24407-24421. https://doi.org/10.1021/acsami.7b06208
    23. Zhe Li, Shiguo Zhang, Shoshi Terada, Xiaofeng Ma, Kohei Ikeda, Yutaro Kamei, Ce Zhang, Kaoru Dokko, and Masayoshi Watanabe . Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. ACS Applied Materials & Interfaces 2016, 8 (25) , 16053-16062. https://doi.org/10.1021/acsami.6b03736
    24. JongTae Yoo, Sung-Ju Cho, Gwan Yeong Jung, Su Hwan Kim, Keun-Ho Choi, Jeong-Hoon Kim, Chang Kee Lee, Sang Kyu Kwak, and Sang-Young Lee . COF-Net on CNT-Net as a Molecularly Designed, Hierarchical Porous Chemical Trap for Polysulfides in Lithium–Sulfur Batteries. Nano Letters 2016, 16 (5) , 3292-3300. https://doi.org/10.1021/acs.nanolett.6b00870
    25. Rubha Ponraj, Aravindaraj G. Kannan, Jun Hwan Ahn, and Dong-Won Kim . Improvement of Cycling Performance of Lithium–Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide. ACS Applied Materials & Interfaces 2016, 8 (6) , 4000-4006. https://doi.org/10.1021/acsami.5b11327
    26. Feixiang Wu, Jung Tae Lee, Enbo Zhao, Bao Zhang, and Gleb Yushin . Graphene–Li2S–Carbon Nanocomposite for Lithium–Sulfur Batteries. ACS Nano 2016, 10 (1) , 1333-1340. https://doi.org/10.1021/acsnano.5b06716
    27. Xuemin Li, Colin A. Wolden, Chunmei Ban, and Yongan Yang . Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries. ACS Applied Materials & Interfaces 2015, 7 (51) , 28444-28451. https://doi.org/10.1021/acsami.5b09367
    28. Min Wu, Yi Cui, and Yongzhu Fu . Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2015, 7 (38) , 21479-21486. https://doi.org/10.1021/acsami.5b06615
    29. Yoon Hwa, Juan Zhao, and Elton J. Cairns . Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells. Nano Letters 2015, 15 (5) , 3479-3486. https://doi.org/10.1021/acs.nanolett.5b00820
    30. Chao Wang, Xusheng Wang, Yuan Yang, Akihiro Kushima, Jitao Chen, Yunhui Huang, and Ju Li . Slurryless Li2S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery. Nano Letters 2015, 15 (3) , 1796-1802. https://doi.org/10.1021/acs.nanolett.5b00112
    31. Haesun Park, Hyun Seung Koh, and Donald J. Siegel . First-Principles Study of Redox End Members in Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2015, 119 (9) , 4675-4683. https://doi.org/10.1021/jp513023v
    32. Arumugam Manthiram, Yongzhu Fu, Sheng-Heng Chung, Chenxi Zu, and Yu-Sheng Su . Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 2014, 114 (23) , 11751-11787. https://doi.org/10.1021/cr500062v
    33. Xiangbo Meng, David J. Comstock, Timothy T. Fister, and Jeffrey W. Elam . Vapor-Phase Atomic-Controllable Growth of Amorphous Li2S for High-Performance Lithium–Sulfur Batteries. ACS Nano 2014, 8 (10) , 10963-10972. https://doi.org/10.1021/nn505480w
    34. Qing Zhao, Yuxiang Hu, Kai Zhang, and Jun Chen . Potassium–Sulfur Batteries: A New Member of Room-Temperature Rechargeable Metal–Sulfur Batteries. Inorganic Chemistry 2014, 53 (17) , 9000-9005. https://doi.org/10.1021/ic500919e
