ACS Publications. Most Trusted. Most Cited. Most Read
High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images
My Activity
    Letter

    High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images
    Click to copy article linkArticle link copied!

    View Author Information
    Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
    Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
    § Institute of Opto-electronic Engineering, National Dong Hwa University, Hualien 97401, Taiwan
    Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
    Department of Physics, National Taiwan University, Taipei 10617, Taiwan
    # Department of Optical Science and Engineering and #State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
    School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
    *(D.P.T.) E-mail: [email protected]
    *(C.-M.W.) E-mail: [email protected]
    Other Access OptionsSupporting Information (3)

    Nano Letters

    Cite this: Nano Lett. 2014, 14, 1, 225–230
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl403811d
    Published December 13, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Holograms, the optical devices to reconstruct predesigned images, show many applications in our daily life. However, applications of hologram are still limited by the constituent materials and therefore their working range is trapped at a particular electromagnetic region. In recent years, the metasurfaces, an array of subwavelength antenna with varying sizes, show the abilities to manipulate the phase of incident electromagnetic wave from visible to microwave frequencies. Here, we present a reflective-type and high-efficiency meta-hologram fabricated by metasurface for visible wavelength. Using gold cross nanoantennas as building blocks to construct our meta-hologram devices with thickness ∼ λ/4, the reconstructed images of meta-hologram show polarization-controlled dual images with high contrast, functioning for both coherent and incoherent light sources within a broad spectral range and under a wide range of incidence angles. The flexibility demonstrated here for our meta-hologram paves the road to a wide range of applications related to holographic images at arbitrary electromagnetic wave region.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed information of meta-hologram design, fabrication, measurement, optical images of fabricated meta-hologram and reconstructed CCD images for different incident angles θ, and meta-hologram efficiency analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 707 publications.

    1. Xinyang Mu, Haoye Qin, Wannian Zhao, Sanyang Han, Ziqi Liu, Yuzhi Shi, Wei Huang, Bo Li, Qinghua Song. Chirality-Free Full Decoupling of Jones Matrix Phase-Channels with a Planar Minimalist Metasurface. Nano Letters 2025, 25 (4) , 1322-1328. https://doi.org/10.1021/acs.nanolett.4c04577
    2. Chengjing Gao, Tingjun Lai, Liang Peng, Xuewei Zhang, Zhengjie Huang, Zhiyu Wang, Xiaoyu Pang, Shenghui Zhao, Dexin Ye. Multifunctional Intelligent Reconfigurable Metasurface. ACS Applied Materials & Interfaces 2024, 16 (41) , 55675-55683. https://doi.org/10.1021/acsami.4c09944
    3. Boyou Wang, Rui Wei, Hongsheng Shi, Yanjun Bao. Dynamic Spatial-Selective Metasurface with Multiple-Beam Interference. Nano Letters 2024, 24 (19) , 5886-5893. https://doi.org/10.1021/acs.nanolett.4c01254
    4. Wenwen Li, Yucong Zhou, Chao Ye, Dukang Yan, Bo Xiong, Han Gao, Tao Chu, Wei Ma. Multifunctional Metasurface for Simultaneous Light Manipulation under Both Guided-Wave and Free-Space Incidence. ACS Photonics 2024, 11 (4) , 1724-1733. https://doi.org/10.1021/acsphotonics.4c00042
