Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Electron Tomography Resolves a Novel Crystal Structure in a Binary Nanocrystal Superlattice
My Activity
    Letter

    Electron Tomography Resolves a Novel Crystal Structure in a Binary Nanocrystal Superlattice
    Click to copy article linkArticle link copied!

    View Author Information
    Condensed Matter and Interfaces and Soft Condensed Matter, Debye Institute for Nanomaterials Science, University Utrecht, Princetonplein 1, 3584 CC Utrecht, The Netherlands
    § Electron Microscopy Group, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
    *E-mail: [email protected]. Tel: (+31) 30-253-2218. Fax: (+31) 30-253-2403.
    Other Access OptionsSupporting Information (7)

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 3, 1312–1316
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl400100c
    Published February 12, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The self-assembly of different nanocrystals into a binary superlattice is of interest for both colloidal science and nanomaterials science. New properties may emerge from the interaction between the nanocrystal building blocks that are ordered in close contact in three dimensions. Identification of the superlattice structure including its defects is of key interest in understanding the electrical and optical properties of these systems. Transmission electron microscopy (TEM) has been very instrumental to reach this goal but fails for complex crystal structures and buried defects. Here, we use electron tomography to resolve the three-dimensional crystal structure of a binary superlattice that could not be resolved by TEM only. The structure with a [PbSe]6[CdSe]19 stoichiometry has no analogue in the atomic world. Moreover we will show how tomography can overcome the clouding effects of planar defects on structure identification by TEM.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Media files showing the raw tilt series (structure1_tilt.mpg (si_002), structure2_tilt.mpg (si_003), structure3_tilt.mpg (si_004)) and the corresponding 3D reconstructions (structure1_rec.mpg (si_005), structure2_rec.mpg (si_006), structure3_rec.mpg (si_007)) of the structures as labeled in Figure1, and a text file containing details on the NC synthesis and the computer aided particle detection, various TEM images of crystal structures observed at a size ratio range of 0.61–0.67, unit cell parameters of the A6B19 crystal structure and details on the space group assignment and the Monte Carlo simulation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 41 publications.