    35. Yongcai Qiu, Wanfei Li, Wen Zhao, Guizhu Li, Yuan Hou, Meinan Liu, Lisha Zhou, Fangmin Ye, Hongfei Li, Zhanhua Wei, Shihe Yang, Wenhui Duan, Yifan Ye, Jinghua Guo, and Yuegang Zhang . High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene. Nano Letters 2014, 14 (8) , 4821-4827. https://doi.org/10.1021/nl5020475
    36. Marco Agostini, Jusef Hassoun, Jun Liu, Moongook Jeong, Hiroki Nara, Toshiyuki Momma, Tetsuya Osaka, Yang-Kook Sun, and Bruno Scrosati . A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode. ACS Applied Materials & Interfaces 2014, 6 (14) , 10924-10928. https://doi.org/10.1021/am4057166
    37. Li Sun, Mengya Li, Ying Jiang, Weibang Kong, Kaili Jiang, Jiaping Wang, and Shoushan Fan . Sulfur Nanocrystals Confined in Carbon Nanotube Network As a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries. Nano Letters 2014, 14 (7) , 4044-4049. https://doi.org/10.1021/nl501486n
    38. Caiyun Nan, Zhan Lin, Honggang Liao, Min-Kyu Song, Yadong Li, and Elton J. Cairns . Durable Carbon-Coated Li2S Core–Shell Spheres for High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society 2014, 136 (12) , 4659-4663. https://doi.org/10.1021/ja412943h
    39. Stefano Meini, Ran Elazari, Ariel Rosenman, Arnd Garsuch, and Doron Aurbach . The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li–S Battery Systems. The Journal of Physical Chemistry Letters 2014, 5 (5) , 915-918. https://doi.org/10.1021/jz500222f
    40. Shiyou Zheng, Yvonne Chen, Yunhua Xu, Feng Yi, Yujie Zhu, Yihang Liu, Junhe Yang, and Chunsheng Wang . In Situ Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries. ACS Nano 2013, 7 (12) , 10995-11003. https://doi.org/10.1021/nn404601h
    41. Min-Kyu Song, Yuegang Zhang, and Elton J. Cairns . A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance. Nano Letters 2013, 13 (12) , 5891-5899. https://doi.org/10.1021/nl402793z
    42. Lei Wang, Zhihui Dong, Dong Wang, Fengxing Zhang, and Jian Jin . Covalent Bond Glued Sulfur Nanosheet-Based Cathode Integration for Long-Cycle-Life Li–S Batteries. Nano Letters 2013, 13 (12) , 6244-6250. https://doi.org/10.1021/nl403715h
    43. Zhan Lin, Zengcai Liu, Nancy J. Dudney, and Chengdu Liang . Lithium Superionic Sulfide Cathode for All-Solid Lithium–Sulfur Batteries. ACS Nano 2013, 7 (3) , 2829-2833. https://doi.org/10.1021/nn400391h
    44. Anup Malakar, Atrayee Banaspati, Nirupamjit Sarmah, Debojeet Sahu. Lithium Transition Metal Orthosilicates‐Based Nanostructured Materials for Rechargeable Lithium‐Ion Batteries. 2024, 497-532. https://doi.org/10.1002/9783527838851.ch14
    45. Érick A. Santos, Murilo M. Amaral, Barbara S. Damasceno, Leonardo M. Da Silva, Hudson G. Zanin, Johanna N. Weker, Cristiane B. Rodella. Advanced in situ/operando characterizations of lithium-sulfur batteries: A sine qua non. Nano Energy 2024, 130 , 110098. https://doi.org/10.1016/j.nanoen.2024.110098
    46. Zhijie Chen, Gao-Feng Han, Asif Mahmood, Jingwei Hou, Wei Wei, Ho Kyong Shon, Guoxiu Wang, T. David Waite, Jong-Beom Baek, Bing-Jie Ni. Mechanosynthesized electroactive materials for sustainable energy and environmental applications: A critical review. Progress in Materials Science 2024, 145 , 101299. https://doi.org/10.1016/j.pmatsci.2024.101299