    5. Weixu Yang, Ke Chen, Shufang Dong, Shaojie Wang, Kai Qu, Tian Jiang, Junming Zhao, Yijun Feng. Direction-Duplex Janus Metasurface for Full-Space Electromagnetic Wave Manipulation and Holography. ACS Applied Materials & Interfaces 2023, 15 (22) , 27380-27390. https://doi.org/10.1021/acsami.3c04382
    6. Mu Ku Chen, Xiaoyuan Liu, Yanni Sun, Din Ping Tsai. Artificial Intelligence in Meta-optics. Chemical Reviews 2022, 122 (19) , 15356-15413. https://doi.org/10.1021/acs.chemrev.2c00012
    7. Jin Qin, Shibin Jiang, Zhanshan Wang, Xinbin Cheng, Baojun Li, Yuzhi Shi, Din Ping Tsai, Ai Qun Liu, Wei Huang, Weiming Zhu. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16 (8) , 11598-11618. https://doi.org/10.1021/acsnano.2c03310
    8. Ti Sun, Huirong Yang, Xing Yang, Chinhua Wang. High-Efficiency Plasmonic Metalens for Dual-Polarization Imaging with a Single Set of 3D Variable Nanostructures. ACS Photonics 2022, 9 (8) , 2833-2841. https://doi.org/10.1021/acsphotonics.2c00749
    9. Isma Javed, Joohoon Kim, Muhammad Ashar Naveed, Dong Kyo Oh, Dongmin Jeon, Inki Kim, Muhammad Zubair, Yehia Massoud, Muhammad Qasim Mehmood, Junsuk Rho. Broad-Band Polarization-Insensitive Metasurface Holography with a Single-Phase Map. ACS Applied Materials & Interfaces 2022, 14 (31) , 36019-36026. https://doi.org/10.1021/acsami.2c07960
    10. Aharon Weiss, Christian Frydendahl, Jonathan Bar-David, Roy Zektzer, Eitan Edrei, Jacob Engelberg, Noa Mazurski, Boris Desiatov, Uriel Levy. Tunable Metasurface Using Thin-Film Lithium Niobate in the Telecom Regime. ACS Photonics 2022, 9 (2) , 605-612. https://doi.org/10.1021/acsphotonics.1c01582
    11. Ronger Lu, Ruizhi Zhao, Xia Feng, Chao Zhang, Xuhao Hong, Yiqiang Qin, Yongyuan Zhu. Nonlinear Wavefront Shaping and Imaging in Nonlinear Photonic Crystals with a Generalized Quasi-Multivalue-Encoding Method. ACS Photonics 2021, 8 (11) , 3133-3140. https://doi.org/10.1021/acsphotonics.1c01415
    12. Chunghwan Jung, Gyeongtae Kim, Minsu Jeong, Jaehyuck Jang, Zhaogang Dong, Trevon Badloe, Joel K. W. Yang, Junsuk Rho. Metasurface-Driven Optically Variable Devices. Chemical Reviews 2021, 121 (21) , 13013-13050. https://doi.org/10.1021/acs.chemrev.1c00294
    13. Haogang Cai, James A. Dolan, George S. D. Gordon, Taerin Chung, Daniel López. Polarization-Insensitive Medium-Switchable Holographic Metasurfaces. ACS Photonics 2021, 8 (9) , 2581-2589. https://doi.org/10.1021/acsphotonics.1c00836
    14. Cheng-Wei Qiu, Tan Zhang, Guangwei Hu, Yuri Kivshar. Quo Vadis, Metasurfaces?. Nano Letters 2021, 21 (13) , 5461-5474. https://doi.org/10.1021/acs.nanolett.1c00828
    15. Christopher Damgaard-Carstensen, Martin Thomaschewski, Fei Ding, Sergey I. Bozhevolnyi. Electrical Tuning of Fresnel Lens in Reflection. ACS Photonics 2021, 8 (6) , 1576-1581. https://doi.org/10.1021/acsphotonics.1c00520
    16. Dandan Wen, Jasper J. Cadusch, Jiajun Meng, Kenneth B. Crozier. Vectorial Holograms with Spatially Continuous Polarization Distributions. Nano Letters 2021, 21 (4) , 1735-1741. https://doi.org/10.1021/acs.nanolett.0c04555
    17. Chen Chen, Shenglun Gao, Wange Song, Hanmeng Li, Shi-Ning Zhu, Tao Li. Metasurfaces with Planar Chiral Meta-Atoms for Spin Light Manipulation. Nano Letters 2021, 21 (4) , 1815-1821. https://doi.org/10.1021/acs.nanolett.0c04902
    18. Takayuki Matsui, Hideo Iizuka. Effect of Finite Number of Nanoblocks in Metasurface Lens Design from Bloch-Mode Perspective and Its Experimental Verification. ACS Photonics 2020, 7 (12) , 3448-3455. https://doi.org/10.1021/acsphotonics.0c01346
    19. Shaohua Dong, Guangwei Hu, Qiang Wang, Yuxiang Jia, Qing Zhang, Guangtao Cao, Jiafu Wang, Shuqing Chen, Dianyuan Fan, Weixiang Jiang, Ying Li, Andrea Alù, Cheng-Wei Qiu. Loss-Assisted Metasurface at an Exceptional Point. ACS Photonics 2020, 7 (12) , 3321-3327. https://doi.org/10.1021/acsphotonics.0c01440