    1. Carlos L. Bassani, Greg van Anders, Uri Banin, Dmitry Baranov, Qian Chen, Marjolein Dijkstra, Michael S. Dimitriyev, Efi Efrati, Jordi Faraudo, Oleg Gang, Nicola Gaston, Ramin Golestanian, G. Ivan Guerrero-Garcia, Michael Gruenwald, Amir Haji-Akbari, Maria Ibáñez, Matthias Karg, Tobias Kraus, Byeongdu Lee, Reid C. Van Lehn, Robert J. Macfarlane, Bortolo M. Mognetti, Arash Nikoubashman, Saeed Osat, Oleg V. Prezhdo, Grant M. Rotskoff, Leonor Saiz, An-Chang Shi, Sara Skrabalak, Ivan I. Smalyukh, Mario Tagliazucchi, Dmitri V. Talapin, Alexei V. Tkachenko, Sergei Tretiak, David Vaknin, Asaph Widmer-Cooper, Gerard C. L. Wong, Xingchen Ye, Shan Zhou, Eran Rabani, Michael Engel, Alex Travesset. Nanocrystal Assemblies: Current Advances and Open Problems. ACS Nano 2024, 18 (23) , 14791-14840. https://doi.org/10.1021/acsnano.3c10201
    2. Pratibha Mahale, Byeongdu Lee, Hiu Yan Cheng, Mo Segad, Thomas E. Mallouk. Small-Angle X-ray Scattering Analysis of Colloidal Crystals and Replica Materials Made from l-Arginine-Stabilized Silica Nanoparticles. ACS Applied Materials & Interfaces 2022, 14 (7) , 9398-9407. https://doi.org/10.1021/acsami.1c19193
    3. Jiawei Liu, Jingtao Huang, Wenxin Niu, Chaoliang Tan, Hua Zhang. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chemical Reviews 2021, 121 (10) , 5830-5888. https://doi.org/10.1021/acs.chemrev.0c01047
    4. Changchang Xing, Dilong Liu, Jinxing Chen, Yulong Fan, Fei Zhou, Keerat Kaur, Weiping Cai, Yue Li. Convective Self-Assembly of 2D Nonclose-Packed Binary Au Nanoparticle Arrays with Tunable Optical Properties. Chemistry of Materials 2021, 33 (1) , 310-319. https://doi.org/10.1021/acs.chemmater.0c03799
    5. Xun Zha, Alex Travesset. Stability and Free Energy of Nanocrystal Chains and Superlattices. The Journal of Physical Chemistry C 2018, 122 (40) , 23153-23164. https://doi.org/10.1021/acs.jpcc.8b06996
    6. Tommy Waltmann, Curt Waltmann, Nathan Horst, Alex Travesset. Many Body Effects and Icosahedral Order in Superlattice Self-Assembly. Journal of the American Chemical Society 2018, 140 (26) , 8236-8245. https://doi.org/10.1021/jacs.8b03895
    7. Zhijie Yang, Thomas Altantzis, Sara Bals, Gustaaf Van Tendeloo, Marie-Paule Pileni. Do Binary Supracrystals Enhance the Crystal Stability?. The Journal of Physical Chemistry C 2018, 122 (25) , 13515-13521. https://doi.org/10.1021/acs.jpcc.7b12373
    8. Curt Waltmann, Nathan Horst, and Alex Travesset . Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly. ACS Nano 2017, 11 (11) , 11273-11282. https://doi.org/10.1021/acsnano.7b05694
    9. Alex Travesset . Soft Skyrmions, Spontaneous Valence and Selection Rules in Nanoparticle Superlattices. ACS Nano 2017, 11 (6) , 5375-5382. https://doi.org/10.1021/acsnano.7b02219
    10. Taejong Paik, Hongseok Yun, Blaise Fleury, Sung-Hoon Hong, Pil Sung Jo, Yaoting Wu, Soong-Ju Oh, Matteo Cargnello, Haoran Yang, Christopher B. Murray, and Cherie R. Kagan . Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices. Nano Letters 2017, 17 (3) , 1387-1394. https://doi.org/10.1021/acs.nanolett.6b04279
    11. Michael A. Boles, Michael Engel, and Dmitri V. Talapin . Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews 2016, 116 (18) , 11220-11289. https://doi.org/10.1021/acs.chemrev.6b00196
    12. Willem Walravens, Jonathan De Roo, Emile Drijvers, Stephanie ten Brinck, Eduardo Solano, Jolien Dendooven, Christophe Detavernier, Ivan Infante, and Zeger Hens . Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices. ACS Nano 2016, 10 (7) , 6861-6870. https://doi.org/10.1021/acsnano.6b02562
    13. Tetyana I. Levchenko, Christian Kübel, Di Wang, Bahareh Khalili Najafabadi, Yining Huang, and John F. Corrigan . Controlled Solvothermal Routes to Hierarchical 3D Superparticles of Nanoscopic CdS. Chemistry of Materials 2015, 27 (10) , 3666-3682. https://doi.org/10.1021/acs.chemmater.5b00586