    47. Sumeth Siriroj, Jintara Padchasri, Amorntep Montreeuppathum, Somchai Sonsupap, Santi Maensiri, Soorathep Kheawhom, Pinit Kidkhunthod. Glass-sulfur composite cathodes: A new strategy for improving the performance of lithium-sulfur batteries. Materials Research Bulletin 2024, 178 , 112919. https://doi.org/10.1016/j.materresbull.2024.112919
    48. Fuat Bilican, Sevgi Ozdemir Kart, Fatih Ersan. Investigation of the usage of carbon-based two dimensional materials in lithium sulfide (Li–S) batteries. Applied Surface Science 2024, 669 , 160556. https://doi.org/10.1016/j.apsusc.2024.160556
    49. Neema Cyril Karima, Song Jin, Sung Mook Choi, Kelvin Jenerali Nyamtara, Paul Maldonado Nogales, Manh Cuong Nguyen, Sung Hoon Kim, Sung Nam Lim, Soon-Ki Jeong, Hyun-Kyung Kim, Min Ho Seo, Wook Ahn. Interaction mechanism between MOF derived cobalt/rGO composite and sulfur for long cycle life of lithium–sulfur batteries. Chemical Engineering Journal 2024, 497 , 154634. https://doi.org/10.1016/j.cej.2024.154634
    50. Yaqi Hu, Yanchen Liu, Yang Lu, Zongliang Zhang, Siliang Liu, Fangbo He, Yang Liu, Yongle Chen, Fangyang Liu. Conductive Li 2 S‐NbSe 2 Cathode Material Capable of Bidirectional Self‐Activation for High‐Performance All‐Solid‐State Lithium Metal Batteries. Advanced Functional Materials 2024, 3 https://doi.org/10.1002/adfm.202412070
    51. Chengwei Lu, Liyue Yu, Xiaozheng Zhou, Yongping Gan, Xinping He, Hui Huang, Jun Zhang, Wenkui Zhang, Xinhui Xia, Zhen Xiao, Ruyi Fang, Yang Xia. Li2S@C/CNT composite cathode with botryoidal conductive network for advanced lithium–sulfur batteries. Journal of Solid State Electrochemistry 2024, 28 (7) , 2413-2423. https://doi.org/10.1007/s10008-023-05791-5
    52. Mengmeng Zhang, Xina Mou, Xin Zhou, Jin Wang, Hui Li, Chunrui Wang. Metal Compound‐Based Heterostructures in Anodes Promote High Capacity and Fast Reaction Kinetic for Lithium/Sodium‐Ion Storage: A Review. ChemElectroChem 2024, 11 (7) https://doi.org/10.1002/celc.202300573
    53. Wenli Pan, Toshiki Watanabe, Toshiyuki Matsunaga, Mukesh Kumar, Neha Thakur, Kentaro Yamamoto, Masayuki Uesugi, Akihisa Takeuchi, Atsushi Sakuda, Akitoshi Hayashi, Masahiro Tatsumisago, Yoshiharu Uchimoto. Tuning the ionic and electronic paths in Li2S-based cathode for high-rate performance all-solid-state lithium‑sulfur batteries. Solid State Ionics 2024, 406 , 116479. https://doi.org/10.1016/j.ssi.2024.116479
    54. Peiwen Yu, Shaorui Sun, Chunhao Sun, Chaoyuan Zeng, Ze Hua, Niaz Ahmad, Ruiwen Shao, Wen Yang. Active Regulation Volume Change of Micrometer‐Size Li 2 S Cathode with High Materials Utilization for All‐Solid‐State Li/S Batteries through an Interfacial Redox Mediator. Advanced Functional Materials 2024, 34 (8) https://doi.org/10.1002/adfm.202306939
    55. Tarun Patodia, Rajesh Sahu, Balram Tripathi, Takayuki Ichikawa, Sushil Kumar Jain, Ankur Jain. Improvement in the Performance of Composite Cathode via Solid Electrolyte for High Electrochemical Performance of Li–S Battery. Macromolecular Symposia 2024, 413 (1) https://doi.org/10.1002/masy.202300089