    20. Chao Meng, Shiwei Tang, Fei Ding, Sergey I. Bozhevolnyi. Optical Gap-Surface Plasmon Metasurfaces for Spin-Controlled Surface Plasmon Excitation and Anomalous Beam Steering. ACS Photonics 2020, 7 (7) , 1849-1856. https://doi.org/10.1021/acsphotonics.0c00681
    21. Jacob Scheuer. Optical Metasurfaces Are Coming of Age: Short- and Long-Term Opportunities for Commercial Applications. ACS Photonics 2020, 7 (6) , 1323-1354. https://doi.org/10.1021/acsphotonics.9b01719
    22. Alexandra A. Shmakova, Alexey S. Berezin, Pavel A. Abramov, Maxim N. Sokolov. Self-Assembly of Ag+/[PW11NbO40]4– Complexes in Nonaqueous Solutions. Inorganic Chemistry 2020, 59 (3) , 1853-1862. https://doi.org/10.1021/acs.inorgchem.9b03064
    23. Hang Feng, Qitong Li, Weiping Wan, Jung-Hwan Song, Qihuang Gong, Mark L. Brongersma, Yan Li. Spin-Switched Three-Dimensional Full-Color Scenes Based on a Dielectric Meta-hologram. ACS Photonics 2019, 6 (11) , 2910-2916. https://doi.org/10.1021/acsphotonics.9b01017
    24. Takashi Takeuchi, Masashi Noda, Kazuhiro Yabana. Operation of Quantum Plasmonic Metasurfaces Using Electron Transport through Subnanometer Gaps. ACS Photonics 2019, 6 (10) , 2517-2522. https://doi.org/10.1021/acsphotonics.9b00889
    25. Yonghwi Kim, Pin Chieh Wu, Ruzan Sokhoyan, Kelly Mauser, Rebecca Glaudell, Ghazaleh Kafaie Shirmanesh, Harry A. Atwater. Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. Nano Letters 2019, 19 (6) , 3961-3968. https://doi.org/10.1021/acs.nanolett.9b01246
    26. Petr Bouchal, Petr Dvořák, Jiří Babocký, Zdeněk Bouchal, Filip Ligmajer, Martin Hrtoň, Vlastimil Křápek, Alexander Faßbender, Stefan Linden, Radim Chmelík, Tomáš Šikola. High-Resolution Quantitative Phase Imaging of Plasmonic Metasurfaces with Sensitivity down to a Single Nanoantenna. Nano Letters 2019, 19 (2) , 1242-1250. https://doi.org/10.1021/acs.nanolett.8b04776
    27. He-Xiu Xu, Lei Han, Ying Li, Yunming Sun, Jianlin Zhao, Shuang Zhang, Cheng-Wei Qiu. Completely Spin-Decoupled Dual-Phase Hybrid Metasurfaces for Arbitrary Wavefront Control. ACS Photonics 2019, 6 (1) , 211-220. https://doi.org/10.1021/acsphotonics.8b01439
    28. Fengliang Dong, Hang Feng, Lihua Xu, Bo Wang, Zhiwei Song, Xianfeng Zhang, Lanqin Yan, Xiaojun Li, Yi Tian, Wentao Wang, Lianfeng Sun, Yan Li, Weiguo Chu. Information Encoding with Optical Dielectric Metasurface via Independent Multichannels. ACS Photonics 2019, 6 (1) , 230-237. https://doi.org/10.1021/acsphotonics.8b01513
    29. Lei Jin, Zhaogang Dong, Shengtao Mei, Ye Feng Yu, Zhun Wei, Zhenying Pan, Soroosh Daqiqeh Rezaei, Xiangping Li, Arseniy I. Kuznetsov, Yuri S. Kivshar, Joel K. W. Yang, Cheng-Wei Qiu. Noninterleaved Metasurface for (26-1) Spin- and Wavelength-Encoded Holograms. Nano Letters 2018, 18 (12) , 8016-8024. https://doi.org/10.1021/acs.nanolett.8b04246
    30. Inki Kim, Gwanho Yoon, Jaehyuck Jang, Patrice Genevet, Ki Tae Nam, Junsuk Rho. Outfitting Next Generation Displays with Optical Metasurfaces. ACS Photonics 2018, 5 (10) , 3876-3895. https://doi.org/10.1021/acsphotonics.8b00809
    31. Rucha Deshpande, Vladimir A. Zenin, Fei Ding, N. Asger Mortensen, Sergey I. Bozhevolnyi. Direct Characterization of Near-Field Coupling in Gap Plasmon-Based Metasurfaces. Nano Letters 2018, 18 (10) , 6265-6270. https://doi.org/10.1021/acs.nanolett.8b02393
    32. He-Xiu Xu, Shaojie Ma, Xiaohui Ling, Xiao-Kuan Zhang, Shiwei Tang, Tong Cai, Shulin Sun, Qiong He, Lei Zhou. Deterministic Approach to Achieve Broadband Polarization-Independent Diffusive Scatterings Based on Metasurfaces. ACS Photonics 2018, 5 (5) , 1691-1702. https://doi.org/10.1021/acsphotonics.7b01036