    14. Zhijie Yang, Jingjing Wei, Pierre Bonville, and Marie-Paule Pileni . Beyond Entropy: Magnetic Forces Induce Formation of Quasicrystalline Structure in Binary Nanocrystal Superlattices. Journal of the American Chemical Society 2015, 137 (13) , 4487-4493. https://doi.org/10.1021/jacs.5b00332
    15. Alexander V. Baranov, Elena V. Ushakova, Valery V. Golubkov, Aleksandr P. Litvin, Peter S. Parfenov, Anatoly V. Fedorov, and Kevin Berwick . Self-Organization of Colloidal PbS Quantum Dots into Highly Ordered Superlattices. Langmuir 2015, 31 (1) , 506-513. https://doi.org/10.1021/la503913z
    16. Yasuhiro Sakamoto, Yoshiyuki Kuroda, Susumu Toko, Takuji Ikeda, Toshiyuki Matsui, and Kazuyuki Kuroda . Electron Microscopy Study of Binary Nanocolloidal Crystals with ico-AB13 Structure Made of Monodisperse Silica Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (27) , 15004-15010. https://doi.org/10.1021/jp501504c
    17. Ward van der Stam, Anjan P. Gantapara, Quinten A. Akkerman, Giuseppe Soligno, Johannes D. Meeldijk, René van Roij, Marjolein Dijkstra, and Celso de Mello Donega . Self-Assembly of Colloidal Hexagonal Bipyramid- and Bifrustum-Shaped ZnS Nanocrystals into Two-Dimensional Superstructures. Nano Letters 2014, 14 (2) , 1032-1037. https://doi.org/10.1021/nl4046069
    18. Julie Angly, Antonio Iazzolino, Jean-Baptiste Salmon, Jacques Leng, Sivasankaran Prathap Chandran, Virginie Ponsinet, Anthony Désert, Aurélie Le Beulze, Stéphane Mornet, Mona Tréguer-Delapierre, and Miguel A. Correa-Duarte . Microfluidic-Induced Growth and Shape-Up of Three-Dimensional Extended Arrays of Densely Packed Nanoparticles. ACS Nano 2013, 7 (8) , 6465-6477. https://doi.org/10.1021/nn401764r
    19. Oscar F. Silvestre, Anish Rao, Luis M. Liz-Marzán. Self-assembled colloidal gold nanoparticles as substrates for plasmon enhanced fluorescence. European Journal of Materials 2023, 3 (1) https://doi.org/10.1080/26889277.2023.2202676
    20. Xiaolei Chu, Alex Abelson, Caroline Qian, Oleg Igouchkine, Ethan Field, Kwan‐Liu Ma, Matt Law, Adam J. Moule. Atomic Lattice Resolved Electron Tomography of a 3D Self‐Assembled Mesocrystal. Advanced Functional Materials 2023, 33 (22) https://doi.org/10.1002/adfm.202301026
    21. . Binary 3 D Superlattices. 2023, 167-197. https://doi.org/10.1002/9783527344796.ch7
    22. Elena Shevchenko. Multicomponent nanoparticle superlattices. 2023, 298-323. https://doi.org/10.1016/B978-0-12-822425-0.00112-3
    23. Korath Shivan Sugi, Andre Maier, Marcus Scheele. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chemical Communications 2022, 58 (50) , 6998-7017. https://doi.org/10.1039/D2CC00778A
    24. Julia Dshemuchadse. Soft matter crystallography—Complex, diverse, and new crystal structures in condensed materials on the mesoscale. Journal of Applied Physics 2022, 131 (2) https://doi.org/10.1063/5.0072017
    25. Xiaolei Chu, Hamed Heidari, Alex Abelson, Davis Unruh, Chase Hansen, Caroline Qian, Gergely Zimanyi, Matt Law, Adam J. Moulé. Structural characterization of a polycrystalline epitaxially-fused colloidal quantum dot superlattice by electron tomography. Journal of Materials Chemistry A 2020, 8 (35) , 18254-18265. https://doi.org/10.1039/D0TA06704K
    26. Kerong Deng, Zhishan Luo, Li Tan, Zewei Quan. Self-assembly of anisotropic nanoparticles into functional superstructures. Chemical Society Reviews 2020, 49 (16) , 6002-6038. https://doi.org/10.1039/D0CS00541J
    27. Curt Waltmann, Nathan Horst, Alex Travesset. Potential of mean force for two nanocrystals: Core geometry and size, hydrocarbon unsaturation, and universality with respect to the force field. The Journal of Chemical Physics 2018, 149 (3) https://doi.org/10.1063/1.5039495