    56. Guowei Gao, Xiaochen Yang, Jingxuan Bi, Wanqing Guan, Zhuzhu Du, Wei Ai. Advanced engineering strategies for Li 2 S cathodes in lithium–sulfur batteries. Journal of Materials Chemistry A 2023, 11 (48) , 26318-26339. https://doi.org/10.1039/D3TA06057H
    57. Zhe Huang, Xiguang Gao, Yonglin Wang, Yuning Li. Mitigating first charge overpotential of Li2S-based lithium-sulfur batteries by leveraging PVDF reaction with the LiOH/Li2O layer. Journal of Power Sources 2023, 582 , 233530. https://doi.org/10.1016/j.jpowsour.2023.233530
    58. Qianqian Fan, Yubing Si, Fulong Zhu, Wei Guo, Yongzhu Fu. Activation of Bulk Li 2 S as Cathode Material for Lithium‐Sulfur Batteries through Organochalcogenide‐Based Redox Mediation Chemistry. Angewandte Chemie 2023, 135 (32) https://doi.org/10.1002/ange.202306705
    59. Qianqian Fan, Yubing Si, Fulong Zhu, Wei Guo, Yongzhu Fu. Activation of Bulk Li 2 S as Cathode Material for Lithium‐Sulfur Batteries through Organochalcogenide‐Based Redox Mediation Chemistry. Angewandte Chemie International Edition 2023, 62 (32) https://doi.org/10.1002/anie.202306705
    60. Hun Kim, Kyeong‐Jun Min, Sangin Bang, Jang‐Yeon Hwang, Jung Ho Kim, Chong S. Yoon, Yang‐Kook Sun. Long‐lasting, reinforced electrical networking in a high‐loading Li 2 S cathode for high‐performance lithium–sulfur batteries. Carbon Energy 2023, 5 (8) https://doi.org/10.1002/cey2.308
    61. Wenyi Lu, Zitong Wei, Wenxuan Guo, Chengcheng Yan, Zhaolong Ding, Chunxia Wang, Guoyong Huang, Vincent M. Rotello. Shaping Sulfur Precursors to Low Dimensional (0D, 1D and 2D) Sulfur Nanomaterials: Synthesis, Characterization, Mechanism, Functionalization, and Applications. Small 2023, 19 (28) https://doi.org/10.1002/smll.202301095
    62. Chuannan Geng, Wenjia Qu, Zhiyuan Han, Li Wang, Wei Lv, Quan‐Hong Yang. Superhigh Coulombic Efficiency Lithium–Sulfur Batteries Enabled by In Situ Coating Lithium Sulfide with Polymerizable Electrolyte Additive. Advanced Energy Materials 2023, 13 (15) https://doi.org/10.1002/aenm.202204246
    63. Robert Dominko, Sara Drvarič Talian, Alen Vizintin. Lithium sulfur batteries: Electrochemistry and mechanistic research. 2023, 430-455. https://doi.org/10.1016/B978-0-12-823144-9.00056-X
    64. Zhen Ge, Xi Chen, Xiaoming Hao, Shun Hu, Jiyang Li, Haoran Lai. Wood-derived density-adjustable hierarchical porous carbon frameworks for high-performance lithium-sulfur batteries. Materials Letters 2023, 331 , 133537. https://doi.org/10.1016/j.matlet.2022.133537
    65. Bo Zhao, Zhixin Ren, Zesheng Li, Guoqiang Tan, Jing Xie. Encapsulate lithium sulfide cathodes with carbon-doped MoS2 for fast kinetics in lithium-sulfur batteries, a theoretical study. Acta Materialia 2023, 242 , 118441. https://doi.org/10.1016/j.actamat.2022.118441
    66. Youngwoo Choo, Yoon Hwa, Elton J. Cairns. A review of the rational interfacial designs and characterizations for solid‐state lithium/sulfur cells. Electrochemical Science Advances 2022, 2 (6) https://doi.org/10.1002/elsa.202100154