    33. Sergejs Boroviks, Rucha A. Deshpande, N. Asger Mortensen, Sergey I. Bozhevolnyi. Multifunctional Metamirror: Polarization Splitting and Focusing. ACS Photonics 2018, 5 (5) , 1648-1653. https://doi.org/10.1021/acsphotonics.7b01091
    34. Zhengren Zhang, Dandan Wen, Chunmei Zhang, Ming Chen, Wei Wang, Shuqi Chen, Xianzhong Chen. Multifunctional Light Sword Metasurface Lens. ACS Photonics 2018, 5 (5) , 1794-1799. https://doi.org/10.1021/acsphotonics.7b01536
    35. Ghazaleh Kafaie Shirmanesh, Ruzan Sokhoyan, Ragip A. Pala, Harry A. Atwater. Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. Nano Letters 2018, 18 (5) , 2957-2963. https://doi.org/10.1021/acs.nanolett.8b00351
    36. Bernhard Atorf, Hoda Rasouli, Holger Mühlenbernd, Bernhard J. Reineke, Thomas Zentgraf, and Heinz Kitzerow . Switchable Plasmonic Holograms Utilizing the Electro-Optic Effect of a Liquid-Crystal Circular Polarizer. The Journal of Physical Chemistry C 2018, 122 (8) , 4600-4606. https://doi.org/10.1021/acs.jpcc.7b12609
    37. Qiu Wang, Quan Xu, Xueqian Zhang, Chunxiu Tian, Yuehong Xu, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Xixiang Zhang, Jiaguang Han, and Weili Zhang . All-Dielectric Meta-Holograms with Holographic Images Transforming Longitudinally. ACS Photonics 2018, 5 (2) , 599-606. https://doi.org/10.1021/acsphotonics.7b01173
    38. Bo Han Chen, Pin Chieh Wu, Vin-Cent Su, Yi-Chieh Lai, Cheng Hung Chu, I Chen Lee, Jia-Wern Chen, Yu Han Chen, Yung-Chiang Lan, Chieh-Hsiung Kuan, and Din Ping Tsai . GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. Nano Letters 2017, 17 (10) , 6345-6352. https://doi.org/10.1021/acs.nanolett.7b03135
    39. Zhenwei Xie, Ting Lei, Guangyuan Si, Xianyou Wang, Jiao Lin, Changjun Min, and Xiaocong Yuan . Meta-Holograms with Full Parameter Control of Wavefront over a 1000 nm Bandwidth. ACS Photonics 2017, 4 (9) , 2158-2164. https://doi.org/10.1021/acsphotonics.7b00710
    40. Benedikt Groever, Wei Ting Chen, and Federico Capasso . Meta-Lens Doublet in the Visible Region. Nano Letters 2017, 17 (8) , 4902-4907. https://doi.org/10.1021/acs.nanolett.7b01888
    41. Ji Chen, Tao Li, Shuming Wang, and Shining Zhu . Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering. Nano Letters 2017, 17 (8) , 5051-5055. https://doi.org/10.1021/acs.nanolett.7b02295
    42. Yi-Hsin Chien, Chang-Han Wang, Chi-Ching Liu, Shih-Hui Chang, Kien Voon Kong, and Yun-Chorng Chang . Large-Scale Nanofabrication of Designed Nanostructures Using Angled Nanospherical-Lens Lithography for Surface Enhanced Infrared Absorption Spectroscopy. ACS Applied Materials & Interfaces 2017, 9 (29) , 24917-24925. https://doi.org/10.1021/acsami.7b08994
    43. Andrei Nemilentsau and Tony Low . Broadband Achromatic Anomalous Mirror in Near-IR and Visible Frequency Ranges. ACS Photonics 2017, 4 (7) , 1646-1652. https://doi.org/10.1021/acsphotonics.6b00922
    44. Shuo Liu, Hao Chi Zhang, Lei Zhang, Quan Long Yang, Quan Xu, Jianqiang Gu, Yan Yang, Xiao Yang Zhou, Jiaguang Han, Qiang Cheng, Weili Zhang, and Tie Jun Cui . Full-State Controls of Terahertz Waves Using Tensor Coding Metasurfaces. ACS Applied Materials & Interfaces 2017, 9 (25) , 21503-21514. https://doi.org/10.1021/acsami.7b02789
    45. Jiří Babocký, Aneta Křížová, Lenka Štrbková, Lukáš Kejík, Filip Ligmajer, Martin Hrtoň, Petr Dvořák, Matěj Týč, Jana Čolláková, Vlastimil Křápek, Radek Kalousek, Radim Chmelík, and Tomáš Šikola . Quantitative 3D Phase Imaging of Plasmonic Metasurfaces. ACS Photonics 2017, 4 (6) , 1389-1397. https://doi.org/10.1021/acsphotonics.7b00022