    28. Yuhong Li, Xin-Ping Wu, Ningxin Jiang, Ming Lin, Li Shen, Haicheng Sun, Yongzheng Wang, Meng Wang, Xiaokang Ke, Zhiwu Yu, Fei Gao, Lin Dong, Xuefeng Guo, Wenhua Hou, Weiping Ding, Xue-Qing Gong, Clare P. Grey, Luming Peng. Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00603-7
    29. Thumu Udayabhaskararao, Thomas Altantzis, Lothar Houben, Marc Coronado-Puchau, Judith Langer, Ronit Popovitz-Biro, Luis M. Liz-Marzán, Lela Vuković, Petr Král, Sara Bals, Rafal Klajn. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 2017, 358 (6362) , 514-518. https://doi.org/10.1126/science.aan6046
    30. Alex Travesset. Nanoparticle Superlattices as Quasi-Frank-Kasper Phases. Physical Review Letters 2017, 119 (11) https://doi.org/10.1103/PhysRevLett.119.115701
    31. Jingjing Wei, Zhijie Yang, Marie-Paule Pileni. 3D superlattices of uniform metal nanocrystals differing by their sizes called binary supracrystals. EPL (Europhysics Letters) 2017, 119 (3) , 38005. https://doi.org/10.1209/0295-5075/119/38005
    32. Marie-Paule Pileni. Self-Assembly of Co Nanocrystals Self-Assembled in 2D and 3D Superlattices. 2017, 327-342. https://doi.org/10.1002/9783527803255.ch10
    33. Tetyana I. Levchenko, Yining Huang, John F. Corrigan. Large Metal Chalcogenide Clusters and Their Ordered Superstructures via Solvothermal and Ionothermal Syntheses. 2016, 269-319. https://doi.org/10.1007/430_2016_5
    34. Rui Tan, Hua Zhu, Can Cao, Ou Chen. Multi-component superstructures self-assembled from nanocrystal building blocks. Nanoscale 2016, 8 (19) , 9944-9961. https://doi.org/10.1039/C6NR01662F
    35. Zhijie Yang, Jingjing Wei, Pierre Bonville, Marie‐Paule Pileni. Engineering the Magnetic Dipolar Interactions in 3D Binary Supracrystals Via Mesoscale Alloying. Advanced Functional Materials 2015, 25 (30) , 4908-4915. https://doi.org/10.1002/adfm.201501499
    36. Martin A. Schroer, Christian Gutt, Felix Lehmkühler, Birgit Fischer, Ingo Steinke, Fabian Westermeier, Michael Sprung, Gerhard Grübel. Nano-beam X-ray microscopy of dried colloidal films. Soft Matter 2015, 11 (27) , 5465-5472. https://doi.org/10.1039/C5SM00609K
    37. Sara Bals, Bart Goris, Luis Liz‐Marzán, Gustaaf Van Tendeloo. Dreidimensionale Charakterisierung von Edelmetall‐Nanopartikeln und deren Anordnungen mithilfe von Elektronentomographie. Angewandte Chemie 2014, 126 (40) , 10774-10784. https://doi.org/10.1002/ange.201401059
    38. Sara Bals, Bart Goris, Luis M. Liz‐Marzán, Gustaaf Van Tendeloo. Three‐Dimensional Characterization of Noble‐Metal Nanoparticles and their Assemblies by Electron Tomography. Angewandte Chemie International Edition 2014, 53 (40) , 10600-10610. https://doi.org/10.1002/anie.201401059
    39. M. P. Boneschanscher, W. H. Evers, J. J. Geuchies, T. Altantzis, B. Goris, F. T. Rabouw, S. A. P. van Rossum, H. S. J. van der Zant, L. D. A. Siebbeles, G. Van Tendeloo, I. Swart, J. Hilhorst, A. V. Petukhov, S. Bals, D. Vanmaekelbergh. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 2014, 344 (6190) , 1377-1380. https://doi.org/10.1126/science.1252642
    40. Arnaud Mayence, Dong Wang, German Salazar-Alvarez, Peter Oleynikov, Lennart Bergström. Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging. Nanoscale 2014, 6 (22) , 13803-13808. https://doi.org/10.1039/C4NR04156A
    41. A. Iazzolino, J. Angly, J.-B. Salmon, J. Leng, A. Le Beulze, A. Desert, S. Mornet, M. Treguer-Delapierre, S. P. Chandran, V. Ponsinnet, M. Correa-Duarte. Microfluidic-assisted growth of densely-packed arrays of nanoparticles. 2013, 532-535. https://doi.org/10.1109/MetaMaterials.2013.6809110

    Nano Letters

    Cite this: Nano Lett. 2013, 13, 3, 1312–1316
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl400100c
    Published February 12, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1882

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.