    67. Xianyu Liu, Honghong Rao, Kanjun Sun, Hao Gou, Taotao Lu, Yitai Qian. A high-efficiency WS2 nanosheets on N-doped graphene electrocatalyst with dual-function of preventing shuttling and accelerating polysulfides conversion in Li-S batteries. Applied Surface Science 2022, 599 , 154022. https://doi.org/10.1016/j.apsusc.2022.154022
    68. Jieru Xu, Qiuchen Wang, Wenlin Yan, Liquan Chen, Hong Li, Fan Wu. Liquid-phase synthesis of Li 2 S and Li 3 PS 4 with lithium-based organic solutions. Chinese Physics B 2022, 31 (9) , 098203. https://doi.org/10.1088/1674-1056/ac7459
    69. Lulu Tan, Anran Li, Yusi Yang, Jianwen Zhang, Xiaogang Niu, Nan Li, Limin Liu, Lin Guo, Yujie Zhu. Highly Active and Stable Li 2 S−Cu Nanocomposite Cathodes Enabled by Kinetically Favored Displacement Interconversion between Cu 2 S and Li 2 S. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202206012
    70. Lulu Tan, Anran Li, Yusi Yang, Jianwen Zhang, Xiaogang Niu, Nan Li, Limin Liu, Lin Guo, Yujie Zhu. Highly Active and Stable Li 2 S−Cu Nanocomposite Cathodes Enabled by Kinetically Favored Displacement Interconversion between Cu 2 S and Li 2 S. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202206012
    71. Jianglu Xiang, Yuwei Zhao, Lin Wang, Chenyang Zha. The presolvation strategy of Li 2 S cathodes for lithium–sulfur batteries: a review. Journal of Materials Chemistry A 2022, 10 (19) , 10326-10341. https://doi.org/10.1039/D2TA01008A
    72. Veronika Brune, Christoph Bohr, Tim Ludwig, Michael Wilhelm, Sebastian Daniel Hirt, Thomas Fischer, Sebastian Wennig, Bernd Oberschachtsiek, Arun Ichangi, Sanjay Mathur. A novel molecular synthesis route to Li 2 S loaded carbon fibers for lithium–sulfur batteries. Journal of Materials Chemistry A 2022, 10 (18) , 9902-9910. https://doi.org/10.1039/D2TA00369D
    73. Artur Suzanowicz, Cindy Mei, Braja Mandal. Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. Batteries 2022, 8 (5) , 45. https://doi.org/10.3390/batteries8050045
    74. Moumita Kotal, Sonu Jakhar, Sandipan Roy, Harish K. Sharma. Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. Journal of Energy Storage 2022, 47 , 103534. https://doi.org/10.1016/j.est.2021.103534
    75. Yongshang Zhang, Xilai Zhang, S. Ravi P. Silva, Bin Ding, Peng Zhang, Guosheng Shao. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Advanced Science 2022, 9 (4) https://doi.org/10.1002/advs.202103879
    76. Hongtai Li, Yanguang Li, Liang Zhang. Designing principles of advanced sulfur cathodes toward practical lithium‐sulfur batteries. SusMat 2022, 2 (1) , 34-64. https://doi.org/10.1002/sus2.42
    77. Yuzhao Liu, Xiangyu Meng, Zhiyu Wang, Jieshan Qiu. A Li 2 S-based all-solid-state battery with high energy and superior safety. Science Advances 2022, 8 (1) https://doi.org/10.1126/sciadv.abl8390
    78. Şükran EFE, Zeynep Azra GÜNGÖR. Geçmişten Günümüze Batarya Teknolojisi. European Journal of Science and Technology 2022, https://doi.org/10.31590/ejosat.1048673