    46. Michelle C. Sherrott, Philip W. C. Hon, Katherine T. Fountaine, Juan C. Garcia, Samuel M. Ponti, Victor W. Brar, Luke A. Sweatlock, and Harry A. Atwater . Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene–Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Letters 2017, 17 (5) , 3027-3034. https://doi.org/10.1021/acs.nanolett.7b00359
    47. Fei Ding, Anders Pors, Yiting Chen, Vladimir A. Zenin, and Sergey I. Bozhevolnyi . Beam-Size-Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces. ACS Photonics 2017, 4 (4) , 943-949. https://doi.org/10.1021/acsphotonics.6b01046
    48. M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso . Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Letters 2017, 17 (3) , 1819-1824. https://doi.org/10.1021/acs.nanolett.6b05137
    49. David Ohana, Boris Desiatov, Noa Mazurski, and Uriel Levy . Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides. Nano Letters 2016, 16 (12) , 7956-7961. https://doi.org/10.1021/acs.nanolett.6b04264
    50. Jongbum Kim, Sajid Choudhury, Clayton DeVault, Yang Zhao, Alexander V. Kildishev, Vladimir M. Shalaev, Andrea Alù, and Alexandra Boltasseva . Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface. ACS Nano 2016, 10 (10) , 9326-9333. https://doi.org/10.1021/acsnano.6b03937
    51. Yao-Wei Huang, Ho Wai Howard Lee, Ruzan Sokhoyan, Ragip A. Pala, Krishnan Thyagarajan, Seunghoon Han, Din Ping Tsai, and Harry A. Atwater . Gate-Tunable Conducting Oxide Metasurfaces. Nano Letters 2016, 16 (9) , 5319-5325. https://doi.org/10.1021/acs.nanolett.6b00555
    52. Shangjr Gwo, Chun-Yuan Wang, Hung-Ying Chen, Meng-Hsien Lin, Liuyang Sun, Xiaoqin Li, Wei-Liang Chen, Yu-Ming Chang, and Hyeyoung Ahn . Plasmonic Metasurfaces for Nonlinear Optics and Quantitative SERS. ACS Photonics 2016, 3 (8) , 1371-1384. https://doi.org/10.1021/acsphotonics.6b00104
    53. Bo Wang, Fengliang Dong, Qi-Tong Li, Dong Yang, Chengwei Sun, Jianjun Chen, Zhiwei Song, Lihua Xu, Weiguo Chu, Yun-Feng Xiao, Qihuang Gong, and Yan Li . Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. Nano Letters 2016, 16 (8) , 5235-5240. https://doi.org/10.1021/acs.nanolett.6b02326
    54. M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso . Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy. Nano Letters 2016, 16 (6) , 3732-3737. https://doi.org/10.1021/acs.nanolett.6b01097
    55. Katie E. Chong, Lei Wang, Isabelle Staude, Anthony R. James, Jason Dominguez, Sheng Liu, Ganapathi S. Subramania, Manuel Decker, Dragomir N. Neshev, Igal Brener, and Yuri S. Kivshar . Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms. ACS Photonics 2016, 3 (4) , 514-519. https://doi.org/10.1021/acsphotonics.5b00678
    56. Mohammadreza Khorasaninejad, Francesco Aieta, Pritpal Kanhaiya, Mikhail A. Kats, Patrice Genevet, David Rousso, and Federico Capasso . Achromatic Metasurface Lens at Telecommunication Wavelengths. Nano Letters 2015, 15 (8) , 5358-5362. https://doi.org/10.1021/acs.nanolett.5b01727
    57. Yao-Wei Huang, Wei Ting Chen, Wei-Yi Tsai, Pin Chieh Wu, Chih-Ming Wang, Greg Sun, and Din Ping Tsai . Aluminum Plasmonic Multicolor Meta-Hologram. Nano Letters 2015, 15 (5) , 3122-3127. https://doi.org/10.1021/acs.nanolett.5b00184
    58. Fei Ding, Zhuoxian Wang, Sailing He, Vladimir M. Shalaev, and Alexander V. Kildishev . Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach. ACS Nano 2015, 9 (4) , 4111-4119. https://doi.org/10.1021/acsnano.5b00218
    59. Zhongyang Li, Edgar Palacios, Serkan Butun, and Koray Aydin . Visible-Frequency Metasurfaces for Broadband Anomalous Reflection and High-Efficiency Spectrum Splitting. Nano Letters 2015, 15 (3) , 1615-1621. https://doi.org/10.1021/nl5041572
    60. Anders Pors, Michael G. Nielsen, and Sergey I. Bozhevolnyi . Analog Computing Using Reflective Plasmonic Metasurfaces. Nano Letters 2015, 15 (1) , 791-797. https://doi.org/10.1021/nl5047297
    61. Mark D. Huntington, Lincoln J. Lauhon, and Teri W. Odom . Subwavelength Lattice Optics by Evolutionary Design. Nano Letters 2014, 14 (12) , 7195-7200. https://doi.org/10.1021/nl5040573
    62. Shih-Chen Chen, Yi-Ju Chen, Wei Ting Chen, Yu-Ting Yen, Tsung Sheng Kao, Tsung-Yeh Chuang, Yu-Kuang Liao, Kaung-Hsiung Wu, Atsushi Yabushita, Tung-Po Hsieh, Martin D. B. Charlton, Din Ping Tsai, Hao-Chung Kuo, and Yu-Lun Chueh . Toward Omnidirectional Light Absorption by Plasmonic Effect for High-Efficiency Flexible Nonvacuum Cu(In,Ga)Se2 Thin Film Solar Cells. ACS Nano 2014, 8 (9) , 9341-9348. https://doi.org/10.1021/nn503320m
    63. Leo-Jay Black, Yudong Wang, C. H. de Groot, Arnaud Arbouet, and Otto L. Muskens . Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces. ACS Nano 2014, 8 (6) , 6390-6399. https://doi.org/10.1021/nn501889s
    64. Yuval Yifat, Michal Eitan, Zeev Iluz, Yael Hanein, Amir Boag, and Jacob Scheuer . Highly Efficient and Broadband Wide-Angle Holography Using Patch-Dipole Nanoantenna Reflectarrays. Nano Letters 2014, 14 (5) , 2485-2490. https://doi.org/10.1021/nl5001696
    65. Nicolas Kossowski, Yanel Tahmi, Amir Loucif, Martin Lepers, Benoit Wattellier, Guillaume Vienne, Samira Khadir, Patrice Genevet. Metrology of metasurfaces: optical properties. npj Nanophotonics 2025, 2 (1) https://doi.org/10.1038/s44310-024-00051-4
    66. Quan Yuan, Qin Ge, Xiujuan Zou, Yi Zhang, Yuhang Yang, Boyan Fu, Ruoyu Lin, Boping He, Shuming Wang, Din Ping Tsai, Shining Zhu, Zhenlin Wang. Scalable high-efficiency metasurface-refractive retro-reflector. PhotoniX 2025, 6 (1) https://doi.org/10.1186/s43074-025-00172-9
    67. Yifan Guo, Minglei Li, Yu Qian, Liping Gong, Zhuqing Zhu, Bing Gu. Dual-multiplexed coaxial holograms reconstruction based all-optical diffraction deep neural network. Optics Communications 2025, 582 , 131632. https://doi.org/10.1016/j.optcom.2025.131632
    68. Yilin Zheng, Ke Chen, Shaojie Wang, Wenhai Zhang, Changrong Liu, Honglong Cao, Xueguan Liu, Yijun Feng. Multifunctional full-space origami reconfigurable metasurface for spin-decoupled wavefront manipulation. Optics Express 2025, 33 (10) , 20785. https://doi.org/10.1364/OE.562391
    69. Hui Gao. Metasurface Holography. 2025https://doi.org/10.5772/intechopen.1010340
    70. Dong Li, Manna Gu, Chenxia Li, Ying Tian, Bo Fang, Jingxiang Wang, Zhi Hong, Xufeng Jing. The innovation in planar optics: Technological breakthroughs and application prospects of metalens. Precision Engineering 2025, 93 , 237-252. https://doi.org/10.1016/j.precisioneng.2025.01.011
    71. Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou. High-efficiency generation of bi-functional holography with metasurfaces. Nanophotonics 2025, 14 (8) , 1283-1290. https://doi.org/10.1515/nanoph-2024-0677
    72. Chao Liu, Yi Zheng, Di Wang, Qian Huang, Xiao‐Wei Li, Fan‐Chuan Lin, You‐Ran Zhao, Yi‐Wei Zheng, Xiao‐Ke Lu, Xin‐Ru Li, Xin‐Ru Zheng, Xin Xie, Kun Song, Zhen‐Fei Li, Wei Lu, Din Ping Tsai, Ruo‐Nan Ji, Qiong‐Hua Wang. Multi‐Wavelength Achromatic 3D Meta‐holography with Zoom Function. Advanced Science 2025, 14 https://doi.org/10.1002/advs.202501881
    73. Peijie Wu, Manna Gu, Chenxia Li, Wenkang Huang, Feng Lin, Bo Fang, Ying Tian, Zhi Hong, Xufeng Jing. Research progress on dynamic holographic display technology based on metasurfaces. Optics & Laser Technology 2025, 182 , 112071. https://doi.org/10.1016/j.optlastec.2024.112071
    74. Ying Liu, Weijie Shi, Wenjing Sun, Shuyan Zhang, Zhenggao Dong. Spin-decoupled amplitude and phase control by chiral metasurfaces for four-channel focusing. Journal of Optics 2025, 27 (4) , 045001. https://doi.org/10.1088/2040-8986/adb3b8