    79. Hualin Ye, Yanguang Li, Jun Lu. Li2S Cathodes in Lithium–Sulfur Batteries. 2022, 83-109. https://doi.org/10.1007/978-3-030-90899-7_3
    80. Xianyu Liu, Honghong Rao, Kanjun Sun, Hao Gou, Taotao Lu, Yitai Qian. A High-Efficiency Ws2 Nanosheets on N-Doped Graphene Electrocatalyst with Dual-Function of Preventing Shuttling and Accelerating Polysulfides Conversion in Li-S Batteries. SSRN Electronic Journal 2022, 8 https://doi.org/10.2139/ssrn.4098272
    81. Junfan Zhang, Jing Wang, Mengmeng Qian, Bo Zhao, Ran Wang, Xuechun Hao, Xinwei Huang, Ruiwen Shao, Zhenyu Xing, Jing Xie, Bing Xu, Yuefeng Su, Feng Wu, Guoqiang Tan. Lithiothermic‐Synchronous Construction of Mo‐Li 2 S‐Graphene Nanocomposites for High‐Energy Li 2 S//SiC Battery. Advanced Functional Materials 2022, 32 (1) https://doi.org/10.1002/adfm.202108305
    82. Fengming Wan, Liran Fang, Xin Zhang, Colin A. Wolden, Yongan Yang. Lithium sulfide nanocrystals as cathode materials for advanced batteries. Journal of Energy Chemistry 2021, 63 , 138-169. https://doi.org/10.1016/j.jechem.2021.09.028
    83. Sheng Liang, Jie Chen, Ningning Zhou, Lei Hu, Lingli Liu, Lili Wang, Dewei Liang, Tingting Yu, Changan Tian, Chu Liang. CNT threaded porous carbon nitride nanoflakes as bifunctional hosts for lithium sulfide cathode. Journal of Alloys and Compounds 2021, 887 , 161356. https://doi.org/10.1016/j.jallcom.2021.161356
    84. Vittorio Marangon, Daniele Di Lecce, Luca Minnetti, Jusef Hassoun. Novel Lithium‐Sulfur Polymer Battery Operating at Moderate Temperature. ChemElectroChem 2021, 8 (20) , 3971-3981. https://doi.org/10.1002/celc.202101272
    85. Qiaowei Lin, Ling Huang, Wenhua Liu, Zejian Li, Ruopian Fang, Da-Wei Wang, Quan-Hong Yang, Wei Lv. High-performance lithium–sulfur batteries enabled by regulating Li 2 S deposition. Physical Chemistry Chemical Physics 2021, 23 (38) , 21385-21398. https://doi.org/10.1039/D1CP03030B
    86. Shunrui Luo, Feixiang Wu, Gleb Yushin. Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & related batteries. Materials Today 2021, 49 , 253-270. https://doi.org/10.1016/j.mattod.2021.03.017
    87. Sheng Liang, Jie Chen, Xuehua He, Lingli Liu, Ningning Zhou, Lei Hu, Lili Wang, Dewei Liang, Tingting Yu, Changan Tian, Chu Liang. N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries. Processes 2021, 9 (10) , 1822. https://doi.org/10.3390/pr9101822
    88. Guanzhou Zhu, Xin Tian, Hung-Chun Tai, Yuan-Yao Li, Jiachen Li, Hao Sun, Peng Liang, Michael Angell, Cheng-Liang Huang, Ching-Shun Ku, Wei-Hsuan Hung, Shi-Kai Jiang, Yongtao Meng, Hui Chen, Meng-Chang Lin, Bing-Joe Hwang, Hongjie Dai. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 2021, 596 (7873) , 525-530. https://doi.org/10.1038/s41586-021-03757-z
    89. Bo Zhang, Zhijie Guo, Yingming Zhao, Birong Luo, Dejun Li, Teng Zhao, Jagadeesh Sure, Sri Maha Vishnu, Amr Abdelkader, Chris Harris, Kai Xi. Effect of loading methods on the performance of hierarchical porous carbon/sulfur composites in lithium sulfur batteries. Electrochimica Acta 2021, 388 , 138650. https://doi.org/10.1016/j.electacta.2021.138650