    75. Alkmini Michaloglou, Nikolaos L Tsitsas, Constantinos Valagiannopoulos. Sensing the polarization of visible light with optimized absorbing nanorods. Journal of Optics 2025, 27 (4) , 045402. https://doi.org/10.1088/2040-8986/adb596
    76. Xiangyu Jin, Zhuo Wang, Muhan Liu, Jianru Li, Zhiyan Zhu, Yingying Wang, Liangwei Li, Yizhen Chen, Weikang Pan, Shaojie Ma, Qiong He, Lei Zhou, Shulin Sun. Vectorial Beams With Longitudinally Varying Polarizations Generated by Surface‐Wave Metasurfaces. Laser & Photonics Reviews 2025, 3 https://doi.org/10.1002/lpor.202402298
    77. Temirkul Umetaliev, Constantinos Valagiannopoulos. AI-based photonic inverse design: hugely polarization-selective multilayered scatterers. Journal of the Optical Society of America B 2025, 42 (3) , 621. https://doi.org/10.1364/JOSAB.545930
    78. Zenan Wang, Chungen Hsu, Xiaogong Wang. Polarization‐Controlled Diffractions of Submicron Pillar Arrays of Azo Molecular Glass for Image Recording and Reconstruction. Advanced Photonics Research 2025, 6 (3) https://doi.org/10.1002/adpr.202400106
    79. Pengquan Wang, Yuqing Ren, Zhaoyin Qin, Wensheng Jiao, Hsin-Han Peng, Yingtao Yu, Hsiang-Chen Chui. Tunable Near Infrared Chiral Device Designed by Metasurface in Helically Twisted Liquid Crystals. Chinese Journal of Physics 2025, 15 https://doi.org/10.1016/j.cjph.2025.03.024
    80. Minghao Ning, Haozong Zhong, Zhen Gu, Ling-En Zhang, Ning Qu, Jun Ding, Tao Li, Lin Li. Enhanced optical encryption via polarization-dependent multi-channel metasurfaces. Nanophotonics 2025, 14 (4) , 495-502. https://doi.org/10.1515/nanoph-2024-0746
    81. Kailuo Gong, Xiaoyi Wang, Junzai Chen, Xiaojie Lu, Guo-Min Yang, Mei Song Tong. Reconfigurable metasurface polarization rotator utilizing a phase-shifter-loaded truncated patch. Optics Express 2025, 33 (3) , 5670. https://doi.org/10.1364/OE.552053
    82. Quan Yuan, Yuhang Yang, Qianhui Bi, Fei Wu, Haoxiang Yu, Qin Ge, Boping He, Shujie Yang, Qingyue Zhen, Shuming Wang, Shining Zhu, Zhenlin Wang. Planar Large Field‐of‐View Spectral Imaging Based on Metasurface Array. Advanced Optical Materials 2025, 13 (5) https://doi.org/10.1002/adom.202402507
    83. Faizan Faraz, Jie Tian, Taufeeq Ur Rehman Abbasi, Weiren Zhu. Recent Advances in Geometric Phase Metasurfaces: Principles and Applications. Advanced Physics Research 2025, 4 (2) https://doi.org/10.1002/apxr.202400095
    84. Fengxia Li, Xiaohan Yin, Jia‐Yuan Yin, Jing‐Ya Deng. Independent and Free Control of Multiple Beams Enabled by Wideband Spin‐Decoupled Metasurface. Advanced Optical Materials 2025, 13 (6) https://doi.org/10.1002/adom.202401777
    85. Bin Fang, Yantao Li, Yu Lei, Jiaqi Cao, Fangzhou Shu, Tianqi Zhao, Shenghua Zhou, Zhongwei Jin, Changyu Shen, Zhi Hong, Chunlian Zhan, Lin Li. Meta-coupler empowered dynamic wavefront control with on-chip polarization reconfiguration. Optics Express 2025, 33 (2) , 3112. https://doi.org/10.1364/OE.547396
    86. Kunwei Pang, Wei Zhang. Polarization Modulation and Detection Based on Nonuniform Phase Gradient Metasurfaces. Plasmonics 2025, 24 https://doi.org/10.1007/s11468-024-02736-0
    87. Wenhao Guo, Xinxin Pu, Yechuan Zhu, Zhiheng Wang, Xueping Sun, Yong Liu, Shun Zhou, Shaobo Ge, Liangyi Hang, Weiguo Liu. Off-axis metasurface hologram based on the principle of interference. Optics Communications 2025, 574 , 131133. https://doi.org/10.1016/j.optcom.2024.131133
    88. Yingying Wang, Yang Shi, Liangwei Li, Zhiyan Zhu, Muhan Liu, Xiangyu Jin, Haodong Li, Guobang Jiang, Jizhai Cui, Shaojie Ma, Qiong He, Lei Zhou, Shulin Sun. Electromagnetic Wavefront Engineering by Switchable and Multifunctional Kirigami Metasurfaces. Nanomaterials 2025, 15 (1) , 61. https://doi.org/10.3390/nano15010061