    90. Ming Jin, Rui Gao, Guiru Sun, Haibo Li, Xiangxin Xue, Chaoqun Qu, Nan Li, Yuting Zhang, Zhao Wang, Ming Feng. Dual-function LiFePO4 modified separator for low-overpotential and stable Li-S battery. Journal of Alloys and Compounds 2021, 873 , 159798. https://doi.org/10.1016/j.jallcom.2021.159798
    91. J. Nava-Avendaño, M. Nussbaum, J. Veilleux. Thermal Plasma Synthesis of Li2S Nanoparticles for Application in Lithium-Sulfur Batteries. Plasma Chemistry and Plasma Processing 2021, 41 (4) , 1149-1167. https://doi.org/10.1007/s11090-021-10168-5
    92. Wei Zhou, Dengke Zhao, Qikai Wu, Bin Fan, Xiaojing Zhu, Jiacheng Dan, Nanwen Li, Wen Lei, Ligui Li. Enhancing the adsorption and catalytic conversion of polysulfides by nitrogen doped carbon micro-flowers embedded with Mo2C nanoparticles. Carbon 2021, 178 , 371-381. https://doi.org/10.1016/j.carbon.2021.02.099
    93. Muhammad Yousaf, Ufra Naseer, Yiju Li, Zeeshan Ali, Nasir Mahmood, Lei Wang, Peng Gao, Shaojun Guo. A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. Energy & Environmental Science 2021, 14 (5) , 2670-2707. https://doi.org/10.1039/D0EE03295F
    94. Hao Cheng, Cheng Gao, Ning Cai, Miao Wang. Ag coated 3D-Cu foam as a lithiophilic current collector for enabling Li 2 S-based anode-free batteries. Chemical Communications 2021, 57 (30) , 3708-3711. https://doi.org/10.1039/D1CC00006C
    95. Hidehisa Mokudai, Tomonari Takeuchi, Hikari Sakaebe, Hironori Kobayashi, Eiichiro Matsubara. Degradation mechanisms of lithium sulfide (Li 2 S) composite cathode in carbonate electrolyte and improvement by increasing electrolyte concentration. Sustainable Energy & Fuels 2021, 5 (6) , 1714-1726. https://doi.org/10.1039/D0SE01112F
    96. Tianran Yan, Chen Cheng, Liang Zhang. Exploration of materials electrochemistry in rechargeable batteries using advanced in situ/operando x-ray absorption spectroscopy. Electronic Structure 2021, 3 (1) , 013001. https://doi.org/10.1088/2516-1075/abea09
    97. Kai Yuan, Lixia Yuan, Jie Chen, Jingwei Xiang, Yaqi Liao, Zhen Li, Yunhui Huang. Methods and Cost Estimation for the Synthesis of Nanosized Lithium Sulfide. Small Structures 2021, 2 (3) https://doi.org/10.1002/sstr.202000059
    98. Jicheng Jiang, Qining Fan, Shulei Chou, Zaiping Guo, Konstantin Konstantinov, Huakun Liu, Jiazhao Wang. Li 2 S‐Based Li‐Ion Sulfur Batteries: Progress and Prospects. Small 2021, 17 (9) https://doi.org/10.1002/smll.201903934
    99. Peng Wang, Baojuan Xi, Man Huang, Weihua Chen, Jinkui Feng, Shenglin Xiong. Emerging Catalysts to Promote Kinetics of Lithium–Sulfur Batteries. Advanced Energy Materials 2021, 11 (7) https://doi.org/10.1002/aenm.202002893
    100. Toshikatsu Kojima, Nobuhiko Takeichi. Li2S Cathode. 2021, 375-392. https://doi.org/10.1007/978-981-33-6668-8_33
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2012, 12, 12, 6474–6479
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl303965a
    Published November 28, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    8393

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.