    89. Min Kang, Lixing Chen, Shuaipeng Qin, Liang Ma, Aoxiang Rui, Shiqing Li. Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence. Photonics 2025, 12 (1) , 91. https://doi.org/10.3390/photonics12010091
    90. 耿文佳 Geng Wenjia, 任斌 Ren Bin, 刘欣 Liu Xin, 武敏 Wu Min, 费宏明 Fei Hongming. 基于二氧化钒的动态可调编码超表面. Laser & Optoelectronics Progress 2025, 62 (1) , 0116002. https://doi.org/10.3788/LOP241056
    91. Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou, , , , . Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces. Opto-Electronic Science 2025, 4 (1) , 240024-240024. https://doi.org/10.29026/oes.2025.240024
    92. Yuehong Xu, Yuma Takida, Tetsu Suzuki, Hiroaki Minamide. Terahertz‐Wave Polarization Space‐Division Multiplexing Meta‐Devices based on Spin‐Decoupled Phase Control. Advanced Science 2024, 338 https://doi.org/10.1002/advs.202412688
    93. Jinke Li, Hongliang Li, Duk‐Yong Choi, Jin Tae Kim, Woo‐Bin Lee, Sang‐Shin Lee. All‐Dielectric Fiber Meta‐Tip for Alignment‐Tolerant Bidirectional Interconnect Between Single‐Mode and Multi‐Mode Fibers. Advanced Optical Materials 2024, 12 (36) https://doi.org/10.1002/adom.202401712
    94. Zheng Liang, Li Chen, Kai Chen, Zhenhui Liang, Kunhua Wen, Jiawei Zhu, Yihua Hu. Holographic encryption algorithm based on DNA coding and bit-plane decomposition. Multimedia Tools and Applications 2024, 83 (40) , 87385-87413. https://doi.org/10.1007/s11042-024-18838-0
    95. Jun Qiao, Guojin Feng, Guoping Yao, Chenxia Li, Ying Tang, Bo Fang, Tianqi Zhao, Zhi Hong, Xufeng Jing. Research progress on the principle and application of multi-dimensional information encryption based on metasurface. Optics & Laser Technology 2024, 179 , 111263. https://doi.org/10.1016/j.optlastec.2024.111263
    96. Zijin Yang, Po-Sheng Huang, Yu-Tsung Lin, Haoye Qin, Jesús Zúñiga-Pérez, Yuzhi Shi, Zhanshan Wang, Xinbin Cheng, Man-Chung Tang, Sanyang Han, Boubacar Kanté, Bo Li, Pin Chieh Wu, Patrice Genevet, Qinghua Song. Creating pairs of exceptional points for arbitrary polarization control: asymmetric vectorial wavefront modulation. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-023-44428-z
    97. Di Wang, Yi-Long Li, Xin-Ru Zheng, Ruo-Nan Ji, Xin Xie, Kun Song, Fan-Chuan Lin, Nan-Nan Li, Zhao Jiang, Chao Liu, Yi-Wei Zheng, Shao-Wei Wang, Wei Lu, Bao-Hua Jia, Qiong-Hua Wang. Decimeter-depth and polarization addressable color 3D meta-holography. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-52267-9
    98. Shahid Iqbal, Ahsan Noor, Naeem Ullah, Yasir Saifullah, Shehzad Ahmed, Muhammad Shemyal Nisar, Sai-Wai Wong. Polarization insensitive non-interleaved frequency multiplexed dual-band Terahertz coding metasurface for independent control of reflected waves. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-71910-5
    99. Feng-Jun Li, Shuai Wang, Rui Zhong, Meng-Xia Hu, Yue Jiang, Meijiu Zheng, Mu Wang, Xiangping Li, Ruwen Peng, Zi-Lan Deng. Metasurface polarization optics: From classical to quantum. Applied Physics Reviews 2024, 11 (4) https://doi.org/10.1063/5.0226286
    100. Changhong Dai, Tong Liu, Dongyi Wang, Lei Zhou. Multiplexing near- and far-field functionalities with high-efficiency bi-channel metasurfaces. PhotoniX 2024, 5 (1) https://doi.org/10.1186/s43074-024-00128-5
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2014, 14, 1, 225–230
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nl403811d
    Published December 13, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    12k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.